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1 Introduction

In recent years, there has been an explosion of interest
\active" machine learning systems. These are learning
systems that make queries, or perform experiments to
gather data that are expected to maximize performance.
When compared with \passive" learning systems, which
accept given, or randomly drawn data, active learners
have demonstrated signi�cant decreases in the amount
of data required to achieve equivalent performance. In
industrial applications, where each experiment may take
days to perform and cost thousands of dollars, a method
for optimally selecting these points would o�er enormous
savings in time and money.

An active learning system will typically attempt to
select data that will minimize its predictive error. The
error of a learner can be decomposed into bias and vari-
ance terms. Most research in selecting optimal actions
or queries has assumed that the learner is approximately
unbiased, and that to minimize learner error, variance is
the only thing to minimize (a few examples include Fe-
dorov [1972], MacKay [1992], Cohn [1994; 1995], Paass
[1995]). In practice, however, there are very few prob-
lems for which we have unbiased learners. Frequently,
bias constitutes a large portion of a learner's error; if
the learner is deterministic and the data are noise-free,
then bias is the only source of error.1

In this paper I describe an algorithm which selects
actions/queries designed to minimize the bias of a lo-
cally weighted regression-based learner. Empirically,
\variance-minimizing" strategies which ignore bias seem
to perform well, even in cases where, strictly speaking,
there is no variance to minimize. In the tasks considered
in this paper, the bias-minimizing strategy consistently
outperforms variance minimization, even in the presence
of noise.

1.1 Bias and variance

Let us begin by de�ning P (x; y) to be the unknown joint
distribution over x and y, and P (x) to be the known
marginal distribution of x (commonly called the input

distribution). We denote the learner's output on input
x, given training set D as ŷ(x;D). We can then write
the expected error of the learner asZ

x
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where E[�] denotes the expectation over P and over train-
ing sets D. The expectation inside the integral may be
decomposed as follows (Geman et al., 1992):
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1The bias term here is a statistical bias, which is distinct

from the inductive bias discussed in some machine learning
research. See Dietterich and Kong [1995] for a discussion of
the relationship between the two.

where ED[�] denotes the expectation over training sets.
The �rst term in Equation 2 is the variance of y given x
{ it is the noise in the distribution, and does not depend
on our learner or how the training data are chosen. The
second term is the learner's squared bias, and the third is
its variance; these last two terms comprise the expected
squared error of the learner with respect to the regression
function E[yjx].

Most research in active learning assumes that the sec-
ond term of Equation 2 is approximately zero, that is,
that the learner is unbiased. If this is the case, then
one may concentrate on selecting data so as to minimize
the variance of the learner. Although this \all-variance"
approach is optimal when the learner is unbiased, truly
unbiased learners are rare. Even when the learner's rep-
resentation class is able to match the target function
exactly, bias is generally introduced by the learning al-
gorithm and learning parameters. From the Bayesian
perspective, a learner is only unbiased if its priors are
exactly correct.

The optimal choice of query would, of course, mini-
mize both bias and variance, but I leave that for future
work. For the purposes of this paper, I will only be con-
cerned with selecting queries that are expected to min-
imize learner bias. This approach is justi�ed in cases
where noise is believed to be only a small component
of the learner's error. If the learner is deterministic and
there is no noise, then strictly speaking, there is no error
due to variance | all the error must be due to learner
bias. In cases with non-determinism or noise, all-bias
minimization, like all-varianceminimization, becomes an
approximation of the optimal approach.

The learning model discussed in this paper is a form
of locally weighted regression (LWR) [Cleveland et al.,
1988], which has been used in di�cult machine learning
tasks, notably the \robot juggler" of Schaal and Atkeson
[1994]. Previous work [Cohn et al., 1995] discussed all-
variance query selection for LWR; in the remainder of
this paper, I describe a method for performing all-bias
query selection. Section 2 describes the criterion that
must be optimized for all-bias query selection. Section 3
describes the locally weighted regression learner used in
this paper and describes how the all-bias criterion may
be computed for it. Section 4 describes the results of ex-
periments using this criterion on several simple domains.
Directions for future work are discussed in Section 5.

2 All-bias query selection

Let us assume for the moment that we have a source of
noise-free examples (xi; yi) and a deterministic learner
which, given input x, outputs estimate ŷ(x).2 Let us
also assume that we have an accurate estimate of the
bias of ŷ which can be used to estimate the true func-
tion y(x) = ŷ(x) � bias(x). We will break these rather
strong assumptions of noise-free examples and accurate
bias estimates in Section 4, but they are useful for de-
riving the theoretical approach described below.

2For clarity, I will drop the argument x except where re-
quired for disambiguation. I will also denote only the uni-
variate case; the results apply in higher dimensions as well.
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Given the accurate bias estimate, our task is then to
force the biased estimator into the best approximation of
y(x) with the fewest number of examples. This, in e�ect,
transforms the query selection problem into an example
�lter problem similar to that studied by Plutowski and
White [1993] for neural networks. Below, I derive this
criterion for estimating the change in error at x given a
new queried example at ~x.

Since we have (temporarily) assumed a deterministic
learner and noise-free data, the expected error in Equa-
tion 2 simpli�es to:

E
h
(ŷ(x;D)� y(x))

2
jx;D

i
= (ŷ(x;D)� y(x))

2
(4)

We want to select a new ~x such that when we add
(~x; ~y), the resulting squared bias is minimized:

(ŷ0 � y)2 � (ŷ(x;D [ (~x; ~y))� y(x))
2
: (5)

We will, for the remainder of the paper, use the \0" to
indicate estimates based on the initial training set plus
the additional example (~x; ~y). To minimize Expression 5,
we need to compute how a query at ~x will change the
learner's bias at x. If we assume that we know the input
distribution,3 then we can integrate this change over the
entire domain (using Monte Carlo procedures) to esti-
mate the resulting average change, and select a ~x such
that the expected squared bias is minimized. De�ning
bias � ŷ � y and �ŷ � ŷ0 � ŷ, we can write the new
squared bias as:

bias0 = (ŷ0 � y)2

= (ŷ +�ŷ � y)2

= �ŷ2 + 2�ŷ � bias + bias2 (6)

Note that since bias as de�ned here is independent of ~x,
minimizing the bias is equivalent to minimizing �ŷ2 +
2�ŷ � bias.

The estimate of bias0 tells us how much our bias will
change for a given ~x. We may optimize this value over ~x
in one of a number of ways. In low dimensional spaces,
it is often su�cient to consider a set of \candidate" ~x
and select the one promising the smallest resulting error.
In higher dimensional spaces, it is often more e�cient to
search for an optimal ~x with a response surface technique
[Box and Draper, 1987], or hillclimb on @bias0=@~x.

Estimates of bias and �ŷ depend on the speci�c learn-
ing model being used. In Section 3, I describe a locally
weighted regression model, and show how di�erentiable
estimates of bias and �ŷ may be computed for it.

2.1 An aside: why not just use ŷ � dbias?
If we have an accurate bias estimate, it is reasonable to

ask why we do not simply use the corrected ŷ � dbias
as our predictor. Certainly, in the limit of a perfect bias
estimate, the composite prediction would have zero bias,

3This assumption is contrary to the assumption normally
made in some forms of learning, e.g. PAC-learning, but it is
appropriate in many domains. If, for example, we are learn-
ing to control a robot arm, it is reasonable to assume that
we know the distribution of positions over which we are in-
terested in controlling it.

and we could concentrate solely on variance, as previous
work has.

The answer to this question has several parts, the �rst
of which is that for most learners, there are no perfect
bias estimators. Bias estimators introduce their own bias
and variance, which must be addressed in data selection.

We can de�ne a composite learner which produces es-

timate ŷc � ŷ � dbias. Given a random training sample
then, we would expect ŷc to outperform ŷ. However,
there is no obvious way to select data for this composite
learner other than selecting to maximize the performance
of its two components. In our case, the second compo-
nent (the bias estimate) is non-analytic, which leaves
us selecting data so as to maximize the performance of
the �rst component (the uncorrected estimator). We
are now back to our original problem: we can select
data so as to minimize either the bias or variance of
the uncorrected LWR-based learner. Since the purpose
of the correction is to give an unbiased estimator, intu-
ition suggests that variance minimization would be the
more sensible route in this case.

Regardless of how we select our data, we can use the
composite estimator to make our predictions; depending
on how noisy the bias estimate is, this may or may not
improve the learner's net performance. In the domains
considered in this paper, I found that the performance of
ŷc using random selection or variance minimization was
not substantially di�erent from that of the uncorrected
ŷ (see Figure 7 in Section 4).

3 Locally weighted regression

The type of learner I consider here is a form of locally
weighted regression (LWR) that is a slight variation on
the LOESS model of Cleveland et al. [1988]. The LOESS
model performs a linear regression on points in the data
set, weighted by a kernel centered at x (see Figure 1).
The kernel shape is a design parameter: the original
LOESS model uses a \tricubic" kernel; in my experi-
ments I use the more common Gaussian

hi(x) � h(x� xi) = exp(�k(x� xi)
2);

where k is a smoothing parameter. For brevity, I will
drop the argument x for hi(x), and de�ne n =

P
i
hi.

We can then write the weighted means and covariances
as:
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We use these means and covariances to produce an esti-
mate ŷ at the x around which the kernel is centered, with
a con�dence term in the form of a variance estimate:
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In all the experiments discussed in this paper, the
smoothing parameter k was set so as to minimize �2

ŷ
.
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x

Figure 1: Locally weighted regression places a kernel
around the point of interest x. The kernel is used to as-
sign weightings to points in the training set, from which
ŷ(x) is computed via linear regression.

The low cost of incorporating new training examples
makes this form of locally weighted regression appealing
for learning systems which must operate in real time,
or with time-varying target functions (e.g. [Schaal and
Atkeson 1994]).

3.1 Computing �ŷ for LWR

If we know what new point (~x; ~y) we're going to add,

computing �ŷ for LWR is straightforward. De�ning ~h
as the weight given to ~x, we can write

�ŷ = ŷ0 � ŷ (7)
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y
+
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(n+ h)�xy + h � (~x � �x)(~y � �y)

(n+ h)�2
x
+ h � (~x� �x)2

(8)

Note that computing �ŷ requires us to know both the
~x and ~y of the new point. In practice, we only know
~x. If we assume, however, that we can estimate the
learner's bias at any x, then we can also estimate the
unknown value ~y � ŷ(~x) � bias(~x). Below, I consider
how to compute the bias estimate.

3.2 Estimating bias for LWR

The most common technique for estimating bias is cross-
validation. Standard cross-validation however, only
gives estimates of the bias at our speci�c training points,
which are usually combined to form an average bias es-
timate. This is su�cient if one assumes that the train-
ing distribution is representative of the test distribution
(which it isn't in query learning) and if one is content
to just estimate the bias where one already has training
data (which we can't be).
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o
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o

o o

o
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estimated
bias of
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Figure 2: Box and Draper's method of estimating bias
measures the di�erence between the estimator in ques-
tion and a one-higher-order estimate.

In the query selection problem, we must be able to
estimate the bias at all possible x. There are several ways
we can get this estimate using LWR. Box and Draper
[1987] suggest �tting a higher order model and measuring
the di�erence. In the case of (linear) locally weighted
regression, one would �t a locally quadratic regressor to
the data and use the di�erence in estimates as the bias
(see Figure 2). Under certain conditions on the higher-
order bias terms, one can make some guarantees on the
accuracy of this bias estimate.

The disadvantages of this method stem from the fact
that it requires a higher order model. This requires ad-
ditional computation to �t, and the �t is more prone
to variance problems. For the experiments described in
this paper, this method of bias estimation yielded poor
results; two other bias-estimation techniques, however,
performed very well.

3.2.1 Estimating bias by bootstrapping
residuals

Another method of estimating bias is by bootstrap-
ping the residuals of the training points. Based on the m
available training points, and the predictor's �t to these
points, a \bootstrap sample" is created by randomly
drawing m values with replacement from the learner's
residuals. These values are added to the original pre-
dictions to create a synthetic training set on which the
learner is retrained.

By creating a number of bootstrapped predictions and
comparing their average prediction with that of the orig-
inal predictor, one arrives at a �rst-order bootstrap es-
timate of the predictor's bias [Connor 1993; Efron and
Tibshirani, 1993]. It is known that this estimate is itself
biased towards zero; a standard heuristic is to divide the
estimate by 0.632 [Efron, 1983]. A disadvantage of the
bootstrap method is that, because it requires repeated
�tting, it is computationally expensive.
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3.2.2 Estimating bias by �tting cross-validated

estimates

One may also estimate the bias of a learner by �t-
ting its own cross-validated residuals. We �rst compute
the cross-validated residuals on the training examples.
These produce estimates of the learner's bias at each
of the training points. We can then use these residuals
as training examples for another learner (again LWR)
to produce estimates of what the cross-validated error
would be in places where we don't have training data
(see Figure 3).4
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o
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o
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o

o o

o

o

x

How do we estimate the bias at input x?

true function

estimator

o training examples

Figure 3: Applying the learner to its own cross-validated
residuals produces an estimate of the bias that may be
evaluated over the entire domain.

4 Empirical results

In the previous two sections, I have explained how having
an estimate of �ŷ and bias for a learner allows one to
compute the learner's change in bias given a new query,
and have shown how these estimates may be computed
for a learner that uses locally weighted regression. Here,
I apply these results to several simple problems using the
\Arm2D" domain (Figure 4) and demonstrate that they
may actually be used to select queries that minimize the
statistical bias (and the error) of the learner.

4One subtlety that needs to be addressed is which residual
is actually �t. Denote the cross-validated estimate as ŷcv. If
we believe the data is noise-free, then the true value of the
function at x is y, so the cross-validated bias is ŷcv � y. If,
however, there is noise, we should assume that some of that
mis�t is due to noise. In this case, the proper bias estimate
should be ŷcv � ŷ, with the remaining di�erence ŷ � y being
due to noise.
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Figure 4: (left) Arm2D { The system learns arm kine-
matics by specifying joint angles (�1; �2) and observing
tip coordinates (x1; x2). The goal is to minimize the
MSE of the learner's model over the input distribution
(�1;�2) = (U [0; 2�]; U [0; �]). (right) A sample explo-
ration trajectory in joint-space for the constrained arm
problem, exploring according to the cross-validation-
based bias minimizing criterion.

4.1 Bias estimates

I tested the accuracy of the three bias estimators by ob-
serving their correlations on 64 reference inputs, given
100 random training examples from the Arm2D domain.
When corrected with the 632 heuristic described above,
both the bootstrap and cross-validation methods pro-
duce fairly accurate, albeit noisy, bias estimates (Fig-
ure 5). The quadratic method produced poor correlation
and was dropped from the study.
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Figure 5: Correlations between estimated and actual bi-
ases for di�erent estimators.

4.2 Bias minimization

I ran two series of experiments using the bias-minimizing
criterion in conjunction with the bias estimation tech-
nique of the previous section on the \Arm2D" domain.
The bias minimization criterion was used as follows: At
each time step, the learner was given a set of 64 ran-
domly chosen candidate queries and 64 uniformly cho-
sen reference points. It evaluated E0(x) for each refer-
ence point given each candidate point and selected for
its next query the candidate point with the smallest av-
erage E0(x) over the reference points. I compared the
bias-minimizing strategy (using the cross-validation and
bootstrap estimation techniques) against random sam-
pling and the variance-minimizing strategy discussed in
Cohn et al. [1995]. On a Sparc 10, with m training ex-
amples, the average evaluation times per candidate per
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reference point were 58+0:16m�seconds for the variance
criterion, 65 + 0:53m �seconds for the cross-validation-
based bias criterion, and 83 + 3:7m �seconds for the
bootstrap-based bias criterion (with 20x resampling).

To test whether the bias-only assumption was robust
against the presence of noise, 1% Gaussian noise was
added to the input values of the training data in all ex-
periments. This simulates noisy position e�ectors on the
arm, and results in non-Gaussian noise in the output co-
ordinate system.

In the �rst series of experiments, the candidate points
were drawn uniformly over (U [0; 2�]; U [0; �]). In uncon-
strained domains like this, random sampling is a fairly
good default strategy. The bias minimization strategies
still signi�cantly outperform both random sampling and
the variance minimizing strategy in these experiments
(see Figure 6).
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Figure 6: MSE as a function of number of noisy train-
ing examples for the unconstrained arm problem. The
cross-validation and bootstrap bias-minimization strate-
gies give a factor of 3 improvement over random selec-
tion, and a slight improvement over variance-only mini-
mization. Errors are averaged over 10 runs for the boot-
strap method and 15 runs for all others. One run with
the cross-validation-based method was excluded when k
failed to converge to a reasonable value.

In the second series of experiments, candidates were
drawn uniformly from a region local to the previously

selected query: (�̂1 � 0:2�; �̂2 � 0:1�). This corresponds
to restricting the arm to local motions. In a constrained
problem such as this, random sampling is a poor strat-
egy; both the bias and variance-reducing strategies out-
perform it at least an order of magnitude. Further, the
bias-minimization strategy outperforms variance mini-
mization by a large margin (Figure 7). Figure 4 shows
an exploration trajectory produced by pursuing the bias-
minimizing criterion. It is noteworthy that, although
the implementation in this case was a greedy (one-step)
minimization, the trajectory results in globally good ex-
ploration.

5 Discussion

I have argued in this paper that, in many situations, se-
lecting queries to minimize learner bias is an appropriate
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Figure 7: MSE as a function of number of noisy train-
ing examples for the constrained arm problem. Bias-
minimization signi�cantly outperforms the variance-
minimizing algorithm and random exploration.

and e�ective strategy for active learning. I have given
empirical evidence that, with a LWR-based learner and
the examples considered here, the strategy is e�ective
even in the presence of noise.

Beyond minimizing either bias or variance, an impor-
tant next step is to explicitly minimize them together.
The bootstrap-based estimate should facilitate this, as it
produces a complementary variance estimate with little
additional computation.5 By optimizing over both cri-
teria simultaneously, we expect to derive a criterion that
that, in terms of statistics, is truly optimal for selecting
queries.
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