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Abstract

We describe a technique for finding pixelwise correspondences between two images by using models of objects
of the same class to guide the search. The object models are “learned” from example images (also called
prototypes) of an object class. The models consist of a linear combination of prototypes. The flow fields giving
pixelwise correspondences between a base prototype and each of the other prototypes must be given. A novel
image of an object of the same class is matched to a model by minimizing an error between the novel image and
the current guess for the closest model image. Currently, the algorithm applies to line drawings of objects. An
extension to real grey level images is discussed.
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1 Introduction

The problem of image correspondence is basic to
computer vision and arises in a number of vision appli-
cations such as stereo disparity, object recognition and
motion estimation. General solutions such as optical
flow techniques for computing the pixelwise correspon-
dences between two images only work when the dif-
ferences between the two images are relatively small.
When the two images have large differences such as
large rotations or changes in shape, then general meth-
ods for computing correspondences break down. For
many applications, prior knowledge is available about
the contents of the images for which the correspon-
dence is being computed. This knowledge may be
exploited in order to create a more robust correspon-
dence algorithm. This is the approach discussed in
this paper. We describe an algorithm for model-based
matching which uses a simple model of a class of ob-
jects to find the correspondence between a novel view
of an object of the same class and a standard “proto-
typical” view. Instead of using 3D models for objects,
we build models from 2D example views of the objects.
Our technique requires that the pixelwise correspon-
dences between each example view and the standard
example view be given by the user (presumably by
semiautomatic techniques) in the training stage. Cur-
rently we are concerned with matching line drawings
although straightforward extensions should allow the
algorithm to be used with real images. Hence, this
paper focuses on models of the shape of objects which
do not take into account their textures.

2 Related work

Other researchers have studied techniques for con-
straining the search for correspondences by assuming
a model for the form of valid flow fields. For example,
Cootes and Taylor ([5, 6, 7]) proposed Active Shape
Models (ASMs) which is similar to the approach we
are taking. An ASM is built by first manually identify-
ing a number of control points on a real image of an ob-
ject. After the same control points are identified on a
number of different images of the same object, a prin-
cipal components analysis is done on the matrix con-
sisting of vectors of control points. This yields a set of
eigenvectors which describe the directions (in control
point space) of greatest variation along which the con-
trol points change. An ASM is then the linear combi-
nation of eigenvectors plus parameters for translation,
rotation and scaling. An ASM is matched to a novel
image of the object by an algorithm that searches a
region in the novel image around the current position
of each control point to find a position of better fit for
each control point and then updates the parameters
of the ASM accordingly. Two of the main differences
of their approach relative to ours are the fitting algo-
rithm used (ours is a gradient based approach) and
the use of a dense pixelwise flow field as opposed to
a sparse vector of control points. Also, Cootes and
Taylor match shape models (which are basically line
drawings) to real images whereas we match line draw-
ings to line drawings and also describe a method for
matching real image models to real images.

Another group of researchers, Bergen, Anandan,

Hanna and Hingorani [1], have described a framework
for grey-level motion estimation. Their work is based
on defining an error function which must be minimized
to find the optimal flow field between two images. The
error function they use is the sum of squared differ-
ences between one image and a warping of the other
image according to the current estimate of the flow
field. Bergen et al. constrain the flow field to ad-
here to some preselected form or model. The error
is then minimized with respect to the parameters of
the model by the Gauss-Newton minimization algo-
rithm. The particular model used to constrain the
flow can be selected according to the particular appli-
cation. The ones discussed in Bergen et al. are rather
general: affine flow, planar surface flow, rigid body
motion and general optical flow. The main difference
between their work and ours is the type of model used.
Our models are learned from examples and are specific
to a particular object class.

The main motivation for our work is the linear class
concept of Poggio and Vetter [11, 9] that justifies mod-
eling an object in terms of a linear combination of pro-
totypes. Poggio and Vetter showed that linear trans-
formations can be learned exactly from a small set of
examples in the case of linear object classes. Further-
more, many object transformations such as 3D rota-
tions of a rigid object and changing expression of a
face can be approximated by linear transformations,
that can be learned from a small number of examples.
The same motivation underlies the work of Beymer [2]
who describes an alternative approach, also based on
a linear combination of prototypes, to vectorize grey-
level images.

3 Model-based matching using proto-

types
3.1 The model

We would like the models used for model-based
matching to be learned from examples as opposed to
being hardwired. To learn a model, a number of exam-
ples or prototypes of an object are given which show
how the object can change. For example, to learn a
model of a face with varying pose and facial expres-
sion, several examples of the face at different poses
and with different expressions would be given to the
system.

In addition to the prototype images, we require that
pixelwise correspondences be given between one of the
prototypes (usually the “average” prototype) which is
chosen to be the base image and each of the other pro-
totypes. In practice the correspondences are specified
by the user during this “learning” stage in a semiau-
tomatic way using special tools.

Given the correspondences, each prototype can be
“vectorized” - written as a vector of points. In prac-
tice each prototype is represented as two matrices, one
with the displacements in the x direction from each
point in the base image to the corresponding point in
the prototype and one with the y displacements. We
define a model in this framework to be a linear combi-
nation of vectorized prototypes or equivalently a linear
combination of example flow fields (see also [10, 3]).



To write the models mathematically, we must first
introduce some notation. Let Iy be the base prototype
image to which all the correspondences reference. Let
N be the total number of prototypes. Let Dx; be the
matrix of displacements in the x direction mapping
the coordinates of base image I to the corresponding
coordinates of prototype I;. Similarly, let Dy; be the
matrix of y displacements. Together, Dx; and Dy;
make up a flow field. The model images consist of all
images whose flow field is a linear combination of the
prototype flow fields plus an affine transformation. In
symbols,

N-1
Da' =) (c;Dwi) +poX +piY +po

(3

N—1
Dy' = Y (c;Dyi) +psX +piY +ps

(3

The Dz’ and Dy’ matrices are the flow field de-
scribing model image I'. Each row of the constant
matrix X is (—w/2,-w/2 + 1,...,—1,0,1,...,w/2 —
1,w/2) where w is the width of the prototype im-
ages. Similarly, each column of the constant matrix y
is (=h/2,—h/2+1,...,—1,0,1,...,h/2—1,h/2)T where
h is the height of the images.

These equations describe the flow fields for the
model images. To actually get the grey level repre-
sentation of I', it is necessary to warp base image Iy
according to Dz’ and Dy’ and thereby render the ma-
trices Dz’ and Dy’ as a black and white image. If the
warp function simply moves pixels in the base image
according to the flow field (without doing any blurring
or hole filling) then a model image can be written

I'(x + Dx'(x,y),y + Dy'(z,y)) = Io(z,y)-

To obtain prototype line drawings and the associ-
ated correspondences in practice, a drawing program
isused. A model of a new object is made by first creat-
ing a line drawing of the base image. The base image is
usually the approximate average image in terms of the
various object transformations one wants to represent.
Next, new examples of the object are drawn by chang-
ing the lines and curves of the base prototype. The
pixelwise correspondences between the base prototype
and each additional prototype can then be computed
automatically since the equations describing the lines
and curves in each prototype are known. A typical
example base of prototype images is shown in figure
1.

3.2 Matching novel images

Now that the prototypes have been defined, we
want to use them to find the pixelwise correspondence
between the base prototype and a novel image that is
in the same object class as the prototypes. The gen-
eral strategy for matching the novel image will be to
define an error between the novel image and the cur-
rent guess for the closest model image after rendering
it and then try to minimize this error with respect to
the linear coefficients ¢; and the affine parameters p;.

Following this strategy, we define the sum of squared
differences error

1 .
Ble.p) = 5 S (3.9) - I (3, )
oy
where

N-1
r=x+ Z ciDz;(z,y) + pox + p1y + p2,

i=1

N-1
J=y+ Y ciDyi(z,y) + psx + pay + ps,

i=1

the sum is over all pixels (z,%) in the images, "¢ is

the novel grey level image being matched and I™mod¢!
is the model grey level image. Assuming the simplest
warping function,

ImOdel(iag) = Io(l',y)

In this case, the error can be written

Ble,p) = 5 31" (@,9) ~ Io(a, )]

z,Y

The sum of squared differences error depends on the
model parameters and gives a measure of the distance
between the novel image and the current guess for the
model image. Minimizing the error yields the model
image which best fits the novel image.

In order to minimize the error function, the
Levenberg-Marquardt algorithm ([12]) is used (a sim-
ilar use of Levenberg-Marquardt is described in [13]).
This algorithm requires the derivative of the error with
respect to each parameter. The necessary derivatives
are as follows:
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Figure 1: A typical example base of prototype line drawings.
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Given these derivatives, the Levenberg-Marquardt
algorithm can be used straightforwardly to find the
optimal ¢ and p. Notice that the algorithm is a se-
quence of vectorization and rendering (through warp-
ing) steps.

3.3 Improving performance

Implementing the minimization described in the
previous section using line drawings as prototypes
does not work well when the initial model parame-
ters are far from the optimal ones. There are a couple
of standard techniques we can use that improve the
performance of the matching significantly.

The first improvement is to simply blur the line
drawings. Since only the black pixels are important
in a line drawing, a blurring algorithm is used which
only blurs the black pixels onto the white background.
Using blurred line drawings makes the minimization
more robust in the sense that the initial parameters
can be much further away from the optimal ones for
the minimization to succeed.

The second improvement is to use a coarse-to-fine
approach. This is a standard technique in computer
vision ([4]). The idea is to create a pyramid of im-
ages with each higher level of the pyramid containing
an image that is one fourth the size of the one below.
The flow fields must also be subsampled, and all x
and y displacements must be divided by 2. Levenberg-
Marquardt is used to fit the model parameters start-
ing at the coarsest level, and then these parameters
are used as the starting point at the next level. The

constant affine parameters (p, and ps) must be mul-
tiplied by 2 as they are passed down the pyramid to
account for the increased size of the images.

The coarse-to-fine approach also significantly im-
proves the robustness of the matching. When com-
bined with blurring, the matching algorithm works
well for a large range of settings of the initial param-
eters.

A stochastic gradient minimization algorithm (de-
scribed in [14]) has also been tried in place of
Levenberg-Marquardt. It was found to be much faster
(around 25 times) and more robust in that it got
caught in local minima less frequently. The results
reported here are with the Levenberg-Marquardt algo-
rithm because the stochastic gradient algorithm was
implemented after the first draft of this paper.

3.4 Pseudo code

The following pseudo code describes the matching

algorithm.

1. Load novel image, 1™°v¢

2. Load base prototype, Iy, and flow fields for the
other prototypes, Dx; and Dy;

3. Create image pyramids for "¢ and I, and for
each Dz; and Dy;

4. Blur all images in novel image pyramid

5. Initialize parameters ¢ and p (typically set to zero)

For each level in the pyramid
6. Estimate the parameters ¢ and p using
Levenberg-Marquardt
When computing the error in Levenberg-
Marquardt, the model image is created by
warping Iy according to the current linear
combination of prototype flow fields plus
affine parameters and then the resulting
model image is blurred.

7. Multiply the constant affine parameters p, and

ps by 2
8. Go to next level

9. Output the parameters

3.5 Results

Some preliminary tests have been done using our
approach to model-based matching. In one such test,
the prototype images in figure 1 were used to create
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Figure 2: Results of matching novel images using the prototypes in figure 1 . The novel images are in the top
row and the model images which were estimated are in the bottom row.

a model of simple cartoon faces. The pixelwise corre-
spondences between each prototype and the base pro-
totype were obtained using the output of the drawing
program on which the images were generated. The
base prototype is the face in the upper left corner of
figure 1.

Novel images which were similar to those in the ex-
ample base were created by hand. These images were
drawn so that they were roughly normalized for trans-
lation, scale and rotation. Figure 2 shows the results
of fitting the model to the novel images. The top row
of images are the novel images and the bottom row are
the closest model images as estimated by the match-
ing algorithm described above. The model parameters
were all initialized to zero, which means the base pro-
totype was used as the starting point for the matching
algorithm. As the figure shows, the algorithm did a
good job of finding a model image which matched well
with each novel image. The lines in the model images
are thicker due to a small amount of blurring that is
done after warping in order to fill in “holes” left by
warping. All model images are generated from their
respective flow fields by warping the base image.

4 Extensions

4.1 A general hierarchical componentwise
approach

An affine transformation is included in the model
because it allows for the novel image being matched
to have moderate changes in scale, rotation and trans-
lation from the model prototypes. In other words, the
affine parameters provide some extra tolerance in the
model. Of course, the affine parameters are global in
the sense that they scale the whole image or rotate
the whole image as opposed to affecting only a piece
or a single feature of the image. This fact exposes one
of the problems with the approach just described. It
is brittle to translations, rotations or scaling of only a
single feature in the image if this local variation is not
accounted for by some of the prototypes. This is more
of a problem for matching novel line drawings that a
user has complete freedom in creating than with real
images which are constrained by the physical world.

One obvious solution to this problem is to use a
componentwise approach in which images are treated

as being composed of several different components, say
eyes, mouth and nose. Each component would have
its own model using the same formulation as in the
previous section. In other words, each component is
specified by a number of prototypes along with the
pixelwise correspondences for each prototype. These
components are then combined to form a complete im-
age, say of a full face, by specifying where each compo-
nent can be located. The location information is again
specified using a number of prototypes for the whole
image. These image prototypes would simply consist
of x,y locations for each component. A number of
image prototypes would be needed to show how each
component could change location relative to the other
components. The new componentwise model would
be a linear combination of location vectors as well as
a linear combination of individual component proto-
types.

We are extending this componentwise idea towards
a potentially powerful hierarchical framework to allow
more complicated images (with possibly multiple ob-
jects). The idea is to build components from a linear
combination of component prototypes and then build
simple objects from a linear combination of positions
of components and then build more complicated ob-
jects from a linear combination of positions of simple
objects and so on.

4.2 Using real images

Another ongoing extension to this work is to apply
the matching algorithm to real grey level and color
images as opposed to black and white line drawings.

In this case, in addition to modeling the shape of
objects, we also model the texture of objects. We
model texture analogously to the way we modeled
shape - as a linear combination of the grey level val-
ues (texture) of the prototype images (see also [2],
for an alternative approach to the same problem). A
rather general justification of models of shape and tex-
ture consisting of linear combinations of prototypical
shapes and textures is the following. Under weak as-
sumptions, one can prove that if any network can learn
to synthesize shape or texture from examples then the
desired shape or texture must be well approximated
by a linear combination of the examples (see [3, 8]).

Let {I;} be the set of prototype images where I



is the base image. Define DI, the image of intensity
differences between I; and Iy, as

For any (z,y) in the base image, the corresponding
model point is

N-1
1" (&, 9) = Io(e,y) + ) b;DIj(x,y)
i=1
where
N-1
T=xz+ Z ciDzi(z,y) + pox + p1y + p2
i=1
N-1
y=y+ Z ¢iDyi(z,y) + psx + pay + ps.
i—1

In other words, the new position of the pixel at lo-
cation (x,y) in the base image is determined by a
linear combination of prototype positions (given by
Dx;(z,y) and Dy;(z,y)), and the new grey level value
of the pixel is determined by a linear combination of
prototype grey level values for that pixel. The two lin-
ear combinations, for shape and texture respectively,
use the same set of prototype images but two different
sets of coefficients.

To match a novel grey level image, we can still use
Levenberg-Marquardt. The minimization is now with
respect to the vector of grey level coefficients b as well
as to ¢ and p.

5 Applications

5.1 Image analysis

One problem that model-based matching can be ap-
plied to is the problem of image analysis. By image
analysis we mean the problem of determining certain
parameters describing an image such as the pose or ex-
pression parameters of an image of a face for example.
Our approach to image analysis is to learn a mapping
from images to their corresponding parameters (see
[3]). The representation used for the images is critical
in this approach. For example, trying to find a map-
ping from the raw grey level matrix of an image to its
associated parameters would not result in a mapping
which generalized to new images. This is because the
grey level values of an image do not change smoothly
as the objects in the image change smoothly. Instead
of using the grey level representation, Beymer et al.
find the pixelwise correspondences for each example
image and use the vector of labelled points for each
image as the image representation. They call the vec-
tor of labelled points the “vectorized” representation
of an image. Thus to analyze a new image, it must first
be converted into the vectorized representation. To do
this we can use the model-based matching approach
previously described instead of other techniques such
as optical flow. Thus, our approach to image analysis
is to first define a model as described in section 3.1

from a set of prototype images and their flow fields.
The analysis parameters (such as pose) are also given
for each prototype. A mapping is then learned which
maps the vectorized prototypes to their corresponding
analysis parameters. A novel image is analyzed by first
matching the linear combination of prototypes model
to the image as described in section 3.2. After match-
ing, the resulting correspondences are used to create
the vectorized representation for the novel image. The
parameters of the novel image are then calculated by
applying the previously learned mapping to the vec-
tor[iz]ed representation of the novel image as described
in [3].

As described briefly in section 3.5, we have written
a system for analyzing line drawings such as those in
figure 1. The system learns to analyze sketches from
a user who trains the system with prototype exam-
ples. The system is first trained with prototypes of
line drawings of an object along with the pixelwise cor-
respondences. Given a set of prototypes, the system
attempts to match a novel line drawing which is ap-
proximately in the space of images spanned by the pro-
totypes using the algorithm of section 3.4. The model
parameters which are found by the matching can be
used as the analysis parameters for the image. Alter-
natively, the model parameters can be mapped by an
approximation network to a possibly higher level set
of analysis parameters (see [3]. Examples of the higher
level parameters would be given with each prototype.

5.2 Man-machine interface

Image analysis can be used to build a general man-
machine interface or a gesture recognition system ([3]).
For example, if a model of a hand were built from ex-
ample views of a hand then novel views of a hand could
be analyzed to recover their position and orientation.
These parameters could then be used as input to a
computer to control things the same way a 3D mouse
does. Other possibilities for a man-machine interface
are analyzing facial expression and using it as input
to the computer.

Other potential applications for model-based
matching are object recognition, very low bandwidth
teleconferencing and virtual reality simulations.

6 Discussion and conclusions

We have described a robust algorithm for model-
based matching. Using object models to guide the
matching algorithm may be essential in cases where
the differences between two images of an object are
too great for a general correspondence algorithm to
work well. The need for prior knowledge in the form
of object models comes from the fact that optical flow
is an underconstrained problem although other ways
of adding constraints have of course been used (see for
example [1, 13]).

The linear combination of prototypes model that
we described has several advantages. It is a simple
learning-from-examples model that only requires 2D
views as opposed to a 3D model. It has a quite deep
motivation since the linear combination of prototypes
model is intimately related to general properties of
a very broad class of synthesis networks of the type



described by [3]. A new model is fairly simple to cre-
ate since all that is required are a number of example
views of the object class and the pixelwise correspon-
dences for each. Most importantly, the matching al-
gorithm works well in practice. One problem with
this approach is the need for the correspondences for
each prototype. In general we expect that once a good
vocabulary of models is created, new models will not
need to be created very often.
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