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This Memorandum is a first draft of an essay on the simplest "learning"

processes,. Comments are invited., Subsequent sections will treat, among
other things:

The "stimulus-sampling" model of Estes
Relations between Perceptron=type error
reinforcement and Bavesian-type correlation
reinforcement

and some cther statistical metheds viewed in the same wav.



1.0 Decisions based on fixed set of Eests

The events to be classified lie in a set iFi] of classes.
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We are given also a set {mi(I}] of "tests" or "experiments" that can be

performed on the event that has just eccurred. Define

B0 = (g (K9, (K5 oo (D)

to be the sequence of results of these tests, taken in some fixed ovder.
Usually we will restrict each ¢ to be Boolean--that is, to have values 0 or 1.

Thus the machine M cannot "see'the real events "directly," but only
through the results of the experiments. There is really no alterpative
to this sort of indirectness, because enly mystics believe in the
possibility of the immediate and direct experience of reality--and
whether or not this is in fact desirable, they are for some reason

unable to transmit to others their grounds for believing thie.

Civen the outcome ¥(X) of a set of experiments, we would like to guess
which class FJ containe the event X that hae just occcurred. In some situations
we can be sure which F was responsible; for example, in the case that there

{g only one X that could have produced this particular value of #. (Il is
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convenlent to think of & = (¢1,¢2,...,qh} as a vector, so that we can talk

about its walue instead of the sequence of values of all the g's.)
B 1n j&ﬂ:vl', we cannot usually be sure which I-'J wae responeible. We
ghall consider the rather general case im which cur knowledge about the

gituatlion can be summarized in the form of a table, or distribution, of

probabilities;
F{iji} = the probability that X is in Fj,
ziven that the experiments have produced

§ = le,...*qmg.

Moat of this chapter is devoted to discussing ways in which this sort of
information could be acquired through experience. First, however, we will say
a few words about how we could use this information if we had it!

1.1 Costs and decision criteria

1f & particular % = iﬂ agecurs, and Lf we know that

P(rjfinj = 1

P(F /%) =0 {k # 1)

fhere i3 no question that xﬂFj, amd we can egay eo definitely. But if
0 <P <1 we have to guess. Usuwally, one will choose that j for which

Pgiji[g is largest. This guess will have the smallest chance of being

Wrong—phe so-calle] "maximum likelihood eriterion."
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But in real situations, just trying te be right is not the only goal that
may have to be considered. Different kinds of mistakes can have prossly
different consequences. It can be more important te aveid the tiger than to

acquire the lady. Let

ﬁk;- the cost of guessing Fk when X is réally in Ej,

Then the "expected" cost, if we guess Fk{giuen # ]IE

CD) = ¢ P,

5
That is, thiahthe average price one will pay, over a large collection of
experiments, 1f one has the policy of guessing Fk whenever ane =ess that

particular §# . Clearly, our policy then should be to choose that k for which

Clk,® ) is smallest.

Only in the most peculiar circumstapces would it be that a correet guess

(i¥j).  But one might have

¢ . would cost more than any incorrect guess ¢
1

if
a gltuation in which

]

&j =0 (all j)

ﬂj =0 {all j)

e . =1 (ifl j¥#i)
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S0 that one might as well always gueas F]. (regardless of the value of 4}, since

there is no premium on being right otherwise. In the case m  whiclh all

Efpori Wie nﬁl—ﬂ.“j f-p;Hj:

¢y = 0
c“ =1 (i i)
we hawve
? cjkP(?Jf‘ﬁ} =1 - P{kaﬂ
{aim:e EP(F f&) = ljand minimizing this is, as it should be, the =ame as

i

maximizing P(F, /%), f.e., the maximum likel'heed strategy.

1.2 Inverting probabilities: Baves' thanr&mﬁ'

We have described decisions based upon knowledge of the probabilities

P{F,/%). Usvally, one starts with access to a different set, P{-”Fj}, of

3

probabilities; P{ianj} e the probability that iﬂ will oceur if xsrj. For

example, understanding of the mechanisms by which X's in each

F, affect the devices that compute the q;li'a theoretical

i

ealeulation of what the P{$,F.)'s ought te be, Fortunately, one can calculate

]

the P(F /%) 's from these as follows: By the definition of the conditional

J
probability symbol

pam) - A AR
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where P(BE A A) i the "joint" probability that both events B and A occur. But

then, alsco

P(A/B) = H*;—{gfil

because P(A A BY 2 P(B A A).
Therefore

PEiFFi)~Pt§j?
P(E)

P(F /1) =

i

Since P(H) = E[F{FR}P{iIFk}I fs the probability that ¢ will occur, regardless

k
of which Fk ococurs, we can write
P(&/F ) B(F.)

k

showing that we can calculate the P(F,./8)"'s 1f we know the P{GFFJ}'S and

h|
dlso the "a priori" probabilities P{Fj} of occurrences of X's of the different
types. These are, of course, determined by the circumstances, and canmot be
caleulated from a thesry of how the wj devices work,

The gimple formula (A) is useful when one wants. so to speak, to invert
the roles of "cause" and “effect”™ when one has either data or theory that goes
in the wrong direction. We note that in many application one needs only to

know the relative magnitudes of the different P(F}Ii}'a. and since the

denominators of (A) does not depend on §, one mevelq has $o com pote the  value
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PL3/F ) -B(F ) (A")

15 the |'=I-"'!‘!:i§-_-

1.3 Problems of implementing the probability aspproach

There are a variety of practical and theoretical objections to the use
of formula (A). It is diffiecult, even in the simplest situations, fo know
enough about the P{ﬁfFjj‘E to use this method., One might be able to
deduce them f[rom a theoretical model of the altustion, but then one would most
likely be able to construct a more sophlsticated decision method invelving
less computation. If there are many possible $'a, then it becomes impractical
to estimate the P(3,F)'s on the basis of empirical observation. The amount of
data would be too enormous. And, the system is completely unable to “guess"
on ¥'s it has not seen before., Finally, even if one had a complete catalog of
the P($,F)"s, knowledge in this form is so free of structure that it would be
very hard to adapt it to a similar, new situation. To be useful, knowledge
hes to be cast into structured models.

The simplest and most common kinds of models are the “parametric
distributions.” In this family of techniques--which include many standard
methods of statistics, one has a procedure in which one

(8) assumes some form for the distributions of the($/F)'s,

(b} fits the data to estimate the parameters of these distributions,

(c) designs a decision procedure based on the theory of the assumed

distribution forms.
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Example: One thinks of the § = BPI*""¢%I aa'?ﬂ1n+sin & vector
space with the usual Cartesian distance metric.

Assume that each set {i{x}|x¢Fj] forms a "cluster” with (say)
a symmetric motrmal distribution.

i

Each cluster has (say) the same variance (concentration) but
different means (centers).
Then one can use the data to estimite the variance and means.
In this model, the decision of which FJ a given % should be
asslgned to can be made by finding which F-mean is closest to .
This, and many other related astrategies are discussed at length
im Milsson's "Learning Machines," & book on the theory of a variety
of statistical and threshold decision methods,

The trouble with the parametric models, and their relatives, is that even
those that are the most sephisticated contain  so Litfle
structure that they are usually thoroughly unsuitable for representing
detailed knowledge about anything, (For example, they cannot satisfactorily
represent finite-state processes.)

Mevertheless, we shall proceed to study the simplest such model,

in which the »'s are statistically independent. Our conwviction is that unleas
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this simple “linear" case is theroughly understood, one can have little
chance of making peod "intuitive" judgements about more complicated systems.

1.4 Independence

We can evade some of the problems mentioned inm $1.3 if we can assume

that the tests mi{K} dre statistically independent for each Fj' Mathematically
this means that for any sequence FLX) = {ml{11.441;ﬁhﬁx}} of valuea of § we

can assert that
P{mliﬂjh...ﬁFh{HJfFj} = P{TL{K}IFJJt...-Pﬁﬁ“fI}fFj}
for each j. More compactly we say

P(3/F,) = T;r P9, /). (B)

Informally, given that Fj has peecurred, P{¢k;Fj} gives the distribution

of each of the p's. If one is further told the values of some of the p's,

independence means that this gives absolutely no further information about the

vaLgea of the remaining ©'s; We want to emphasize that this is a4 most

gtringent conditio

Experiméntally one might get independence when there are variations in

]

responses of s berudse  of "noise"

et | To fhe exheodt Thad Holi i why e $9% Flochak
or measurement uncertainties within theaqrmﬁch&niﬂmm.ﬁine would mot fhen exped

the values of some g's  to - help predict those of sthevs
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But where the variations in & p, given F., due to selection of different X's

i

from the same F-class, one would not ordinarily assume independence, gince the

value of one of the $'s tells something about which X in F has occurred, and

hence could help at least partly te predict how another ¢

will behave.

e oo odechm )

o T /
X {Hm A

—

An extreme é¢xample of mon-independence s the following, in which there

are twe functions, e and Py and two classes, FL and FE'
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s

ml(HJ = a pure random variable with P{ﬁl{x} = 1) = 7
Ite value is determined by tossing a coin,
not by X,
P, (X) = { g X if }EEFl
1 - QI{R} if XsF,.

Then
F{qﬂrﬂf,ﬂ,;ffl] = i-

By
' WO/E) =~ PO./R) L

honee P& /R) POLF) < &

Motice that neither ¥, Dot 4, taken alene give any information whatever about

F. Each appears to be a rendom coin toss. But from both one can determime

perfectly which F has occurred, for

LT TR

F e

n:-'l".-l la

with absolute certaimity.
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Remark: We will assume only independence within each class Fj.
If X ranges over several F's then knowing ene g-value can help

guess another. For example, suppose that

PT T 0 if ItF1

A 1 1if HEFE.
The two ¢'s can (in fect are) independent on each F. But if we
did not know that HeF
indeed then predict that qh =0 also, without this violating our

and we then told that 9 = 0, we could

Independence assumption. If we had been teld that xeFl, we could have
already predictethe walue of 9,> and in that case learning the

value of Py would not have helped!

2.0 The linear maximoam likelihood estimator

Suppoce fldt
We will assume that the 9's are independent (for each Ej}'n We hEUEjH#

cbserved a case In which § = {ml,,.,,qh} and we want to know which Fj hag

the greatest probability: Wwhich is largesc of
P{Flj'ﬁ}, . ,P{Fn,"n?

How, using formula (&) of §1.2, this is equivalent to choosing the | for which

P{#!Fj}'PfFJ} is largest. For brevity, define

Pyy = (¥, = lﬁ'j}
P(F).

Py

We will diecuss only Boolean gp's; that fs, each ¢ has wvalue 0 or 1,



Then, using (B) of §1.4, we can define
Pyt -”-"u' H 'il*F,_lel
?=1 7 9y=0

&8s the quantity to be maximized. It is formally convenient to mulbiply and
divide by {l-p,,}) to obtain
L]
p. =1
Py ( 1o ) H (1-p,
] i3

i
q:-i-l all i

for then we have only ho compute the | that wmaximizes

B W( ) (c)

‘Fi'l
w hee E. oo constadt Thelt does wet ﬂﬂ“tj o ,ﬁ_ ‘o that

I:he influence of the actual experiment is concentrated in the product

cxpression. The terms

l_Pij
are the "odds" or "likelihood ratios" of getting PyF 1 if IEFJ.
[t is formally convenient now to replace {:{] l".j i+ loparithm
because sums are more familiar than products. This changes only
the form, not the content; since log(x)increases when x does, we still select

the maximum of
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P .
b, + I log L (DY
where hj = lug%, The term
Pij \
“ij log 1- J

2
is aptly called the "weight of the evidence" of 9, in favor of F Now we

i

can weite

L+ I w
j| :F'i""l L]

= bk & £ W ,l?
1 g g LiTE

where all that does not depend on the outcome of the actual experiment ¥ is
absorbed inte the constant J"j which is therefore a sort of "a priori" weight
for Fj {as opposed to the L Hijmi term which is "a posterieri').

The impartant Ennnlus{un ig that the decision can be made upon the basis
of a linear combination of the terms. This is due dirvectly to the assumption

we made about the independence of the p”'a for each j.

There are slight assymmetries in our formula that come from
treating ¢ 1 as an occurrence of an event and §.=0 as a

non-pccurrence of the sazme event., This is quite arbitrary, and makes

" by 1. J. Good
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it hard te return to the more general situation in which the
epzeriments {9 } could each have many values. Besides, our
algebra introduces & quite unnecessary risk of dividing by
zero.  But on the whole, we gain an heuristically clearer
picture and, with this insight, it would be essy enocugh to
return to the original formulas for repairs.

Formally, one ecan go slightly further in gimplifying the
formulas. Create a new "experiment' 9y wh, value 1is always
1. Define ”ﬂj = hj' Then Lf we re-define the vector § to be
f“b**l“"'“h) and define vectors W, = {wD

i d
procedure is: choose that §j for which

hﬂ{i.lé

$W,  saaa W
le; . mj} our

ila maximal. Later we will give a more-or-less meaningful
geometric interpretation te this vector product formalism,
but right here it is not very illuminating.

2.1 L.‘IH:!‘- Machines

Formula (D) of %2.0 suggests the design of & machine for making aur

decision:
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where I 1z a device that ﬂimplﬂ decides which of its Inputs 15 the largest.
Each p-device emita a standard-sized pulse (if @(X) = 1) when X is presented.

The pulses are multiplied by the w,, quantities as indicated, and summed at the

i}
L-boxes.

Returning for the moment to costs, if we combine the observatioms of

§1.1 and 82,0 we will want to minimize (for k)
2 Sin Bﬁ'_'Tw':j
J €1

Hhereﬁﬂljﬂptjf{l-pijl. It is interesting that this more complicated procedure

also lends itself to the faaw*:'i—-‘ﬂ’twi‘.




2.1 The two-class case
If thereare only two classes Fl and ?2 the decision formula becomes

very simple; we choose FI if

T
Gp R EWE T eyt B
i i
1.2., when
kN = ] -
7 (Wip = Wiad 9 ey - 8y [A)
which has the form
Lo g >6 (8)

i

~
A decision function of this sort {s called a "linear threshold funceion™

because the choice depends upon whether the linear function E;iqi exceeds the
"thresheld" ©. It is certainly of the simplest ways to make a decision that

is not entirely trivial.

4

Hotice that we derived the formula on the basis of some very strong
assumptions--notably the independence of the pij‘s. These will not
be true in general, and indeed it will be exceptional that the
conditions will be close encugh to make the formula (A) useful.
The formula (B) is somewhat more general--amd therefore somewhat
more widely useful in that, while it retains the linear threshold

form, it does not require that ﬁij be precisely
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'}E ,Fl {.1._ :I ¥
g2 Py

and suggests that even if the statistical assumpbions of independence
do mot hold, there might be other values of uij that could be used.

This is sometimes true.
3.0 Estimating the p .'s
3.1 Laplace estimation

The most obwious way to estimate Fij is to present some events in F, and
]

record the walue of Py If ¥ events occur and we observe H cccurrences of

p. =1 we can estimate chat

i

T

=

Maturally, this estimate will give different values for different samples;

it has a statistical distributiom. In fact, it will have a binomial distribution

about the true mean, with variance
o -.E.%‘.El_

We will not derive this well-known reault, bubt most readers will

recognize that it is plausible because
{1} if n=1 the distribution has two points whoge weights

and distances from poave te varmwnce

# = (1-p)p° + pQ1-p)
= p{l-p)



(i1) one is used to the uncertainty decreasing with the
square root of sample size,

{iii) the binomial distributiom is B0 simple and fundamental

that one would not expect any other factor to enter.

(end of mathematical joke)

To use this we have to keep a4 record of N, To "update" the estimate
[s]
sfter each obzervation devole the N-th ephimabe of F L:‘j P

I¢ dzi thiw
fo) B
M1

A ) : S
= ( e TS

while if ¢ = 0,
Pd_ o L)E
f Bl R
Bath can be summarized by

Bea - Ll e

we hang i‘f[m i the l.rl.['-l't ok F ot the N-th olservatiom,

T his .Hﬂgu-h gl another way to éstimate pij: What would happen 1f
we replaced the multipliers (1 = %} and % by constants that don't depend on
H--the number of trials? It is desirable to make these constants still add
Eo "m”]"; ."u"-‘*'ﬂ-i ﬁ un{i-%]d#J 50 that the estimated "prebablilities" will

alap add to unity.
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3.2 HReinforcement estimation

[

We are estimating the probability that (X} = 1. After each eveant §

we revise pur t=th estimate ]!rt]' by the formula
BlooPeia-of (R)

where @ is a constant between 0 and 1. For simplicity we begin by setting

FED']__ LFEI By applying the formula repeatedly we obtain

g

A= el - ad!

B_ g2, o e e

PP - ofls N s

which we can write as

= - ofFe P PG ”'ﬁ]
L e e Ly @ P

b n-1 i
1 +8 + ...+ 8 + 13
'Ech;’]

=d



1-20

where the denominator is equal to 1/(1l = 8). The last formula is written to
show more clearly that gﬁ]ﬂan be expressed as a simple weighted sum, i.e

=k

L
average of the éj;s- We have two reasons for writing the sum in this form:

(1) Exponential decav of "memory"

The formula showsa that the walue of o at time m is
B
(a) a weighted average of the &
(b)) the weights, i.e., the influence of older events falls

off exponentially. For we can defime
o)
(1-8) M= et F1
0

and we can write

nl -
(1-8) fﬂ- e
where the derivative can be interpreted as showing how much dﬁrdeFenda on the
¢ that occurred t moments before. The first term, Jh{ always retains slightly

more welght {(by a factor of i%ﬁj but it, too, i& subject to the same decay.

(2) The procedure is an estimator for p

This follows from the general theorem that 1f xl,...,x“ are

independent random wariables and E(ﬁ} is the mean or "expected” value of a

randan wvariable, then



1-21

E@ai:{i} = Hiﬂ{x i}

for any set {ai] of censtants. Since each P, had E{hﬁ = p we get

The exponential form has advantages .in gome situations:

(1} We do not have to store the number W of trials, and

(2) The estimator lends itself to "adaptation" for changing situations.

On the other hand, it does not optimally use the experience in non-changing
situations.

We can appraise the efficiency of (R) in using its data by computing its
variance--the mean square error about P

3.3 The variance of the reinforcement estimator (R,

Suppose that X has the distribution f{X) with mean yu and is subject to

the transformation
X' =85+ (1 - @)

where prob{p = 1) = p. Then the distribution of X' is
E'(X) = pa(X) + (1 - p)pX

where

@) = § £ - 15 and g0 = § £ @)
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Then the variance of f'(X) is (as shown below)

£ i

If the variance of f is Gi then from (I.}) we have

P f
{ {
o
hence

2
oy = 870} + p(1-p) (1-8)°,

ﬂz =p qi + (l=p) GE &+ P{IHP}{HJ-“F}E'

(IL }

B . 2
This is linear in J. with slope EE < 1, hence fteration must lead to a limit

i

("fixed"} point for the variance. At this limit we must have

& = 820 4 p(l-p)(1-8)°

B0
2 1-4
g . = pl-p) 1+8.
lim
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Proof of (II ):

o= [ £ 0 Gugd? = [ 21006 - 3,

pfatx’ & (L-p)[BOOX" = [pe#(1phig1?

P 2 2 22
p[Jc:EK:IKz e ¥ B, T PR

2

2 2 2 2
+ (1-p) [JBOOK =] + (L-phug - (1-p) s

- IP{‘-l-p]luajiﬂ

Pﬂé + EI-P)Dﬁ + pll-p) Euﬂ-uﬁizu

3.4 The role of B a5 4 memory timeé-constant

(R

When the reinforcement pr¢E51\h33 been in operation for a very long

time, the variance of its expected wvalue does not approach zerp (as it does

for the q;lanﬂ estimate when N increases beyond bound). This is because it
wpm the Fecest past tham

depends more, upon the remote past; indeed the very most reécent term can alter

the curremt wvalue¢ by more than 1-8, a constant, {in the uniform weight

procese the effect is less than % which becomes arbitrarily small.) If we

"eguate'" the variances

we get



1-24

For amall values of 8 this is a little more than wnity, showing {correctly)
that the estimate is based almost entirely upon the last event. In fact, in

this case
P[t] = 'E']ﬂ + {].—El'.h‘Pm ~ q:[tI.

For large 8, i.e., close to unity, we have

n o~
1-8
go that 1f 8 = 1 - ﬁ then the variance is about that one would obtain by
simple averaging of the last Im samples! Thus one can think of the quantity

T%E ag corresponding rvoughly te a Cime comstant for "forgetting."
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3.5 The Samuel compromise

In his classical paper about "Some Studies in Machine Learning using
the Came of Checkers," Arthur L. Bamuel uses an ingeniocus combinstion of

probability est mation methods. In his application it occasionally happens

that a new evidence term 2, ig introduced {and an old one is abandoned hecause
it hags pot been of much value in the decieion procees). When this happens there
is & problem of preventing viclent fluctuations, because after one or a few
triala the term's probability estimate will have a large variance ae compared
with older terms that hawve better statistical records. Samuel uses the

following algorithm to "stabilize'" his system: he sttslﬁg- % and

F o - h L gl

where
H=1b if £ = 32
§=2" if 2" < ¢ < 2™
M = 256 if 256 < t.

Thus, in the beginning the estimate is made as though the probability had
glready been estimated to be % on the basis of sewveral, i.e., the order of 16,
triala, Then, in the "middle" period, the algorithm approximstes the uniform
wieghting procedure. Finally (when t ~ 2308) the procedure changes to the
exponential decay mode, with fixed W, so that recent experience can oubtweigh

earlier results. The use of powers of Cwo repreésents a conveénient compubter-

program technique for dong this.
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In Samuel's system, the terms actually used have the form
ST B

g0 that the "ecetimater" ranges in the fnterval -1 = C‘n =< 4+ 1 and can
be treated as a "corvelation coefficient.” I mention this here anly
to justify Samuwel's initial setting of J-ﬂ]ﬁ:- % f.e., to oﬁr ta 0. In
his context, this setting makes perfect sense, wheress in our

interpretation the setting of ]:a[':H Lo —1]‘ would be arbitrary.

3.6 Variants of the rcinfurﬁzmcﬂt estimator

Consider the "reinforcement process"

L .

o' = by 4+ (1-8)gp 'I.'RI'.!

If the distribution of o has mesn p then the distribution of o' will be
p' = (l-p)Bu + p(&u + (1-8))

because there is probability (l-p) that p=0 and probability p that ¢=1. Then
p' o= B+ (1-Bp.

Applying this again we get for the mesn of {(z')',
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L

BB + (1-8)p) + (1-9)p

B9 4 (1-B)p(1+8)

8% + (1-69)p

and similarily, Lf we apply Hl n times, we get
I-LIH} = 8t + (1-87)p

[} _

Clearly as n = =, P-
This analysis can be replaced by a more general method, by using the
following two simple observations:

Lemma 1: If @' = f(x,9) is linear in & then if p{x) = m and piy=1) then
wix') = £{m,p).

Proof: pla') = (1-p)f(m,0) + pE{m,1)
= £(m,0) + p[f(m,1) -~ £{m,0)]
= f(m,p), becavse sne canm ",,.,l.,-f.{.,'l.'_i a Dty .f.sm.-jrh;'h
Lemma 2: (f fﬁ%‘ﬁﬂ1 < 1 then the limit of o, £(x), F(E(a)), ... £V () exists

and i the {unigue) solution of the equation

y = £(y.p).



1-28

Proof: This i a "fixed point theorem" and the diagrams below show why it

iz true:

’ WiE

)

Mow we can apply thege to the formula Rl, and have only to solve

v = 8y + (1-8)p
ar
1-§
y=1FP= P
which s we u.l.-r:q.il.i borose 15 The wgas limit of the weass "'E' the ergled frocess.

But with the lemmas, we can also analyse some other systems. Amnother

interesting one is

o | | @)

and we have

vy = 9(y + p) ok y =
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so that this, Etoo, is an estimator for p which has to be corrected
2]
by the constant factor 15 °
Another, somewhat different reinforcer is

I —
Iﬁ_ﬁ sl LE yEl

ol = (R,
L By Af e .

which can be written as
a' =g+ alp+ 8 - pl).
This satisfles the conditlons of the Lemmas, since

%4 = |pre-gt| = |1-(1-g)(1-9)| <1

80 we have
y=p+ ylp+ & - pi)
ar
¥ =(1-e 1-1:)
This is an estimator (with the T]fa correctlien factor) of the likelihood

ratio &?_p;] It is interesting that this is so easily obtained by a reinforcement
process 45 Simple as: "if 4 = 1 occure, add 1 to o; if ¢ = 0 pecurs, mulbiply

o by &)
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Another simple form is
a' = B+ g {R

which leads to the estimate

Finally, one might consider the very simple form

o' = o+, ()
This "diverges," i.e., the 's grow beyond bound (and do not gsatisfy the
condition for Lemma 2). Still, if one is making decisioms by comparing
different p”’i, one can use the ratigs of these simple "scores" as likelihood
ratioe, to obtain the "uniform weighting" type of behavior. We include R

3
only to indicate its hewristic eimilarity to the ethers,

3.7 A simple “synaptic" reinforcer theory

Let us make a simple "neuronal model." The model is te “account” for the

following phenomena:

1. There is to be a quantity @ that estimates Pij = P{q:-iffj};

2, The only information available are the occurrence of P; =1 and

XeF .
]
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The bag B, contains & very high and constant concentration of a substance A,

1

Whet P, or Pj occur==or "fire"==the walls of the corresponding bags Bi

C, become "permeable” to A for a moment. If ¥, alone occurs, mothing really

i i
changes, because B, is surrounded by the impermeable C

andfor

If Fj alane fires,

i 1"
it loses some A by diffusion to the cutside; in fact, if o L5 the spount of A

in Gj it may be #Blumﬁd[hy the usual laws of diffusion and ﬂun:entrattﬂqjta

lose some fractioenm (1-8) of o

FJ ac i rE ﬂ.ﬂ.:‘.i

at o= By of 7 o
1

If Bath mi and F, are active then approximately the same loss will occur from

]

C,. But an essentially constant amount b will be "injected" from B

[ to €,. So

i ]

F, otcurs and

' =8x+b 3’1,_:1

We can assume that b is constant because the concentration of A is very high in

Bi compared to that in Gj+ Or one can invent any number of similar variationa.

In any case we gel

|
(3'=m+¢b ;!




Be that in the limit the mean of o will approach

b
1-g P
which is proportional to, and hence an estimater of, pi} = PiahfqifFJ}.

Thus the simple geometry together with the idea of a membrane becoming
permeable briefly following a nerve impulse gives us a quantity that

le an estimator of the appropriate probability.

How could this representation of probability be translated into a useful
neuronal mechanism? One could imagine all sorts of schemes: {onic
concéntrations--or rather, their logarithms!--could become membrane potentials,
or conductivities, or even probabilities of cccurrences of other chemical
events. The "anatomy" and "physiology" of ocur model could easlly be modified
to obtain F processes and their attendant "likelihood ratios," Indeed, it is
s0 eagy to imagine variants=--the idea is so inasensitive to details--that I don't
propose it to be considered seriously, exeept as a family of simple yet

Intriguing models that a neural theorist should have available.



