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Abstract

We present a framework for learning in hidden Markov models with distributed state

representations. Within this framework, we derive a learning algorithm based on the

Expectation{Maximization (EM) procedure for maximum likelihood estimation. Anal-

ogous to the standard Baum-Welch update rules, the M-step of our algorithm is exact

and can be solved analytically. However, due to the combinatorial nature of the hidden

state representation, the exact E-step is intractable. A simple and tractable mean �eld

approximation is derived. Empirical results on a set of problems suggest that both the

mean �eld approximation and Gibbs sampling are viable alternatives to the computa-

tionally expensive exact algorithm.
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1 Introduction

A problem of fundamental interest to machine learning is time series modeling. Due to the sim-

plicity and e�ciency of its parameter estimation algorithm, the hidden Markov model (HMM) has

emerged as one of the basic statistical tools for modeling discrete time series, �nding widespread

application in the areas of speech recognition (Rabiner and Juang, 1986) and computational molec-

ular biology (Baldi et al., 1994). An HMM is essentially a mixture model, encoding information

about the history of a time series in the value of a single multinomial variable (the hidden state).

This multinomial assumption allows an e�cient parameter estimation algorithm to be derived (the

Baum-Welch algorithm). However, it also severely limits the representational capacity of HMMs.

For example, to represent 30 bits of information about the history of a time sequence, an HMM

would need 230 distinct states. On the other hand an HMM with a distributed state representa-

tion could achieve the same task with 30 binary units (Williams and Hinton, 1991). This paper

addresses the problem of deriving e�cient learning algorithms for hidden Markov models with

distributed state representations.

The need for distributed state representations in HMMs can be motivated in two ways. First, such

representations allow the state space to be decomposed into features that naturally decouple the

dynamics of a single process generating the time series. Second, distributed state representations

simplify the task of modeling time series generated by the interaction of multiple independent

processes. For example, a speech signal generated by the superposition of multiple simultaneous

speakers can be potentially modeled with such an architecture.

Williams and Hinton (1991) �rst formulated the problem of learning in HMMs with distributed

state representation and proposed a solution based on deterministic Boltzmann learning. The ap-

proach presented in this paper is similar to Williams and Hinton's in that it is also based on a

statistical mechanical formulation of hidden Markov models. However, our learning algorithm is

quite di�erent in that it makes use of the special structure of HMMs with distributed state rep-

resentation, resulting in a more e�cient learning procedure. Anticipating the results in section 2,

this learning algorithm both obviates the need for the two-phase procedure of Boltzmann machines,

and has an exact M-step. A di�erent approach comes from Saul and Jordan (1995), who derived

a set of rules for computing the gradients required for learning in HMMs with distributed state

spaces. However, their methods can only be applied to a limited class of architectures.

2 Factorial hidden Markov models

Hidden Markov models are a generalization of mixture models. At any time step, the probability

density over the observables de�ned by an HMM is a mixture of the densities de�ned by each state

in the underlying Markov model. Temporal dependencies are introduced by specifying that the

prior probability of the state at time t depends on the state at time t � 1 through a transition

matrix, P (Figure 1a).

Another generalization of mixture models, the cooperative vector quantizer (CVQ; Hinton and

Zemel, 1994 ), provides a natural formalism for distributed state representations in HMMs. Whereas

in simple mixture models each data point must be accounted for by a single mixture component,

in CVQs each data point is accounted for by the combination of contributions from many mixture

components, one from each separate vector quantizer. The total probability density modeled by a

CVQ is also a mixture model; however this mixture density is assumed to factorize into a product

of densities, each density associated with one of the vector quantizers. Thus, the CVQ is a mixture
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model with distributed representations for the mixture components.

Factorial hidden Markov models1 combine the state transition structure of HMMs with the dis-

tributed representations of CVQs (Figure 1b). Each of the d underlying Markov models has a

discrete state sti at time t and transition probability matrix Pi. As in the CVQ, the states are mu-

tually exclusive within each vector quantizer and we assume real-valued outputs. The sequence of

observable output vectors is generated from a normal distribution with mean given by the weighted

combination of the states of the underlying Markov models:
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where C is a common covariance matrix. The k-valued states si are represented as discrete column

vectors with a 1 in one position and 0 everywhere else; the mean of the observable is therefore a

combination of columns from each of the Wi matrices.
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Figure 1. a) Hidden Markov model. b) Factorial hidden Markov model.

We capture the above probability model by de�ning the energy of a sequence of T states and

observations, f(st;yt)gTt=1, which we abbreviate to fs;yg, as:
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where [Ai]jl = logP (stij js
t�1
il ) such that

Pk

j=1 e
[Ai]jl = 1, and 0 denotes matrix transpose. Priors

for the initial state, s1, are introduced by setting the second term in (1) to �
Pd

i=1 s
10

i log�i. The

probability model is de�ned from this energy by the Boltzmann distribution

P (fs;yg) =
1

Z
expf�H(fs;yg)g: (2)

1We refer to HMMs with distributed state as factorial HMMs as the features of the distributed state factorize the

total state representation.
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Note that like in the CVQ (Ghahramani, 1995), the unclamped partition function

Z =

Z
dfyg

X
fsg

expf�H(fs;yg)g;

evaluates to a constant, independent of the parameters. This can be shown by �rst integrating the

Gaussian variables, removing all dependency on fyg, and then summing over the states using the

constraint on e[Ai]jl.

The EM algorithm for Factorial HMMs

As in HMMs, the parameters of a factorial HMM can be estimated via the EM (Baum-Welch)

algorithm. This procedure iterates between assuming the current parameters to compute proba-

bilities over the hidden states (E-step), and using these probabilities to maximize the expected log

likelihood of the parameters (M-step).

Using the likelihood (2), the expected log likelihood of the parameters is

Q(�newj�) = h�H(fs;yg)� logZic; (3)

where � = fWi; Pi; Cg
d
i=1 denotes the current parameters, and h�ic denotes expectation given the

clamped observation sequence and �. Given the observation sequence, the only random variables are

the hidden states. Expanding equation (3) and limiting the expectation to these random variables

we �nd that the statistics that need to be computed for the E-step are hstiic, hs
t
is

t0

j ic, and hs
t
is

t�10

i ic.

Note that in standard HMM notation (Rabiner and Juang, 1986), hstiic corresponds to 
t and

hs
t
is

t�10

i ic corresponds to �t, whereas hs
t
is

t0

j ic has no analogue when there is only a single underlying

Markov model. The M-step uses these expectations to maximizeQ with respect to the parameters.

The constant partition function allowed us to drop the second term in (3). Therefore, unlike

the Boltzmann machine, the expected log likelihood does not depend on statistics collected in an

unclamped phase of learning, resulting in much faster learning than the traditional Boltzmann

machine (Neal, 1992).

M-step

Setting the derivatives of Q with respect to the output weights to zero, we obtain a linear system

of equations for W :

W new =

2
4X
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0
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3
5 ;

where s and W are the vector and matrix of concatenated si and Wi, respectively,
P

N denotes

summation over a data set of N sequences, and y is the Moore-Penrose pseudo-inverse. To estimate

the log transition probabilities we solve @Q=@[Ai]jl = 0 subject to the constraint
P

j e
[Ai]jl = 1,

obtaining
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The covariance matrix can be similarly estimated:

Cnew =
X
N;t

yy
0
�

X
N;t

yhsi
0

chss
0
i
y

chsicy
0:

The M-step equations can therefore be solved analytically; furthermore, for a single underlying

Markov chain, they reduce to the traditional Baum-Welch re-estimation equations.
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E-step

Unfortunately, as in the simpler CVQ, the exact E-step for factorial HMMs is computationally

intractable. For example, the expectation of the jth unit in vector i at time step t, given fyg, is:

hstijic = P (stij = 1jfyg; �)

=
kX

j1;:::;jh6=i;:::;jd

P (st1j1=1;: : : ;stij = 1; : : : ; std;jd=1jfyg; �)

Although the Markov property can be used to obtain a forward-backward{like factorization of this

expectation across time steps, the sum over all possible con�gurations of the other hidden units

within each time step is unavoidable. For a data set of N sequences of length T , the full E-step

calculated through the forward-backward procedure has time complexity O(NTk2d). Although

more careful bookkeeping can reduce the complexity to O(NTdkd+1), the exponential time cannot

be avoided. This intractability of the exact E-step is due inherently to the cooperative nature of

the model|the setting of one vector only determines the mean of the observable if all the other

vectors are �xed.

Rather than summing over all possible hidden state patterns to compute the exact expectations,

a natural approach is to approximate them through a Monte Carlo method such as Gibbs sampling.

The procedure starts with a clamped observable sequence fyg and a random setting of the hidden

states fstjg. At each time step, each state vector is updated stochastically according to its probability

distribution conditioned on the setting of all the other state vectors: sti � P (stijfyg; fs
�
j : j 6=

i or � 6= tg; �): These conditional distributions are straightforward to compute and a full pass

of Gibbs sampling requires O(NTkd) operations. The �rst and second-order statistics needed

to estimate hstiic, hs
t
is

t0

j ic and hs
t
is

t�10

i ic are collected using the stij's visited and the probabilities

estimated during this sampling process.

Mean �eld approximation

A di�erent approach to computing the expectations in an intractable system is given by mean �eld

theory. A mean �eld approximation for factorial HMMs can be obtained by de�ning the energy

function
~H(fs;yg) =

1

2
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which results in a completely factorized approximation to probability density (2):

~P (fs;yg) /
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1

2
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ij)
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In this approximation, the observables are independently Gaussian distributed with mean �t and

each hidden state vector is multinomially distributed with meanmt
i. This approximation is made as

tight as possible by chosing the mean �eld parameters �t andmt
i that minimize the Kullback-Liebler

divergence

KL( ~PkP ) � hlog P i ~P � hlog ~P i ~P

where h�i ~P denotes expectation over the mean �eld distribution (5). With the observables clamped,

�
t can be set equal to the observable yt. Minimizing KL( ~PkP ) with respect to the mean �eld

4



parameters for the states results in a �xed-point equation which can be iterated until convergence:

m
t new
i = �fW 0

iC
�1
h
y
t
� ŷ
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i �
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i + A0

im
t+1
i g

where ŷt
�

P
iWim

t
i and �f�g is the softmax exponential, normalized over each hidden state vector.

The �rst term is the projection of the error in the observable onto the weights of state vector i|the

more a hidden unit can reduce this error, the larger its mean �eld parameter. The next three

terms arise from the fact that hs2iji ~P is equal to mij and not m2
ij. The last two terms introduce

dependencies forward and backward in time. Each state vector is asynchronously updated using

(6), at a time cost of O(NTkd) per iteration. Convergence is diagnosed by monitoring the KL

divergence in the mean �eld distribution between successive time steps; in practice convergence is

very rapid (about 2 to 10 iterations of (6)).

3 Empirical Results

We compared three EM algorithms for learning in factorial HMMs|using Gibbs sampling, mean

�eld approximation, and the exact (exponential) E step|on the basis of performance and speed

on randomly generated problems. Problems were generated from a factorial HMM structure, the

parameters of which were sampled from a uniform [0; 1] distribution, and appropriately normalized

to satisfy the sum-to-one constraints of the transition matrices and priors. Also included in the

comparison was a traditional HMM with as many states (kd) as the factorial HMM.

Table 1 summarizes the results. Even for moderately large state spaces (d � 3 and k � 3)

the standard HMM with kd states su�ers from severe over�tting. Furthermore, both the standard

HMM and the exact E-step factorial HMM are extremely slow on the larger problems. The Gibbs

sampling and mean �eld approximations o�er roughly comparable performance at a great increase

in speed.

4 Discussion

The basic contribution of this paper is a learning algorithm for hidden Markov models with dis-

tributed state representations. The standard Baum-Welch procedure is intractable for such archi-

tectures as the size of the state space generated from the cross product of d k-valued features is

O(kd), and the time complexity of Baum-Welch is quadratic in this size. More importantly, unless

special constraints are applied to this cross-product HMM architecture, the number of parameters

also grows as O(k2d), which can result in severe over�tting.

The architecture for factorial HMMs presented in this paper did not include any coupling between

the underlyingMarkov chains. It is possible to extend the algorithm presented to architectures which

incorporate such couplings. However, these couplings must be introduced with caution as they may

result either in an exponential growth in parameters or in a loss of the constant partition function

property.

The learning algorithm derived in this paper assumed real-valued observables. The algorithm can

also be derived for HMMs with discrete observables, an architecture closely related to sigmoid belief

networks (Neal, 1992). However, the nonlinearities induced by discrete observables make both the

E-step and M-step of the algorithm more di�cult.
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Table 1: Comparison of factorial HMM on four problems of varying size

d k Alg # Train Test Cycles Time/Cycle

3 2 HMM 5 649 � 8 358 � 81 33 � 19 1.1 s

Exact 877 � 0 768 � 0 22 � 6 3.0 s

Gibbs 710 � 152 627 � 129 28 � 11 6.0 s

MF 755 � 168 670 � 137 32 � 22 1.2 s

3 3 HMM 5 670 � 26 -782 � 128 23 � 10 3.6 s

Exact 568 � 164 276 � 62 35 � 12 5.2 s

Gibbs 564 � 160 305 � 51 45 � 16 9.2 s

MF 495 � 83 326 � 62 38 � 22 1.6 s

5 2 HMM 5 588 � 37 -2634 � 566 18 � 1 5.2 s

Exact 223 � 76 159 � 80 31 � 17 6.9 s

Gibbs 123 � 103 73 � 95 40 � 5 12.7 s

MF 292 � 101 237 � 103 54 � 29 2.2 s

5 3 HMM 3 1671,1678,1690 -1,-1,-1 14,14,12 90.0 s

Exact -55,-354,-295 -123,-378,-402 90,100,100 51.0 s

Gibbs -123,-160,-194 -202,-237,-307 100,73,100 14.2 s

MF -287,-286,-296 -364,-370,-365 100,100,100 4.7 s

Table 1. Data was generated from a factorial HMM with d underlying Markov

models of k states each. The training set was 10 sequences of length 20 where the

observable was a 4-dimensional vector; the test set was 20 such sequences. HMM

indicates a hidden Markov model with kd states; the other algorithms are factorial

HMMs with d underlying k-state models. Gibbs sampling used 10 samples of each

state. The algorithms were run until convergence, as monitored by relative change

in the likelihood, or a maximum of 100 cycles. The # column indicates number of

runs. The Train and Test columns show the log likelihood � one standard deviation

on the two data sets. The last column indicates approximate time per cycle on a

Silicon Graphics R4400 processor running Matlab.
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In conclusion, we have presented Gibbs sampling and mean �eld learning algorithms for factorial

hidden Markov models. Such models incorporate the time series modeling capabilities of hidden

Markov models and the advantages of distributed representations for the state space. Future work

will concentrate on a more e�cient mean �eld approximation in which the forward-backward algo-

rithm is used to compute the E-step exactly within each Markov chain, and mean �eld theory is

used to handle interactions between chains (Saul and Jordan, 1996).
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