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Abstract

Cooperation between independent agents depends upon establishing a degree of security. Each of the
cooperating agents needs assurance that the cooperation will not endanger resources of value to that agent.
In a computer system, a computational mechanism can assure safe cooperation among the system’s users
by mediating resource access according to desired security policy. Such a mechanism, which is called a
security kernel, lies at the heart of many operating systems and programming environments.

This report describes Scheme 48, a programming environment whose design is guided by established prin-
ciples of operating system security. Scheme 48’s security kernel is small, consisting of the call-by-value
A-calculus with a few simple extensions to support abstract data types, object mutation, and access to
hardware resources. Fach agent (user or subsystem) has a separate evaluation environment that holds ob-
jects representing privileges granted to that agent. Because environments ultimately determine availability
of object references, protection and sharing can be controlled largely by the way in which environments
are constructed.

I will describe experience with Scheme 48 that shows how it serves as a robust and flexible experimental
platform. Two successful applications of Scheme 48 are the programming environment for the Cornell
mobile robots, where Scheme 48 runs with no (other) operating system support; and a secure multi-user
environment that runs on workstations.
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1 Introduction

Cooperation between independent agents depends upon
establishing a degree of security. FEach of the cooper-
ating agents needs assurance that the cooperation will
not endanger resources of value to that agent. In a com-
puter system, a computational mechanism can assure
safe cooperation among the system’s users by mediat-
ing resource access according to desired security policy.
Such a mechanism, which is called a security kernel, lies
at the heart of many operating systems and program-
ming environments.

I claim that the A-calculus can serve as the central
component of a simple and flexible security kernel. The
present report supports this thesis by motivating and de-
scribing such a A-calculus-based security kernel and by
giving several lines of evidence of the kernel’s effective-
ness.

The W7 security kernel' consists of the call-by-value
A-calculus with a few simple extensions to support ab-
stract data types, object mutation, and access to hard-
ware resources. Within W7, each agent (user or subsys-
tem) has a separate evaluation environment that holds
objects representing privileges granted to that agent.
Because environments ultimately determine availability
of object references, protection and sharing can be con-
trolled largely by the way in which environments are
constructed.

The effectiveness of W7 as a security kernel is demon-
strated through three lines of evidence:

1. its ability to address certain fundamental security
problems that are important for cooperation (Sec-
tions 2.2-2.3);

2. astructural correspondence with familiar operating
system kernels (Section 2.4); and

3. the success of Scheme 48, a complete implemen-
tation of the Scheme programming language built
on W7, as a basis for secure, robust, and flexible
programming systems (Section 3).

1.1 Security Kernel Based on A-calculus

The A-calculus is a calculus of functions, and is con-
cerned with how computations are abstracted and in-
stantiated and how names come to have meanings. W7
is a A-calculus of procedures, which are generalized func-
tions capable of performing side effects. Procedures cor-
respond to what in an operating system would be pro-
grams and servers. Side effects include access to input
and output devices and to memory cells. It is through
side effects that communication, and therefore coopera-
tion, i1s possible. However, side effects can be harmful.
For example, a computer-controlled robot arm can easily
hurt a person who gets in its way.

The purpose of a security kernel i1s to allow control
over access to objects. The challenge in designing a se-
curity kernel is not to support sharing or protection per
se, but rather to allow flexible control over the extent
to which an object is shared or protected. One way

1This name was chosen to have no mnemonic or cuteness
value.

in which the A-calculus and W7 provide protection is
through closure: a procedure is not just a program but
a program coupled with its environment of origin. A pro-
cedure cannot access the environment of its call, and its
caller cannot access the procedure’s environment of ori-
gin. The caller and callee are therefore protected from
one another. Sharing is accomplished through shared
portions of environments, which may include procedures
that allow still other objects to be shared.

To address a number of authentication and certifica-
tion problems, W7 includes an abstract data type facil-
ity. (Usually this term refers to type abstraction enforced
through compile-time type checking, but here it means
a dynamic information hiding mechanism.) The facil-
ity 1s akin to digital signatures: a subsystem may sign
an object in such a way that the signed object may be
recognized as having been definitely signed by that sub-
system. In particular, a compiler might use a particular
signature to mean that the signed procedure is one that
is “harmless” (in a technical sense) and is therefore safe
to apply to fragile arguments.

1.2 Scheme 48

Scheme 48 is a complete Scheme system that tests W7’s
capacity to support safe cooperation. Scheme 48 was
a major design and implementation effort and therefore
constitutes the heart of the project. Section 3 gives an
overview of Scheme 48, but most of the information on
it is to be found in the related reports [13, 23, 6, 19].

A large amount of engineering goes into making a
practical programming environment, and in Scheme 48
security has been a concern in nearly every component.
Major facilities whose design has been shaped by secu-
rity concerns include the following:

e The module system [19]. Modules are truly encap-
sulated, just as procedures are, allowing them to
be shared safely.

e The macro facility [6]. Macros are also closed, like
procedures. This allows a form of compile-time se-
curity in which a module may export a macro while
protecting objects used in the macro’s implemen-
tation.

e Dynamic variables. Information can be communi-
cated from caller to callee through an implicit dy-
namic environment. However, a dynamic variable
must be accessed via a key, and such keys can be
protected.

A major theme running through the design of Scheme
48 is avoidance or minimization of shared global state.
For example, the virtual machine (byte-code interpreter)
has only an essential minimum set of registers; there are
no registers that hold global symbol tables or environ-
ment structure as there is in most Lisp and Scheme im-
plementations. Another example is in the run-time sys-
tem modules, which never alter global state (in Scheme
terms, no top-level variable is ever assigned with set!).
Data structures manipulated by these modules can be
instantiated multiple times to avoid conflict over their
use.



Finally, the success of Scheme 48 (and therefore of
W7) is demonstrated by its use in a number of applica-
tions. These include the programming environment for
the Cornell mobile robots, where Scheme 48 runs with
no (other) operating system support [23], and a secure
multi-user environment that runs on workstations.

2 The Security Kernel

This section is an exposition, starting from first princi-
ples, of the problem of secure cooperation between inde-
pendent agents. It describes a simple idealized security
kernel that addresses this problem. The presentation 1s
intended to show the essential unity of security concerns
in operating systems and programming languages.

The idealized kernel is based on a graph of encapsu-
lated objects. Accessibility of one object from another 1s
constrained by the connectivity of the object graph and
further limited by object-specific gatekeeper programs.
The kernel enables the natural construction of a variety
of mechanisms that support secure cooperation between
agents. In particular, an agent can securely call an un-
trusted agent’s program on a sensitive input.

The kernel is similar to those of the capability-based
operating systems of the 1970’s [15, 34]. The main dif-
ferences are that this kernel is simpler, more abstract,
and more clearly connected with programming language
concepts than are classical capability systems.

2.1 Safe Computer-Mediated Cooperation

The participants in a cooperative interaction carry out
a joint activity that uses or combines the resources that
each provides. Resources might include energy, informa-
tion, skills, or equipment.

Each agent relinquishes control to some extent over
the resources that the agent brings. If the agent values a
resource, relinquishing control over it is dangerous, be-
cause the resource may come to harm or may be used to
cause harm.

To assure a resource’s safety when control over 1t 1s
relinquished, it is desirable for an agent to be able to dic-
tate precisely the extent to which control is relinquished.
A trusted intermediary can be helpful in this situation.
The resource is handed over to the intermediary, who
performs actions as specified by the recipient subject to
restrictions imposed by the source.

A computer system may be useful in a coopera-
tion not only because of the resources it may provide
(programmable processor, memory, network communi-
cations, programs, and so on), but also because of its
potential to act as a trusted intermediary. The agent
providing a resource can dictate use restrictions in the
form of a program, and the resource’s recipient can spec-
ify actions to be performed with the resource in the form
of a program.

Program invocation therefore plays a critical role in
computer-mediated cooperation. But when a program
is untrusted (as most programs should be!), invoking it
is fraught with peril. The invoking agent puts at risk
resources of value, such as inputs and the use of parts
of the computer system. Similarly, the agent who sup-
plied the program may have endowed it with (access to)

resources of value to that agent, so those resources are
also put at risk when the program is invoked.
Consider the following scenario:

Bart writes a program that sorts a list of num-
bers. Being a generous fellow, he gives this
useful program to Lisa, who has expressed
an interest in using such a program. But
Lisa is hesitant to use Bart’s program, since
Bart may have arranged for the program to
do sneaky things. For example, the program
might covertly send the list to be sorted back
to Bart via electronic mail. That would be
unfortunate, since Lisa wants to sort a list
of credit card numbers, and she would like to
keep these secret. What should Bart and Lisa

do?
There are two distinct approaches to solving the safe
invocation problem — that is, the general situation in

which each agent in a cooperation has resources that
should be protected when one agent’s program is invoked
in a context (inputs and computer system) given by an-
other agent. In the first approach, the program runs in a
limited computing environment, one in which dangerous
operations (such as sending mail) are prohibited. In the
second approach, the second agent rejects the program
unless i1t bears a recognized certificate of safety. The
next two sections look at the two approaches.

2.1.1 Limited Environments

One way to avoid disclosure of the numbers (an in-
stance of the confinement problem [14]) would be for Lisa
to isolate a computer running Bart’s program, making it
physically impossible for the program to do any harm.
This would require detaching the computer from the net-
work, removing disks that should not be read or written,
setting up a special network or disk for transmitting the
inputs and results, and so on.

These measures are inconvenient, time-consuming,
and expensive. They are also crude; for example, it
should be permissible for Bart’s program to fetch infor-
mation from the network or disks, but not write infor-
mation. This selective restriction would be impossible
using hardware configurations.

The basic idea is sound, however. The trick is to
ensure that all accesses to sensitive resources are inter-
cepted by a special supervisor program. The supervisor
program checks the validity of the access attempt and
allows it to go through only if it should.

The most straightforward method by which this is
achieved 1s through the use of an emulator. An emula-
tor is a program that mimics the role that the processor
hardware usually plays in decoding and executing pro-
grams. For instructions that are always safe, the em-
ulator simulates the hardware precisely; for dangerous
instructions, the supervisor program is invoked.

Use of an emulator makes programs run slowly, so a
more common alternative is the use of a special hard-
ware feature available on many computers called “user
mode”. When the processor is in user mode, all dan-
gerous operations are preempted, causing the supervisor
program to be invoked. The supervisor program runs in



an ordinary (non-user or “supervisor”) mode, so it may
implement whatever protection policy it likes.

Here is how safe program invocation might be accom-
plished using an architecture with user-mode support:

1. The invoker runs the program in user mode, telling
the supervisor program which operations are to be
permitted.

2. The supervisor program monitors all potentially
dangerous operations, refusing to perform opera-
tions that are not permitted.

3. When the program is done, it executes a special
operation to return to supervisor mode.

2.1.2 Screening and Certification

Another way to avoid disclosure of her list of numbers
would be for Lisa to screen Bart’s program to verify that
it contains no dubious operations (such as calls to the
send-email program). This would probably require her
receiving the program in source form, not as a binary;
the program would have to be of modest size and writ-
ten in a language familiar to Lisa. She would also need
access to a compiler and time on her hands to run the
compiler. But even if Lisa were willing and able to go to
this trouble, Bart might be unwilling to give the source
program to her because i1t contains information that he
wants to keep secret, such as passwords, material subject
to copyright, trade secrets, or personal information.

This dilemma could be solved with the help of a
trusted third party. There are many different ways in
which a third party might help; the following is a vari-
ant of the screening method suggested above that doesn’t
require Lisa to obtain Bart’s source program.

Suppose that Bart and Lisa both trust Ned.
Bart gives his source program to Ned with
the instructions that Ned is not to give the
source program to Lisa, but he may answer
the question of whether the program is ob-
viously harmless to run. (“Obviously harm-
less” could mean that the program uses no
potentially harmful operations, or it could be
a more sophisticated test. Because harmless-
ness 1s uncomputable, any such test will be
an approximation.) Lisa obtains the machine
program as before, and asks Ned whether
the machine program is obviously harmless to
run; if he says it is, she runs it with assurance.

In the screening approach, the agent invoking the pro-
gram rejects 1t unless it bears a recognized certificate of
safety. Following this initial check, invoking the program
is just as simple as invoking any fully trusted program.
There is no need for an emulator program or user-mode
hardware support.

Here is how safe program invocation might be accom-
plished using the screening approach:

1. The invoker checks to see whether the program is
definitely restricted to operations permitted by the
invoker.

2. The invoker refuses to run the program if it appears
to use any unpermitted operations.

3. If not, the invoker runs the program on the real ma-
chine. Harmful operations needn’t be prevented,
since they won’t occur (if the certifier is correct).

Screening has the drawback that some cooperation is
required from the person supplying the program. He
must go to the trouble of obtaining certification, and
perhaps even change the program so that it is certifiable.

2.2 A Simple Kernel

A security kernel is the innermost layer of an operating
system or programming language, the fundamental com-
ponent responsible for protecting valued resources from
unwanted disclosure or manipulation. Isolating the se-
curity kernel from the rest of the system helps to ensure
reliability and trustworthiness. Simplicity is important
in a kernel because the simpler the kernel, the more eas-
ily it can be tested and verified.

What follows is just one of many ways to define a se-
curity kernel. This design, which I'll call W7, is intended
to be suitable for use in either an operating system or
a programming language. W7 might also be seen as a
theory of security that can be used to describe security
in existing programming languages and operating sys-
tems.

W7 organizes the computer’s resources into a network
of logical entities that I'll call objects.? Objects are the
basic units of protection in W7. A link in the network
from one object to another means that the second 1s
accessible from the first. The objects to which a given
object has access are its successors, and the objects that
have access to a given object are its predecessors.

Objects may be thought of as representing particu-
lar privileges, capabilities, or resources. For example,
an object might represent the ability to draw pictures
on a display, to transmit messages over a communica-
tions line, to read information from a data file, or to run
programs on a processing element.

New nodes enter the object network when a running
program requests the creation of a new object. In or-
der to avoid the dangers of dangling references (links to
deleted nodes) and memory leaks, object deletion is left
in the hands of the kernel. The kernel may delete an ob-
ject as soon as there is no path through the network to it
from the current computation. Absence of such a path 1s
detected by an automatic mechanism such as reference
counts or garbage collection.

There are several different kinds of objects. These will
be introduced as they are needed in the presentation.

2.2.1 On the Choice of Notation

In order to elucidate the kernel design and describe its
consequences, it will be necessary to present specimen
programs, and for this purpose I must choose a notation
— that is, a programming language. The choice is in
principle arbitrary, but is important because it affects
the exposition.

2Unfortunately, “object” has become a loaded term in
computer science. To many people it implies complicated
phenomena such as methods, classes and inheritance. I don’t
mean to suggest any of this baggage. It may be best to take
it as an undefined term, as is “point” in geometry.



If T were most interested in comparing W7 to cur-
rently popular and familiar security kernels in operating
systems, I would present my examples as programs that
perform kernel operations in the traditional way, using
system calls. Programs would be written in an Algol-like
language, or perhaps in a machine-level language such as
C. This would be a viable approach, since there is noth-
ing in the theory that precludes it (see Section 4.3.3).

However, this approach makes some of the examples
awkward to write and to understand. Particularly awk-
ward is the frequent case where in creating a new object,
a program must specify a second program. Most tra-
ditional languages don’t have a good way for a program
to specify another entire program. Even given such a
notation, the division of labor between the language and
the security kernel might be difficult to tease apart.

For this reason I prefer to use a notation in which
kernel operations have natural forms of expression. The
language of the Unix “shell” approaches this goal since
program invocation has a natural syntax, and operations
on programs and processes are more concise than they
would be in Algol or C.

However, I would like to go a step further in the di-
rection of languages with integrated kernel support, and
use a version of Scheme [7] in which all Scheme values,
including procedures, are identified with objects known
to the W7 kernel. ML [16] would have been another
reasonable choice of language.

2.2.2 On the Notation

To avoid confusion with other Scheme dialects, I’ll re-
fer to the small dialect of Scheme to be used in examples
as “Scheme™.” The grammar given in Figure 1 summa-
rizes Scheme™. E stands for an expression.

The meaning of most of the constructs i1s as in full
Scheme. The first group of constructs is Scheme™’s A-
calculus core: variable reference, procedure abstraction
(lambda), and application. Each of the second group of
constructs (if, etc.) has a special evaluation rule.

The third group is a set of primitive operators. In
every case all of the operand expressions are evaluated
before the operator is applied. Most of these are familiar,
but a few require explanation:

A cellis a mutable object with a single outgoing access
link (field). (new-cell) creates a new, uninitialized cell,
(cell-ref cell) returns the object to which cell cur-
rently has a link, and (cell-set! cell 0by) redirects
cell’s outgoing link to obj.

The enclose operator takes a program and a speci-
fication of a successor set and converts them to a pro-
cedure. enclose might be called on the output of a
Scheme™ or Algol compiler. Its details are unimportant.
See Section 2.2.4.

The control operator controls hardware devices. For
example,

(control keyboard ’read-char)

might read a character from a particular keyboard. Its
arguments are interpreted differently for different kinds
of devices.

To reduce the complexity of the exposition, pairs will
be assumed to be immutable, and eq? will be assumed

to be applicable only to symbols and cells.

I’ll use the term wvalue to describe integers, booleans,
symbols, and other entities that carry only information,
not privileges. Whether or not values are considered to
be objects is unimportant.

2.2.3 Procedures

The W7 kernel is principally concerned with proce-
dures. Every procedure has an associated program.
The procedure’s program can access the procedure’s suc-
cessors and use them in various operations. Access is not
transitive, however: access to a procedure does not im-
ply the ability to access the procedure’s successors. Any
such access is necessarily controlled by the procedure’s
program. In this sense, the procedure’s program is a
“gatekeeper” that protects the procedure’s successors.

The primary operation on a procedure is application
to an argument sequence. When a procedure is applied
to arguments (which may include other objects or values,
such as integers), its program is run. In addition to
the procedure’s successors, the program has access to
the arguments. It may use any of these objects, but no
others, in making new objects or in performing further
applications. Applications are written in Scheme™ using
the syntax

(procedure argument ...).

For example, if £ names a link to a procedure, then (f
x y) denotes an application of that procedure to x and
y.

The essential source of security in W7 1s that a proce-
dure’s program is absolutely limited to using the proce-
dure’s successors and the objects that are in the appli-
cation’s argument sequence.

Scheme™ lambda-expressions are a concise notation
for specifying procedures. When a program evaluates a
lambda-expression, a new procedure is created. The new
procedure’s successors are the objects that are the val-
ues of the lambda-expression’s free variables, and its pro-
gram 1s specified by the body of the 1lambda-expression.

Here is an example illustrating lambda and applica-
tion.

(lambda (x) (g (£ x)))

specifies a procedure with two successors, which it knows
as £ and g. When the resulting procedure (say, h) is
applied to an argument, it applies £ to that argument,
and then applies g to the result obtained from applying
f. Finally, g’s result becomes the result of the call to k.
h therefore acts as the functional composition of £ and

An procedure’s program could be written in a lan-
guage other than Scheme™, for example, Algol, C, or a
machine language. I will consider this possibility later

(Section 4.3.3).

2.2.4 Imitial program

Suppose that someone — let’s call her Marge — ob-
tains a brand-new machine running W7 as its operating
system kernel. She turns it on, and the machine begins
executing an initial program. The initial program is an
ordinary program with no special relation to the kernel



E = var
| (lambda (var ..
| (£ E ...)

constant

(if F F FE)
(begin £ ...)
(let ((wvar E)
(let var ((var E)

(Carith £ F)

arith ::=+ | - | x| /| <

D) E)

D) E)
D) E)

(cons £ EF) | (car E)
(null? E) | (pair? E) | (list F ...)
(symbol? E) | (eq? £ E)

(new—cell) | (cell-ref E) | (cell-set!\ F E)
(enclose F E) | (control F E)

| (cdr E)

:|>

Figure 1: A grammar for Scheme™.

other than that it is executed on power-up. In princi-
ple, the initial program is arbitrary; it is whatever the
manufacturer has chosen to provide.

The initial program is given access to objects that rep-
resent all of the computer system’s attached hardware
resources, which might include keyboards, displays, fac-
simile machines, traffic lights, etc. (Hardware may be
manipulated with the control primitive operator, whose
details are not important here.) Because these resources
are objects, any given program will only have access to
those hardware resources to which it has been explicitly
granted access by the initial program (perhaps indirectly
through a series of other programs).

In order to make the computer as generally useful as
possible, the manufacturer has installed an initial pro-
gram that executes commands entered from the key-
board. One kind of command is simply a Scheme™ ex-
pression. When an expression is seen, the initial pro-
gram compiles and executes the expression and displays
its result. For example, the command

(+ 2 3)

causes the number 5 to be displayed.

A second kind of command is a definition, which looks
like

(define war E).

Definitions give a way for a user to extend the envi-
ronment so that new objects can be given names that
subsequent commands can see. For example, Marge can
write

(define square (lambda (x) (* x x)))
to define a squaring procedure, and
(square 17)

to invoke it and display the result.

To be able to use existing resources, commands need
to have access to them. For this reason they are
processed relative to an environment, or set of vari-
able bindings, allowing objects to be accessed by name.

The environment initially includes two kinds of re-
sources: I/O devices (with names like the-display and
the-fax-machine), and handy utilities that the user
could have written but the manufacturer has thought-
fully supplied. The utilities are the usual Scheme proce-
dures such as assoc, write, read, and string-append,
as well as a few others to be described below.

The initial program just described, including utilities
and command processor, might have been written en-
tirely in Scheme™, in which case it would resemble the
program of Figure 2: eval is a utility that executes a
Scheme™ expression, of which a representation has been
obtained from the user or otherwise received or com-
puted. It makes use of a compiler that translates the ex-
pression into a form acceptable to the kernel’s primitive
enclose operator. The translated expression is given
access to a specified environment, and executed.

(define eval
(lambda (expression env)
((enclose (compile-scheme-expression
(map car env))
(map cdr env)))))

Definitions are handled using bind, which extends a
given environment by adding a binding of a variable to
a value. With environments represented as association
lists, bind could be defined with

(define bind
(lambda (name value env)
(cons (cons name value) env))).

2.2.5 Administration

Now we have enough mechanism at our disposal to
consider some examples.

Marge intends to set up her machine so that Lisa and
Bart can use it and its resources. As a means for the
machine’s users to share objects with one another, she
defines a simple object repository:

(define *repository* (new-cell))
(cell-set! *repository* ’())



(define command-processor
(lambda (env source sink)
(let loop ((env env))

(let ((command (read source)))

(if (definition? command)

(loop (bind (cadr command)
(eval (caddr command) env)

env))

(begin (write (eval command env) sink)

(Loop env)))))))

(define definition?
(lambda (command)
(if (pair? command)

(eq? (car command) ’define)

#£)))

Figure 2: A simple initial program.

(define lookup
(lambda (name)
(let ((probe (assoc name *repository*)))
(if probe (cdr probe) #£f))))

(define publish!
(lambda (name object)
(cell-set! *repository#*
(cons (cons name object)
*repository#*))))

Anyone with access to Marge’s lookup procedure can ob-
tain values from the repository, while anyone with access
to publish! can store values in the repository.® (assoc
1s assumed to be Lisp’s traditional association list search
function.)

Next, Marge makes an environment for Bart’s com-
mand processor. It must include all of the objects that
Bart is to be able to access initially. There is no harm in
including all of the system’s utility procedures (assoc,
read, etc.), since no harm can come from his using them.
However, she needs to be careful about the I/O devices.
For the sake of safety, she includes only Bart’s own I/0
devices in Bart-env:

(define make-user—env

(lambda (from-user to-user)

(bind ’standard-input from-user
(bind ’standard-output to-user
(bind ’lookup lookup
(bind ’publish! publish!
utilities-env))))))

(define Bart-env

(make-user—-env from-Bart to-Bart))

Bart’s command processor can now be initiated with

(command-processor Bart-env
from-Bart to-Bart)

*For simplicity, it is assumed that concurrency is not an
issue. In a multiprocessing or multitasking system, access to
the #repositoryx* cell would have to be serialized.

Similarly for Lisa’s:

(command-processor Lisa-env
from-Lisa to-Lisa)

Security results from the omission of vulnerable objects
from users’ initial environments. For example, Lisa’s /O
devices (from-Lisa and to-Lisa) aren’t accessible from
Bart’s environment, so Bart won’t be able to cause any
mischief by reading or writing them.

Bart and Lisa are able to share objects with each other
through the repository:

Bart:
(define really-sort
(lambda (list-of-numbers)
(if (null? list-of-numbers)
*()
(insert (car list-of-numbers)
(really-sort
(cdr list—of-numbers))))))

(define insert
(lambda (x 1)
(let recur ((1 1))
(if (null? 1)
(1list x)
(if (< x (car 1))
(cons x 1)
(cons (car 1)

(recur (cdr 1))))))))
(publish! ’sort sort)

Lisa:
(define Bart-sort (lookup ’sort))
(Bart-sort ’(9 2 7)) — (27 9)

Of course, Bart and Lisa must both trust Marge, who
still has full control over all resources. They must treat
her administrative structure as part of the machine’s
trusted substrate. (Trust cannot be avoided. Bart and
Lisa must trust Marge’s software and machine just as
Marge trusts the manufacturer’s installed software, the



manufacturer trusts the semiconductor chip factories,
the chip factories trust the solid state physicists, and
so on.)

2.2.6 Trusted Third Party Establishes Safety

There is already a great deal of safety built in to the
structure of the W7 kernel. When a procedure is in-
voked, the only privileges the invoked procedure’s pro-
gram has are (1) those that it was given when created
(“installed”), and (2) those that are passed as argu-
ments. If the two privilege sets contain no dangerous
privileges, then there is no way that any harm can come
from the invocation. However, sometimes there is reason
to pass privileges or sensitive information to an unknown
program. This can be a problem if when installed the
program was given access to channels over which the in-
formation might be transmitted, or to a cell in which
a privilege or information may be saved for later unex-
pected use.

To return to the main example from the introduction:
Lisa wants to call Bart’s sort program without risking
disclosure of the input, which may contain sensitive in-
formation. Specifically, the risk she runs is that Bart has
written something like

(define *list-of-numbers* (new-cell))

(define sort
(lambda (list-of-numbers)
(begin (cell-set! *list-of-numbers*
list-of-numbers)
(really-sort list-of-numbers))))

(define really-sort
(lambda (list-of-numbers)
(if (null? list-of-numbers)
*()
(insert (car list—-of-numbers)
(really-sort
(cdr list—of-numbers))))))
(publish! ’sort sort)

This deceit would allow Bart to extract the most re-
cent input passed to sort by evaluating (cell-ref
*list-of-numbers*).

Sketch of a rudimentary solution:

1. Ned, who both Bart and Lisa trust, sets up a “safe
compilation” service.

2. Bart submits the source code for his sort program
to Ned’s service.

3. Ned’s service analyzes Bart’s source code to de-
termine whether the program might divulge its in-
put to Bart or to anyone else. (For a definition of
“might divulge,” see below.)

4. Ned evaluates (for initialization) Bart’s program in
a fresh environment and extracts access to the re-
sulting sort procedure.

5. Ned makes sort available to Lisa.

6. Lisa obtains the program from Ned, and runs it
with assurance that the input will not be divulged.

Whether a program “might divulge” its input is unde-
cidable, so any test for this property is necessarily con-
servative: such a test will reject perfectly benign, useful
programs that can’t easily be cast into a recognizably
safe form.

There are many possible tests. One simple test is the
following one: a program might divulge its input if the
program is not obviously applicative; and a program is
obviously applicative iff none of its lambda-expressions
contains a (cell-set! ...) expression.

One can clearly do better than this; some methods will
be discussed later (in the context of the module system,
section 3.2).

To see how this safe compilation service might work,
let’s continue with the scenario begun above in which
Marge has established a public object repository. The
first problem is that Lisa needs a way to determine au-
thorship of a repository entry, to distinguish Bart’s en-
tries from Ned’s. Assuming that all objects published by
Ned are safe, she must make sure that the sort proce-
dure she uses is published by Ned, not by Bart.

This is a fundamental flaw in the repository, so Marge
must fix 1t. See Figure 3. FEach object in the reposi-
tory is now accompanied by the name of the user who
put it there, and each user’s environment now has its
own publish! procedure. Bart’s publish! procedure,
for example, will store entries of the form (cons ’Bart
object) into the repository.

Here is the complete scenario:

Ned:
(define publish-if-safe!
(lambda (name program)
(if (safe? program)
(publish! name (eval program))
’not-obviously-safe)))
(define safe?
(lambda (program) ...))
(publish! ’publish-if-safe! publish-if-safe!)

Bart:
(define sort-program
’(begin (define sort ...)
(define insert ...)
sort))
(define publish-if-safe!
(cdr (lookup ’publish-if-safe!)))
(publish-if-safe! ’safe-sort sort-program)

Lisa:
(define safe-sort-entry (lookup ’safe-sort))
(define safe-sort
(if (eq? (car safe-sort-entry) ’Ned)
(cdr safe-sort-entry)
"safe-sort not published by Ned"))
(safe-sort (9 2 7))

There is nothing Bart can do to trick Lisa. If he tries
to publish an unsafe safe-sort procedure, he will have
to use his own publish! procedure to do so, since Ned’s
publish! isn’t accessible to him. In this case, when Lisa
does (lookup ’safe-sort), the result will be marked



(define make-publish!
(lambda (submitter)
(lambda (name object)

(publish! name (cons submitter object)))))

(define make-user—env

(lambda (user-name from-user to-user)

(bind ’standard-input from-user

(bind ’standard-output to-user
(bind ’lookup lookup
(bind ’publish!
(make-publish! user-name)
utilities-env))))))

(define Bart-env

(make-user—env ’Bart from-Bart to-Bart))

(define Lisa-env

(make-user—env ’Lisa from-Lisa to-Lisa))

(define Ned-env

(make-user-env ’Ned from-Ned to-Ned))

Figure 3: Marge’s improved repository.

with Bart’s name, not Ned’s, and Lisa will discard it.

2.3 Authentication

This section treats the problem of authentication and
considers its solution in W7. Broadly speaking, authen-
tication is any procedure or test that determines whether
an object is trustworthy or genuine. For example, check-
ing a student identification card authenticates the person
presenting the card as being a student as indicated on
the card. Having been found authentic, the person may
be granted privileges appropriate to that status, such as
permission to use an ice rink.

Authentication 1s an important capability of secure
computer systems. Some examples of authentication in
such systems are:

e A request received from an untrusted source such
as a public communications network must be au-
thenticated as originating from an agent that has
the right to perform the action specified by the re-
quest.

e In a dynamically typed programming language
such as Lisp or Snobol, a value must be authen-
ticated as being of the correct type for an operator
receiving it as an operand.

e The solution to the safe invocation example of Sec-
tion 2.2 involves a test for the authenticity of a
putatively safe or trustworthy object (Bart’s pro-
gram).

Authentication is necessary for reliable transmission
of an object using an untrusted messenger (or channel).
To authenticate an object transmitted from a sender to
receiver, the sender must label or package the object so
that it can be recognized (authenticated) by the receiver,
and this labeling or packaging must be done in an un-
forgeable and tamper-proof manner. I’ll use the word
capsule for an object so labeled or packaged. A physical

analogy for a capsule would be a locked box to which
only the receiver has a key.

When the object is digital information, such as a
sequence of characters or numbers, well-known digital
cryptographic techniques can be used to implement au-
thenticated transmission [24]. However, object transmis-
sion in a security kernel that limits object access accord-
ing to an accessibility graph requires a different mecha-
nism. With such a kernel, transmitting a name for an
object, whether encrypted or not, is never the same as
transmitting access to that object, since interpretation
of names — and therefore accessibility of named objects
—islocal to each object. Access can only be transmitted
through approved channels such as argument and result
transmission in a procedure invocation.

2.3.1 Abstract Data Types

Authentication is required whenever the results of one
procedure are intended to constitute the only valid in-
puts to another procedure. These objects, the results
and valid inputs for a related set of procedures, are called
the instances of a type or abstract data type. The set of
related procedures is called a module or cluster in the
context of programming languages, or a protected sub-
system or server in classical operating systems parlance.

For example, consider a central accounting office that
issues account objects to clients. Clients may create new
accounts using a new-account procedure and transfer
money between accounts using a transfer procedure.
The integrity of accounts is of great importance to the
accounting office; it would be unfortunate if a client cre-
ated a counterfeit account and then transferred money
from it into a valid account. Therefore, transfer needs
to authenticate the accounts 1t’s asked to manipulate as
genuine — that is, created by new-account.

From the clients’ point of view, accounts are objects
that clients may manipulate a certain set of operators.



From the accounting office’s point of view, accounts are
capsules transmitted from new-account to transfer via
an untrusted network of interacting clients.

2.3.2 Key-based Authentication

Section 2.2.6’s solution to the safe invocation prob-
lem relies on the exchange of object names. Bart tells
Lisa the name of his object in the trusted repository
(safe-sort), and Lisa obtains from the repository (1)
the fact that the object is authentically safe (i.e. placed
there by Ned), and (2) the object itself, which Lisa can
then use.

If Bart wishes to keep his object a secret between him
and Lisa, he may give it a secret key in the form of an
unguessable name, i.e. a password, and transmit that
name to Lisa. Passwords can be made long enough and
random enough to make the probability of unauthorized
discovery arbitrarily small. (Of course, this assumes that
there is no way for untrusted agents to obtain a list of
all names defined in the repository.)

Instead of passwords, it is possible to use cells (Sec-
tion 2.2.2) as keys, as suggested by Morris [18]. Like
passwords, cells are objects with unique, recognizable
identities. Unlike passwords, they have all the security
advantages of objects: access to them can only be trans-
ferred through kernel-supported operations.

There is no need to use a single repository, such as
Marge’s, to store all objects that might need to be au-
thenticated. Each separate abstract data type can have
its own mapping from keys to objects.

Figure 4 gives an implementation of a general authen-
tication facility (essentially the same as that described
by Morris [18]). Each call to new-seal returns a new
triple of objects (seal, unseal, sealed?). Each such triple
represents a new abstract data type. seal encloses an
object in a capsule that can be authenticated; unseal 1s
an extraction operator that reveals the encapsulated ob-
ject iff the capsule is authentic (i.e. was made by this
seal); and sealed? is a predicate that returns true iff the
capsule is authentic.

It is assumed that assq (association list lookup) can
determine cell identity. Cells (other than the one hold-
ing the association list) are used only for their identities,
not for holding references to objects. As an example,
the program of Figure 5 is an implementation of the
accounting system described above. It’s very important
not to publish account-cell, since doing so would allow
clients of the accounting system to set account balances
to arbitrary values.

2.3.3 The Case for Kernel Support

As seen above, existing kernel mechanisms (cells, pro-
cedures) can be used to implement authentication. How-
ever, I would like to argue in favor of a direct authen-
tication mechanism implemented in the W7 kernel. An
argument in favor of this is required due to the stated
goal of keeping the kernel as simple as possible.

A key-based authentication mechanism has several
practical problems.

o Performance: It’s inefficient to have to search the
central table on every use of an instance.

e Memory management: How can the kernel know
whether it is safe to delete an object? Straight-
forward garbage collection techniques don’t work
because the central table holds links to all of the
type’s instances, and the garbage collector is ig-
norant of the association between the key and the
object.

e Semantic obscurity: It would be unfortunate if cre-
ating an object of an abstract data type were nec-
essarily a side effect, as it would be if a key had to
be generated. The side effect defeats optimizations
such as subgraph sharing.

A direct approach, not involving a keyed table, re-
quires kernel support. The following argument shows
that in the W7 kernel without abstract data type sup-
port, a recipient can be fooled no matter what packaging
method is used.

Consider a candidate encapsulation and au-
thentication technique. Without loss of gen-
erality, we can assume that capsules are pro-
cedures. In order to authenticate a capsule,
the recipient has no choice but to apply it to
some argument sequence, since there is noth-
ing else that can be done with a procedure.
This application can appropriately be called a
“challenge,” since examining its result distin-
guishes authentic capsules from nonauthentic
ones. If the challenge is correctly met, then
an additional application of the capsule (or
of some related object returned by the chal-
lenge) will then either return or perform some
operation on the underlying object.

But given an authentic capsule, an untrusted
messenger may easily make a counterfeit, as
follows: the counterfeit answers challenges by
consulting the authentic capsule and return-
ing what it returns, and handles other appli-
cations in any way it likes.

This argument doesn’t even consider the problem that
the challenge might diverge, signal an error, or cause
troublesome side effects. The annoyance of handling
these situations (see section 4.3.1) would argue against
using procedures, even were there a way to do so.

Kernel support can be provided in W7 by adding
new-seal as a new primitive operator:

E ::= (new-seal)

Capsules are a new kind of object that can be imple-
mented efficiently. A capsule can be represented as a
record with two fields, one containing the unique seal,
and the other holding the encapsulated object.*

It is an inelegant aspect of this design that there are
two distinct encapsulation mechanisms (procedures and cap-
sules). There are various ways to remedy this; for example,
instead of introducing capsules as a separate kind of object,
lambda and application could be extended to take unique
markers, with the requirement that a procedure’s marker
must match the marker specified in an application of the
procedure:



(define (new-seal)
(let ((instances (new-cell)))
(cell-set! instances ’())
(let ((seal
(lambda (rep)
(let ((abs (new-cell)))
(cell-set! instances
(cons (cons abs rep)
(cell-ref instances)))
abs)))
(unseal
(lambda (abs)
(let ((probe (assq abs (cell-ref instances))))
(if probe
(cdr probe)
(error "invalid argument" abs)))))
(sealed?
(lambda (x)
(if (assq x (cell-ref instances))
#t
#£))))

(list seal unseal sealed?))))

Figure 4: Implementation of seals.

(define account-operators (new-seal))

(define make-account (car account-operators))
(define account-cell (cadr account-operators))
(define account? (caddr account-operators))

(define new-account
(lambda ()
(make-account (new-cell 0))))

(define transfer
(lambda (amount from to)
(let ((from-cell (account-cell from))
(to—cell (account-cell to)))
(if (>= (cell-ref from-cell) amount)
(begin (cell-set! from-cell
(- (cell-ref from-cell) amount))
(cell-set! to-cell
(+ (cell-ref to—cell) amount)))
(error (error "insufficient funds"))))))

(publish! ’new-account new-account)
(publish! ’transfer transfer)

Figure 5: Accounting module.
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Figure 6: In an operating system, accessibility of re-
sources 1s controlled by kernel data structures called pro-
tection domains (or simply domains). A domain includes
a segment table or page table that specifies which mem-
ory segments are directly accessible by a program run-
ning in that domain. A domain also specifies availability
of other resources, such as I/O devices (here represented
by a network) and procedures residing in other domains.
(References to such procedures are called remote proce-
dure handles or inter-process communication handles in
the literature.)

2.4 Protection Domains

This section attempts to explain the correspondence be-
tween W7 and more conventional operating system ker-
nels.

In a typical secure operating system, the objects that
are immediately accessible to a running program con-
stitute its protection domain (or simply domain). These
objects are of various sorts, including the following (there
may be others):

1. Mapped memory segments. These contain both
programs and the data stuctures that programs di-
rectly manipulate.

2. Descriptors for hardware devices and files. Descrip-
tors control access to devices and the file system,
and may include information such as buffers or po-
sition markers.

3. In some operating systems, references to proce-
dures residing in other domains (variously called
gateways, inter-process communication handles, or
remote procedure handles); T will write simply han-
dle. A handle consists of a domain together with
an address within that domain specifying the pro-
cedure’s entry point.

(lambda marker (var ...) body)
(applicate marker procedure arg ...)

A number of other unifications have been proposed [22, 1, 25].
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Figure 7: In a A-calculus interpreter, accessibility of re-
sources 1s controlled by interpreter data structures called
environments. An environment contains references to
data structures, such as lists, that are directly accessible
to a program running in that environment. An environ-
ment also specifies availability of other resources, such
as I/O devices (here represented by a network) and pro-
cedures connected to other environments.

The program refers to objects using short names
(numbers). TFor example, a load or store machine in-
struction uses a memory address to access a memory seg-
ment object, while a system call instruction requesting
that information be read from a file uses a file descriptor
number to specify the file.

The domain determines how these names are to be in-
terpreted. The domain contains a segment table or page
table for use by the hardware in interpreting memory
addresses, and tables of descriptors and handles for use
by system call handlers in interpreting I/O and cross-
domain procedure call requests.

Just as a domain maps a name (address or descrip-
tor number) to an accessible object (memory segment or
descriptor), an environment in W7 maps a name (iden-
tifier) to its denotation (value or object). The various
object types are parallel in the two frameworks as well
(see Figures 6 and 7):

1. Mapped memory segments correspond to lists and
cells. (Full Scheme also has vector and string data
types, which are better approximations to memory
segments than are lists and cells. A more com-
plete version W7 might support memory segments
directly.)

2. Device and file descriptors correspond to W7 de-
vices.

3. Handles correspond to W7 procedures. Just as a
handle is a domain coupled with an entry point,
a procedure is an environment coupled with exe-
cutable code.



3 Implementation Experience

A variant of the W7 kernel forms the basis of a complete
Scheme implementation called Scheme 48. This section
describes Scheme 48, analyzes it from a security stand-
point, and discusses experience with its use in various
applications in which security is important.

The implementation of Scheme 48 consists of two
parts: a virtual machine that manages memory and ex-
ecutes a byte-code instruction set, and a set of modules
that are executed by the virtual machine. Virtual ma-
chine code could in principle be replaced by real ma-
chine code, but this would require a significant compiler
construction effort, and that is beyond the scope of the
project at this time. The virtual machine approach has
the virtues of robustness, small size, and ease of porta-
bility.

(A thorough discussion of Scheme 48 as a Scheme sys-
tem can be found elsewhere [13].)

3.1

Scheme 48’s security kernel is implemented in part by the
virtual machine and in part by a set of run-time system
modules defined using privileged instructions supplied
by the virtual machine. The VM component includes
instructions such as car, which is secure because the VM
raises an exception if it is applied to anything other than
a pair, and application, which raises an exception when
given a non-procedure. The run-time modules include
the exception system and the byte-code compiler. Both
of these export interfaces whose use is unrestricted, but
they are defined in terms of lower-level operations that
are restricted.

Type safety for instructions such as car and procedure
application rely on an assiduously followed tagging dis-
cipline. All values, both immediate values such as small
integers and access links to objects stored in memory, are
represented as descriptors. A descriptor has a tag that
distinguishes immediate values from links. Arithmetic
operations require immediate-tagged operands and af-
fix immediate tags to results. The non-tag portion of a
descriptor for a link holds the hardware address of the
stored object. A stored object is represented as a con-
tiguous series of memory locations. The first memory
location holds a header specifying the object’s size and
type (procedure, capsule, cell, etc.), while subsequent lo-
cations hold descriptors (which include the links to the
object’s successors in the accessibility network).

The tagging discipline guarantees that object ad-
dresses are never seen by the programmer. Not only does
this promote security, 1t also gives the memory manager
freedom to move objects from one place to another, guar-
anteeing that such relocations will not affect any running
computations.

The security kernel does not provide direct access to
the byte-code interpreter. Instead, new programs must
be given as Scheme programs that are byte-compiled
by eval. The compiler translates the program to a
byte-code instruction stream, and then uses a privileged
make-closure instruction to make a procedure. Use of
the make-closure instruction is restricted for two rea-
sons:

Scheme 48 Security Kernel
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e An agent could defeat security by constructing and
executing code streams containing privileged in-
structions. For example, the closure-env instruc-
tion allows unrestricted access to all the successors
of an arbitrary procedure.

e An agent could execute an object access instruction
with an index specifying a location beyond the end
of the object being accessed. This might fetch a
reference to an object that shouldn’t be seen. (For
performance reasons, some instructions perform no
bounds checking. They rely on the byte-code com-
piler to ensure that indexes are valid.)

Abstract data types (Section 2.3.2) are used heavily
in the Scheme 48 run-time system. They are provided
in the form of a record facility, which is more convenient
and efficient than the theoretically equivalent but more
elegant new-seal would be. In the common case where
a capsule is a tuple (that is, has several fields), only a
single object (a record) is created for both the tuple and
the capsule. Not only is less memory consumed, but field
references require only one indirection instead of two.

The features of Scheme 48’s security kernel beyond
what W7 defines are the following:

e The basic features of standard Scheme [12]: char-
acters, vectors, the full suite of numeric operators,
strings, string/symbol conversion. None of these
has security implications; they belong to the kernel
for the sake of efficiency.

e Exception handling. It is important for the agent
initiating a computation to be able to gain con-
trol when the computation leads to an exceptional
event such as division by zero. A special construct
allows all exceptions or exceptions of certain types
to be intercepted.

e Fluid variables. Every application implicitly passes
an environment that maps unique tokens (called
fluid variables) to cells. A special construct ex-
tends the environment with a new binding. The in-
teresting aspect from a security perspective is that
if the fluid variable (unique token) is protected,
then bindings of the fluid variable will be protected.
Thus if X calls Y calls 7, then it can be the case
that Z can access fluid bindings established by X,
while Y can’t. This contrasts with a similar facility
in Unix (process environments), which has no such
protection.

e Multiple threads of control. A new thread of con-
trol may be started with (spawn thunk). Synchro-
nization mechanisms include locks and condition
variables. Each thread has its own separate excep-
tion context and fluid environment. (Threads are
not really secure; see Section 4.3.1.)

e Immutability. This feature is somewhat of a
frill, but useful. A pair, vector, or string can
be made read-only, as if it had been created by
(quote ...). Immutable objects may be passed
to untrusted procedures without worry that they
might be altered, since an attempted mutation



(set-car!, vector-set!, etc.) will raise an ex-
ception.

Variables and pairs are mutable, as in Scheme.

3.2 Module System

Scheme 48 provides operators for constructing and
querying environments. Environment control is as im-
portant for determining what is in an environment as
it is for advertising what is nof in an environment.
Roughly speaking, an environment that excludes dan-
gerous things can’t be dangerous.

The environments that are manipulated as objects
and passed to the compiler are called top-level environ-
ments or packages. Packages have both static and dy-
namic components. The static component defines infor-
mation important for compilation: syntactic keywords,
type information, and early binding information such as
definitions of in-line procedures. The dynamic compo-
nent of a package determines how variables obtain their
values at run time.

Bindings move between packages via another kind of
environment-like object called a structure. A structure 1s
a particular package’s implementation of a particular in-
terface; and an interface is a set of names, with optional
types attached:

(make-simple-interface names)

— nterface
(make-structure package interface)
—  structure

Dually, a package receives bindings from other packages
via their structures:

(make-package siructures) — package

Borrowing terminology from Standard ML, I'll say that
a package opens the structures from which it receives
bindings.

Here is a simple example. Assume that scheme is
defined to be a structure holding useful bindings such as
define, lambda, and so forth.

(define repository-package
(make-package (list scheme)))
(eval ’(begin
(define *repository* ...)
(define lookup ...)
(define publish!
repository-package)
(define repository-interface
> (lookup publish!))
(define repository
(make-structure repository-package
repository-interface))

)

(define repository-client
(make-package (list scheme repository)))

(T describe the Scheme 48 module system in more de-
tail elsewhere [19].)
3.2.1

As seen in Section 2.2.6, it is useful to be able to de-
termine whether a procedure is safe. In particular, it 1s
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useful to know whether a procedure has access to any
resource that could be used as a communication channel
to the outside world. If it were possible to traverse the
access graph starting from the procedure, it would be
possible to determine the answer to this question. How-
ever, such a traversal cannot be done outside the security
kernel.

In Scheme 48, information necessary to perform cer-
tain safety checks is contained in the network of struc-
tures and packages. This network can be considered a
quotient (summary) of the true access network. A proce-
dure is considered safe when the structure that exports
it 1s safe; a structure is safe if its underlying package
is safe; and a package 1s safe if every structure that it
opens is safe. This definition of “safe” is recursive, so
it can be made relative to a basis set of structures that
are assumed safe. Following is a crude implementation
of such a safety predicate:

(define (safe? struct assumed-safe)
(cond ((memq struct assumed-safe) #t)
((structure? struct)
(every (lambda (o)
(safe? o assumed-safe))

(package-opens
(structure-package struct))))

(else #£)))

This isn’t a precise test, but it has the virtue of being
simple and intuitive. Rather than rely on sophisticated
techniques such as types, effects, verification, or other
kinds of code analysis, it only involves visibility of val-
ues.

The usual Scheme 48 run-time system provides a num-
ber of structures, some of which may be considered safe
for the purpose of guaranteeing the absence of com-
munication channels. The structure implementing the
standard Scheme dialect is not one of these because it
1s so easy to use it to create such channels. A differ-
ent safe-scheme structure is defined that eliminates the
possibility of such channels, as described following:

One source of channels is assignments to top-level
variables. For example:

(define *last-sorted-list* #f)
(define (sort 1)
(set! *last-sorted-list* 1)
(really-sort 1))

We cannot get rid of top-level definitions, so to prevent
this, set! must be disallowed on top-level variables (ex-
cept possibly during initialization). The current solu-
tion is to exclude set! entirely from safe-scheme, since
otherwise the compiler would have to be modified, and
project time constraints didn’t allow this.

Mutations to data structures reachable from top-level
variables also must be prohibited, but now instead of
excluding mutations entirely (as suggested in Section
2.2.6), we exclude top-level variables that hold muta-
ble data structures. This is done by excluding nor-
mal Scheme define and replacing it with a variant that
makes the right assurances:

...) body) is allowed.

o (define (war wvar



e (define war exp) is allowed iff exp evaluates to a
verifiably immutable object.

Verifiably immutable objects include scalars such as
numbers and characters, immutable strings, and im-
mutable pairs, vectors, and capsules that have verifi-
ably immutable components. Note that the category
doesn’t include procedures, since procedures can easily
hide channels.

Of course, safe-scheme also excludes all opera-
tions that access the file system. Tt includes 1/0
routines that take explicit port arguments (such as
(display = port)) but excludes their implicit-port vari-
ants ((display z)).

3.2.2 Static Privileges

The fact that static bindings of syntactic keywords,
macros, and primitive operators are all determined rel-
ative to a package means that any such entity may be
considered a privilege to be granted or not. For exam-
ple, a particular agent (user or subsystem) might be de-
nied access to all operators that have side effects just
by excluding those operators from environments avail-
able to the agent. Scoping of all syntactic and static
entities effectively allows an equation between languages
and modules, with the derivative ideas of safe languages
and modules that are safe because they are written in
safe languages.

Macros are secure in a precise sense: names that a
macro introduces into expanded program text are re-
solved in the environment of the macro’s definition, not
in the environment of its use. For example, a package
might define letrec in terms of set! and then export
letrec without exporting set!. The structure with
letrec and its clients can be considered applicative (or
safe) even though the process of compiling it involves
source to source rewrites containing imperative opera-
tors.

(Further explanation of the problem of lexically
scoped macros and the algorithm used by Scheme 48
to implement them can be found elsewhere [6].)

3.3 Deployed Configurations

The Scheme 48 configurations described here are the
more interesting ones with respect to protection prob-
lems. Other configurations include the single-user devel-
opment environment (by far the most evolved), a mul-
tiprocessor version written at MIT by Bob Brown, and
a distributed version developed by Richard Kelsey and
others at NEC.

3.3.1 Mobile Robot System

Scheme 48 is the operating system running on four
mobile robots at the Cornell Computer Science Robotics
and Vision Lab (CSRVL). The main on-board computer
system is a 16 MHz MC68000 with 500K RAM and 250K
EPROM.

User code is isolated from operating system internals
by Scheme’s type and bounds checking; this means that
there’s nothing that a user program can do to harm the
robot. This is important because the robots are pro-
grammed by undergraduates taking the robotics course,
many of whom are relatively novice programmers.
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The Scheme 48 virtual machine running on the robot
communicates with a development environment running
in either Scheme 48 or Common Lisp on a worksta-
tion. The byte-code compiler runs on the workstation
and sends byte codes to be executed on the robot. This
“teledebugging” link offloads to the workstation all de-
bugging and programming environment support, includ-
ing the byte-code compiler. This division of labor frees
up precious memory on the robot. The tether, which
can be a physical encumbrance, can be detached with-
out affecting the virtual machine, and reattached at any
time for debugging or downloading.

(A more detailed description of the mobile robot sys-
tem can be found elsewhere [23].)

3.3.2 Multi-User System

The Scheme 48 development environment can be con-
figured to be accessed over the Internet by multiple users,
with each user given a separate initial evaluation en-
vironment and thread of control. This configuration,
developed by Franklyn Turbak and Dan Winship and
called Museme, is a multi-user simulation environment

(MUSE) similar to LambdaMOO [8].

3.3.3 WWW Evaluation Server

Scheme 48 can be configured to be run by a World-
Wide Web server (httpd) in response to an appropriate
request arriving over the Internet. This service aims to
promote Scheme by giving the general network public a
chance to experiment with it easily. A request contains
a Scheme program and a Scheme expression, which ex-
ecute on the server. The server replies with the printed
representation of the result of evaluating the expression.
The environment in which the programs and expressions
run has been explicitly reduced from the default envi-
ronment in order to limit the capabilities of programs,
which, because they come from anyone on the Internet,
shouldn’t be trusted.

3.4 Security in Standard Scheme

Scheme 48 implements the Scheme standard [12]. In
order to maintain security, however, users are given dif-
ferent instantiations of some of the built-in procedures,
much as a conventional time-sharing system would pro-
vides users with different address spaces. If shared be-
tween agents, the following procedures would spell trou-
ble for safe cooperation:

e Any built-in procedure that opens a file, such as
open-output-file. A buggy or malevolent pro-
gram could overwrite important files or read sensi-
tive information from files.

e Anything that binds or accesses the current input
and output ports, such as display with no explicit
port argument. Use of such procedures would al-
low “spoofing” — misleading output that could be
mistaken for valid messages coming from legitimate
source such as an error handler or command pro-
Ccessor.

e load, which not only accesses the file system, but
also reads and writes a “current” interaction envi-
ronment.



Multi-agent Scheme 48 systems need to ensure non-
conflicting use of the external file system (assuming there
is an external file system). Each agent has her own in-
stantiations of file-opening procedures; the private ver-
sions implement file system access specific to that agent.

Because file opening procedures have access to an
agent’s files, a utility that opens files must be given
not file names, but rather access to the files in the
form of procedures, ports, or some appropriate data ab-
straction. This transition from name-oriented to value-
oriented protection is exactly what is necessary in order
to implement the principle of least privilege [26], which is
also behind the analogous shift from Lisp 1.5’s dynamic
scoping to Scheme’s lexical scoping.

As with files, one agent’s current-output-port pro-
cedure is not allowed to access an output port that mat-
ters to another agent. Fach agent has his own version
of current-output-port, display, write-char, read,
ete.

The call-with-current-continuation procedure
raises a fundamental question: is the ability to invoke
one’s continuation multiple times a privilege that should
be available to all agents? The answer isn’t obvious; see
Section 4.3.2.

The following features accepted by the Scheme report
authors for inclusion in a Revised® report [20] are also
troubling:

e (interaction-environment). Given eval, this

has the same problem as load.

e dynamic-wind. This operator is supposed to es-
tablish a dynamic context such that all entries into
and exits from the context are guarded by specified
actions. A mischievous program could initiate long-
running or continuation-invoking computations in
an unwind action, and/or set up an arbitrarily large
number of nested dynamic-winds, perhaps defeat-
ing time-sharing or mechanisms established for re-
gaining control after an error or abort request.

4 Conclusion

The basic premise of this work 1s that program exchange
and interaction are powerful modes of cooperation, and
should be encouraged by a computational infrastructure
that makes them as risk-free as possible. Program ex-
change and interaction are becoming easier and more
common, thanks to advances in hardware infrastructure
(increasing numbers of computers and growing network
connectivity), but they are hindered because most com-
puter systems provide little protection against the dan-
ger that might be inflicted by unknown programs.
The techniques proposed here to attain safety are:

1. Employ a security kernel with a simple but power-
ful semantics that allows fine-grained control over
privileges.

2. Grant an invoked program only the privileges it
needs to do its job. Rights to secondary storage
and I/0 devices shouldn’t be implicitly inherited
from the invoking agents’ privilege set.

3. Certify that the program has passed a reliable
safety test.

4. Label or “seal” objects so that they can be authen-
ticated later.

None of these ideas is particularly new. Some can
be derived from Saltzer and Schroeder’s 1975 paper on
protection in computer systems [26], which lays down
desiderata for secure systems. (1) is their principle of
economy of mechanism, (2) is the principle of least priv-
ilege, and (4) is the principle of separation of privilege.

Rather, the main novelty in the present work is the
demonstration that a spare security kernel, derived from
first principles and spanning the operating system / pro-
gramming language gulf, can be simultaneously secure
and practical.

4.1 Previous Work
4.1.1 Actors

The connection between lambda-calculus and message
passing or “actor” semantics is well known [29]. Applica-
tion in lambda-calculus corresponds to message passing
in actor systems, with argument sequences playing the
role of messages.

The actor languages [2] and Scheme were both devel-
oped as programming language frameworks, with little
explicit attention to security concerns or cooperation be-
tween mutually suspicious agents. Security is of course
implicit in the fact that an actor (procedure) can only be
sent a message, not inspected, and that on a transfer of
control only the argument sequence is transmitted, not
any other part of the caller’s environment.

There is no provision for authentication (actor recog-
nition or abstract data types) either in the actor lan-
guages or in Scheme.

4.1.2 MUSEs

A “multi-user simulation environment” (MUSE, also
MUD (multi-user dungeon) or MOO (MUD object-
oriented)) simulates a world with a number of places
(rooms) and inhabited by users (players or characters).
A MUSE typically runs on a network and accepts con-
nections from many users at once. Users move from place
to place, communicate with each other, and manipulate
simulated physical objects. Because objects may have
value to users and users and their programs may attempt
actions that can harm objects, and because of their gen-
erally open door policy, security is an important issue in
MUSE design and administration.

Programming languages for MUSEs (in particular,
that for LambdaMOQO [8]) have the feature that a caller’s
privileges aren’t implicitly passed on to a called pro-
gram. This i1s certainly an improvement over the be-
havior of mainstream operating systems, which give all
of the caller’s privileges to the callee. The correct behav-
ior is dictated by the demands of the environment: users
encounter strange objects and do things to them; this
causes invocation of programs belonging to the objects
(or rather their creators).

MUSEs are generally based on ad hoc programming
languages with many peculiar features that lead to secu-
rity problems [3], inflexibility, or both. An overall lack



of security in MUSEs is betrayed by the fact that it is a
special privilege to be a “programmer.” New members
of a MUSE must convince an administrator that they are
worthy before they are allowed to write new programs.

4.1.3 OQOooz

Strandh’s Oooz system [30] resembles Scheme 48 in
aspiring to be a simple, multi-user, Scheme-based pro-
gramming environment and operating system. The sim-
ilarity ends there. Qooz extends Scheme with a hier-
archical, globally accessible namespace and an object-
oriented programming framework. The global names-
pace is analogous to a conventional file system, with ac-
cess controlled by access control lists attached to objects.
There is no obvious way in Oooz to implement abstract
data types or authentication.

4.2 Discussion
4.2.1 Schroeder’s Thesis

Schroeder studied the problem of cooperation between
mutually suspicious principals in his 1972 dissertation
[27]. He describes an extension to the Multics operating
system in which caller and callee in a cross-domain call
may protect resources from one another.

He was aware of the problem of protecting parame-
ters from unauthorized transmission, but had nothing in
particular to say about it:

In some cases it may be desirable to guaran-
tee that a protected subsystem invoked by an-
other cannot remember and later divulge the
values of input parameters. This problem ap-
pears to be very difficult to solve in a purely
technical way and will not be considered in

this thesis. ([27], page 16)

4.2.2 Operating System Security

Status quo operating systems (VMS, Unix, DOS Win-
dows, etc.) don’t effectively address safe invocation prob-
lems. When a program is invoked, it inherits all of the
privileges of the invoker. The assumption is that every
program that a user runs is absolutely trustworthy.

Safe invocation could be implemented in some ver-
sions of Unix, but it would require some heavy machin-
ery. One way would be to have a privileged program that
invokes a given program with the privileges of a specially
unprivileged user. Such a program is not standard and
cannot be created by an ordinary user. A different imple-
mentation would be to have a network server dedicated
to the purpose, but the result would be strangely limited
and awkward to use (file descriptors couldn’t be passed,
interrupts might act strangely, etc.).

Unix does have a facility whereby a program’s owner
can mark the program in such a way that when the
program is invoked, it runs with the program’s owner’s
privileges instead of with the invoker’s (except for argu-
ments). This sounds very similar to safe invocation of
procedures, until one reads the fine print, which points
out that such a program can obtain all of the invoker’s
privileges simply by doing a setuid system call.

Most common operating systems distinguish persis-
tent objects (files) from volatile objects (in Unix, file
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descriptors). An open system call coerces a persistent
object to a volatile one. Persistent objects have global
names, while volatile objects have short numeric indexes
that are interpreted locally to a running program. This
“scoping” makes them resemble a procedure’s successor
links. Volatile objects can be passed from one program
(process) to another that it invokes, but not in any other
way.

Many operating system designs support secure pro-
gram invocation in ways similar to what I describe, but
these designs aren’t deployed.

It is remarkable that we get by without secure cooper-
ation. We do so only because people who use programs
place such a high level of trust in the people who write
those programs. The basic reason for this high level of
trust is that computer systems are 1solated from one an-
other. Without communication, there can be no theft,
since stolen goods must be communicated back to the
thief. Any harm that arises is either vandalism or acci-
dent. Vandalism (e.g. the current epidemic of computer
viruses) sophisticated enough to be untraceable is diffi-
cult to carry off and has little payoff for the perpetrator,
while really harmful accidents (as when a commercial
software product accidentally erases a disk) are merci-
fully rare.

4.3 Future Work

This section points out various shortcomings of W7 and
Scheme 48, and attempts to suggest ways of fixing them.
One of the dreams driving this work is to extend Scheme
48 to cover all operating system services, including de-
vice drivers. At that point it should be possible to dis-
pense with the host operating system and run Scheme
48 stand-alone on a workstation, as it does on the mobile
robots.

4.3.1 Preemption

A means to preempt a running process is necessary
in any operating system. An agent, in invoking an un-
known object, runs the risk that the invocation will be
nonterminating; therefore the agent must have some way
to request that the invocation be halted on some condi-
tion, such as receipt of special input from outside the
processor (an abort key or button) or the passage of a
predetermined amount of time.

Preemption is also desirable in that it is necessary
and, together with support for first-class continuations
or coroutines, sufficient for constructing a scheduler that
simulates multiple hardware processing elements in soft-
ware. One particularly elegant design for a timed pre-
emption facility is a mechanism known as engines, of
which Dybvig and Hieb have published a general imple-
mentation [11, 9]. Engines abstract over timed preemp-
tion by providing a way to run a computation for a spec-
ified amount of time. They are sufficient to construct a
user-mode task scheduler.

Dybvig and Hieb’s engine implementation has two
problems for a system in which caller and callee are mu-
tually suspicious:

1. Response time is sensitive to engine nesting depth;
thus a malevolent callee could pile up a very deeply



nested sequence of engines, making response to an
outer engine (which should have priority) arbitrar-
ily sluggish.

2. No design is given specifying how engines should
interact with waits and interrupts associated with
concurrent activities (such as I/0).

If these problems can be solved, and I believe they can,
then engines should serve well as part of W7.

(Scheme 48 supports a multitasking scheduler via a
threads system, but threads are inferior to engines in
several ways. Threads are less secure than engines, since
one’s share of the processor is proportional to how many
threads you have; if you want to take over a processor,
you need only create lots of threads. Scheme 48’s threads
give no reliable way to monitor the execution time of a
supervised untrusted computation, since the computa-
tion can spawn new threads. And there is no way to
limit or even monitor the amount of processor time allo-
cated to a thread, since the threads system doesn’t keep
track of processor time used per thread.)

4.3.2 Continuations

First-class continuations are troublesome when caller
and callee are mutually untrusting. With Scheme’s
call-with-current-continuation operator, the callee
can obtain the continuation and invoke it twice. An un-
wary caller who has continuation code that performs a
side effect is then vulnerable to having the side effect
happen twice, which may be unexpected and undesired.
Must all code that invokes untrusted objects be prepared
for this possibility? To deal with the contingency re-
quires code similar to the following:

(let ((returned? (new-cell)))
(cell-set! returned? #f)
(let ((result (untrusted arg ..
(if (cell-ref returned?)
(error "I didn’t expect this")
(begin (cell-set! returned? #t)
(side-effect-to-be-done-
only-once!)

)

ce )

An unwillingly retained continuation is also undesir-
able from a resource allocation standpoint, since the con-
tinuation’s creator might be penalized for tying down
resources (space) consumed by the continuation.

4.3.3 Machine Programs

Supporting execution of compiler-generated machine
code programs is important for two reasons: it would
vastly improve performance relative to Scheme 48’s cur-
rent byte-code interpreter; and, by using existing com-
pilers, Scheme 48 could be made to run useful programs
written in a variety of languages (such as Pascal and C).

The main difficulty in supporting machine programs
is ensuring that the kernel’s security policy is followed;
the machine program must not obtain access to any re-
sources that it shouldn’t have access to. This could very
easily happen, since machine programs can construct ar-
bitrary addresses and attempt to dereference them, or
even construct arbitrary machine code sequences and
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jump to them. Any object that uses memory in the
machine program’s address space, or that is accessible
via any sequence of machine instructions, is at risk.

There are several approaches to eliminating the risks
associated with machine programs:

e Limitation: switch into a limited hardware-
provided “user mode” when invoking the machine
program. This is the approach used by most oper-
ating systems. In user mode, memory not belong-
ing to the program is protected from access, and
no hardware I/0 is permitted. Some instructions,
such as those that alter memory protection regis-
ters, are disabled. A protected environment is thus
established, and all instructions are either permit-
ted or actively prohibited.

e Verification: a trusted program scans the machine
program to make sure that it doesn’t do anything
that it shouldn’t. Unverified programs are rejected.

e Sandboxing: similar to verification, except that ex-
tra code is inserted around all troublesome instruc-
tions to dynamically ensure that security policy is
respected [33]. Some programs may still be re-
jected, but fewer are than would be with verifica-
tion.

e Trusted compilation: a program generated by a
compiler may respect security policy by construc-
tion; if we trust the compiler, we will trust its out-
put.

The type and array bounds safety of many compilers,
such as many Scheme and Pascal compilers, are suffi-
cient to guarantee that the kernel’s security policy is
respected. Such compilers may be used without change.

Limitation may be the only option if one has little in-
fluence over the compiler and program being compiled.
For example, most C programs use pointers in ways that
are difficult to guarantee safe by verification or sand-
boxing, and few C compilers generate object code that
checks validity of pointers. Limitation is to be avoided
because transfers into and out of user mode are expen-
sive in many hardware architectures. On the other hand,
for programs that do few control transfers to other pro-
grams, use of memory protection hardware may be the
most efficient way to detect invalid pointers and array
indexes (that is, to implement kernel security policy).

An important part of the implementation of machine
program support is the interface between machine pro-
grams and the kernel. That is, how does a machine
program perform a kernel operation, such as creating
or invoking a procedure, and how are the operands —
generally object references — specified? This will be an-
swered differently depending on the extent to which the
machine program can be trusted.

When the machine program is trusted, object refer-
ences can be represented as pointers to data structures
representing objects, and kernel operations can be im-
plemented either as subroutine calls (e.g. object creation
can be accomplished by a call to an allocation routine)
or as code sequences occurring directly in the program
(e.g. invocation of a W7 procedure might be compiled
similarly to local procedure call).



When the machine program is untrusted, transfers of
control outside of the program must be generally accom-
plished by a trap or system call. (A few hardware ar-
chitectures support general calls across protection do-
mains). Object references must be amenable to valida-
tion on use, since the program may present an arbitrary
bit pattern as a putative object reference. The method
used by most operating systems in similar circumstances
1s to associate, with each activation of an untrusted ma-
chine program, a table mapping small integer indexes to
objects. (In Unix, the indexes are known as “file de-
scriptors.”) The program presents an index, which the
kernel interprets as specifying the object at that position
in the table. Validation consists of a simple range check
to determine that the index is within the table.

Alternatively, objects may be given unique names
(perhaps their addresses in memory), and these names
can be used by untrusted machine programs. When the
program presents a name in a kernel operation, the ker-
nel validates the name by determining whether it occurs
in an object table specific to the program’s activation
(as above). This approach is similar to the “capability-
based” approach to protection [15]. For the W7 kernel,
there is little reason to prefer this over the small-index
approach, since table searches and unique name mainte-
nance are likely to be complicated and inefficient relative
to use of indexes, which can be determined when a pro-
gram 1s compiled or installed.

4.3.4 Reflection

Reflection is reasoning about self [28]. In a computing
system, the concept of reflection comprehends examin-
ing the internal structure of objects and continuations
for purposes of debugging, analysis, or optimization. Re-
flection interacts with security issues in ways that to my
knowledge have not been researched, much less resolved.

For example, Scheme 48’s debugger has access to spe-
cial reflective operators that break all protection bound-
aries; it can examine the internals of procedures, records,
and continuations. This is very useful, but unfortunately
the debugger is egregiously insecure, since it allows any
user access to any value transitively accessible from an
accessible object. It 1s easy enough to achieve security
in Scheme 48 by disabling the debugger, but a better
solution would be for the kernel to provide a simple, safe
way to examine continuations and procedures, so that
an unprivileged debugger could be built. I believe that
this can be done in such a way that a user is able to
see what she ought to be entitled to see, but nothing
else. In particular, a user should be able to see any of
the information that exists in object representations, as
long as that information might have been available to
her had she included extra debugging hooks in her own
programs.

4.3.5 Other Issues

Persistence. Some support is needed for keeping ob-
jects in secondary storage efficiently, and there should
be some guarantees about which objects will necessarily
survive crashes. Currently Scheme 48 relies on an ex-
ternal file system to store information persistently; this
is not integrated with the internal protection system be-
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yond the fact that access to the file system as a whole
can be limited.

Quotas. Limits should be imposed on the amount of
memory agents should be allowed to use. Without this,
a malevolent or buggy program can consume all avail-
able space, making the system unuseable. Memory lim-
itation is more difficult than execution time limitation;
the allowed space decreases as memory is allocated, but
must increase as memory is reclaimed by garbage col-
lection. With each object, then, must be associated an
“account” to be credited when the object is reclaimed.
This could be done either by putting an extra field in
each object indicating the account, or by maintaining
distinct regions of memory for different accounts. The
latter is reminiscent of multi-stage garbage collection |,
and could perhaps be unified with it.

Accountability. When something goes wrong, it’s nice
to know who is responsible, if not exactly how it went
wrong. But responsibility is difficult to assign in cooper-
ative enterprises. In particular, if something goes wrong
when one agent invokes another agent’s program, who is
responsible? If a server receives a request from a client, 1s
it the server or the client who is responsible for ensuring
that the request is a reasonable and safe one?

Revocation. There is no way in W7 or Scheme 48 to
revoke access to an object. Objects simulating revokable
links could be defined using cells, but it’s not obvious
that this would be sufficient. One would have to decide
when giving out access to an object. The times when
one would want to revoke a link might be precisely the
times when one didn’t anticipate that one would want
to.

Distribution. A network of encapsulated objects lends
itself to distribution over a network of computer systems.
One major component of a distributed operating system
that is missing from W7/Scheme 48 is a remote invoca-
tion mechanism (classically called RPC, or remote proce-
dure call). Such a mechanism should have the following
properties:

e Objects can be passed as arguments and returned
as results. This requires automatic creation of
“stub” or delegate objects that forward calls over
the network.

e Calls are properly tail recursive: in a call from node
A tonode B, B can make a call to node C specifying
that the result is to be sent to A, not B.

e Exceptions are distributed transparently, in that
an exception on one machine can find the correct
exception handler even if it’s on another machine.

Alan Bawden has described and implemented something
relevant in his PhD thesis [4].

4.4 Contributions

The success of Scheme 48 shows that a spare security
kernel can provide flexible and solid security without be-
coming difficult to use or to program.

Is W7 simpler than all other security kernels? Much
of the complexity in operating system kernels arises from
performance concerns that W7 has yet to address, so a
rational comparison is difficult. It 1s difficult to see how



it could be smaller, since all of the services it provides are
(as is shown) necessary: program (object) creation and
invocation; object marking and authentication; primitive
access to I/O devices.

There are some minimalists in the Scheme commu-
nity who believe that procedures, perhaps together with
some primitive data types such as symbols and cells,
serve as a basis for the construction of all other useful
programming constructs. I hope that the discussion of
authentication and abstract data types (Section 2.3.3)
will be seen to refute this position and to show the need
for a built-in authentication mechanism in minimal pro-
gramming languages.

The ease with which Trojan horses and viruses may
infiltrate computer systems is appalling, as is the extent
to which users must blindly trust software provided by
vendors. I hope I have contributed a bit to the currently
unpopular cause of principled solutions to security prob-
lems such as these.

I hope the document helps to break down the arti-
ficial distinction between programming languages and
operating systems. Progress in both of these areas is
hindered by a failure to recognize that the concerns of
both are fundamentally the same. What is needed is op-
erating systems that provide services that are useful to
languages, and languages that give convenient access to
operating system services.
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