MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Artificial Intelligence Project HAC=-H=- 159
Memo No. 138 March 1968

& Program for Drilling Students in Freshman

Calculus Integration Problems

Joal Mosas

Abstract

The SARGE program is a prototype of s program which is intended to be
usad as an adjunct to regular classroom work in freshmam calculus. TUsing
SARCE, students can type their step-by-step solution to an indefinite
integration problem, and can have the correctness of their solutions deter-
mined by the svstem. The syntax for these steps comes quite close to normsl
mathematical notation, given the limitations of typewriter input. The
method of solution is pretty much unrestricted as long as no mistakes are
made along the way. If a mistake is made, SARGE will catch it and yield an
error meggage. The student may modify the ifncorrect step, or he may ask
the program for advice on how the mistake arose by Evping "help". At present
the program iz wesk in generating explanations for mistakes. BSometimes the
"help" mechanism will just yleld a response which will indicate the way in
which the erroneous step can be corrected. In order to improve the explana-
tion mechanism one would need a sophisticated analysis of students' solutions
to homework or quiz problems. Experience with the behavior of students with
SARGE, which is nil at present, should alsoc help in accomplishing this goal.

SARCE is available as SARCE SAVED in T302 2517.

Intreduction

fur aim in this project was to use the programs available at M.1.T.
in the area of algebraic menipulation im order to produce & sophisticated
teaching program for freshmsn calculus studemts. As a matter of fact, we
were not interested in teaching symbolic or indefinite integratiom as such,
gince the normal courges performed this function quite well. We were
interested in & program which could be used to supplement regular imstruc-
tion with supervised practice sessions. Hormally, human teaching assistamts
would be used for this purpose. Thus our goal cam be said to be a simulation
of the interacticon of a student and a teaching assistant. In order to
capture certain aspects of such an interaction two major design considerations
were imposed.

1) Freshman calculus students are not computer programmers. Therefore
the communication with the téaching system should be as patural as possible.

2) There should be no impediment to unusual solutions of a problem.
Such upusual solutions include ingeniocus soluticons as well as selutions
with superflucus or erronecus steps. A student must be capable of giving
the complete answer at any step. This capability will guarantee that gifted
students who canm solve the problem in their heads will not be forced te give
4 full step-by-step solution of a problem. Likewise a student who makes a
false qttempt* at solving a problem must be allowed to backtrack and attempt

anather path to a solutlon.

*
We wish to distinguish betyeen false attempts and incorrect attempts. In

x; dx ,

the substitution v = x is bad even though the result of this substitution, 1.e.,
L =275
Ig:-r <y
1s given correctly. In the same problem the substitution y = xE iz incortect
when it results in

1
If‘y dy.

The SARGE program meetbs Che abowve requirements faivly well. Below we
shall describe the manner in which one commnicabes a solution ta SARGE.
We will also indicate how the svstem opetrates. Later we shall criticize

the present verslen of the syvstem and present suggestions for LEs improvement.

Communicating with SARGE

We will present the syntax of the language that the atudent must uze to
communicate a soclution to SARGE through an interaction between am imaginary
etudent and the program {(see figure l). Let us suppose that the problem
te be integrated ia

Jee + 1) &= + 2) dux,
This problem would be typed by SARGE as follows:
0 PROBLEM INT (X + 1) (X + 2) DX
The above line is representative of the statements in SARGE's language. all
statementa In the lsnguage have the fnlinwing form:
ling-number command {eommand argument) {expresalon)
(The latter Cwo components of a statement Eave been parenthesized to indicate
that_they need pot be present Im each statememt.)

The first component of anm Inmput lime I3 an unsigned integer which is
caken as a linme number. Line numbers are chosen by the student, except
that the problem is always presented as line 0. Line numbers should be
distinct, and are used to identify steps in a soclutbion.

Commande are used to indicate how the expression arose in the scolutico
process. The current set of commands is PROBLEM, SUBBT, TRAMSF, AHS,
PARTOF, and RETUENTO. The PROBELEM command is used only in defining 2 new
problem, and may not be used latér on in the sclution. The PROBLEM conmand

has no command argument. Thus the next component of the line is taken Lo

be an expression. Line 0 indicates some interesting features of the
expression syntax. For example, concatenation implies multiplication except
when numbers are involved. Thia is the standard mathematical convention,
and it forces the convention that all wvariables are single characters.
Furthermore, an attempt waa made to keep the wsual ayntax of the indefinite
integral. Thua

I £{x) dx becomes imt £{x) dx.

In line 1 the command used ils TRANSF.

1 tranaf int %52 + Ix +2 dx
This command ia used when the expression is derived from the previows line
by an equivalence preserving transformation. Line | is derived from line O
by am Exﬁanaiun. Mote that no juatification need be given for the
equivalence.

In line 1 we note that the dollar slgn signlifies expomentiation. The
convention regarding the dollar sign is that if the exponent or base sre
single syntactic units (unsigned numbers or alphabetic characters) then no
parentheses are required. If more complex bases or exponents are used
{e:g:, x+1), then parentheses must be used. This commonly-used convention
applies also to the slash which signifies division.

The first statement which has the line number 2 is a transformation
which involves certain identities regarding the integration operator.

2 transf iInt x52dx 4+ int 2% dx + Lot 2dx

SARGE is aware of these lipearity ldentitles and moreover recognizes

gn error in transcriptiom. This is moted by SARGE's next responsa.
AN ERROR OCCURRED AFTER LINE 1 WAS AWALYZED
An exsmination of figure 1 will indicate that BARGE's response up to

now was a number which equaled the line number of the previocus statement.

-5

This is called the s5low mode of interaction. In the fast mode, SARGE will
make no responses unless an error oceurs. The normal mode £3 slow. A change
in mode can be made by executing SLOW NIL or FAST WIL prior to workimg on a
problem. FAST NIL will cause the mode to change to fast.
After indicating that an error occurred the svatem anbticipates a new
set of key words. The kevword "help' which i1z used In this case causes
SARGE to examine & list which contsins preobable explenations for the error.
Clearly the help mechanism should be wsed only as & lagt rescrt by the
student. Frequently SARGE has no reassonsble ides to transmit to the user,
in which case the response is
SORRY, MO IDEA WHY ERROR OQLCCURRED.
In the present situvation it can only offer the student a means for correcting
his last step. It therefore types
THE DIFFERENCE BETWEENM THE EXPECTED EXPRESSTONM AWD YOURS IS
X
Other keywords which are recognized following an error are 'guit' and
'eval'. The quit mechanism allows the user to stop working on the current
problem. The eval mechanism, used during the debugging of SARGE, allows one to
execute any LISP function available in the system. Any line which follows
an error and which does not begin with these keywords (s ignored.
The second occurrence of line 2 indicates that the student
2 tranaf int x5 2dx + int ¥dx + int 2dx
has accepted the advice offerred by SARGE. In line 3 the user is preparing to tackle
a subproblem of line 2. He identifies the part of the expressicn he wants
to work on next with the PARTOF commend. The commend argument here is a line

number .

3 partof 2 int x52dx

In line & the user is sttempting to mske & substitution on the

subproblem selected im the previous line. The command
& subst y=x52, int y dy

argument iz an equation relating the new variable to the old one. This
operation is reatricted to having only one occurrence of the ney variable
{('y' in this case). For syntactlc purposes a comma must follow this equation
and precede the expression of the integral. As it turns out the result of
the substitution is erromeous. SARGE now prints ita standard error comment.
A call for help at this point vields a very appropriate reply.

IN YOUR SUBSTITUTION ¥YOU FORGOT TO DIVIDE
BY THE DERIVATIVE OF THE TRANS FORMATION

The second line 4 shows a correction

& sub, y=x32, int 0.5 ¥30.5 dy
of this error. We note a new syntactie device -- a comma following one or
more of the left-most characters in a command can be used to sbbreviate the
command name.

Line 5 was included here as an example of the RETURNTO mechanism. This
mechaniam allows a student who is frustrated in his current attempt at a
golution to continue from a previous line.

Dur student iz determined to solve this problem in lime 3 (which
admitiedly is a Erivial problem) by a substituticon. This analysis explains
che first line &.

& subst y=x8 (1/2), int ¥?
The gquestion-mark is a CTSS device for deleting the input line. Actually
an empty line 1s transmitted to SARGE and is ignored. In some situations a
atudent may wish to stop processing of a solution in a more drastic fashion.

This would cceur if the student typed a number of linea in fast mode and

recognized an error in them before the system had a chance to snalyze the
golution. #An lnterrupt from the console would cause an error, and the message
from SARGE will indicate the extent to which it analyzed the solution.
The second line & shows that our poor student has finally seen the
light and recognized the solution of the subproblem.
6 ans 3 x=§3/3
The ANS command has as its command argument the line number of the subproblem
whose integral appears as the expression.
We are now approaching the end of the interaction. In line 7 we go
back to line 2 to pick wp another subproblem.
) partef 2 3 int = dx
Line & contains the integral of that subproblem.
;) ans 7 342 =§2
Line 9 claimg to be the solution to the original problem (lime), which it
is indeed. Note that "line(n)' causes the expression of line n to be sub-
gtituted in its position in the expression.
We glve in figures 2 amd 3 two further examples of interactions with
SARGE. No new linguistic featuree are introduced except for the use of

triponometric functiens in the cbvicus manner.

How does SARGE work?

From & certain peoint of view the SARGE program is quite trivial. It took
us only two weeks to get most of the system running and in partially debugged
shape. However the size of the program is quite large {(sbout 7000 compiled
ingtructions and an equivalent of 3000 fnterpreted ones inm the usual 32K
LISF 1.5 system on CTIS55). As we indicated earlier we intended to rely on
the large store of available LISP programs in the area of algebraic
manipulation. The most important of these programs, for Our purpOses, was
William Martin's equivalence matching routines (see 1, Chapter 4). This
program determines whether two expressions are equivalent by a very clever use
of hash coding. Martin's program is deadly in recognizing equivalence of
rational functions or rational functlon of trigonometric functlions. For
example, this program allows SARGE to recognize the equivalence of 1/2 sin(ix)
and sin(x) cos(x)in figure 2. This routine is currently weak Iin recognizing
equivalence of expressions involving square-roocts. One could, however, design
gpecial routines which would recognize such situations and overcome them in
many Instances. Should the matching routine fail to recognize an equivalence,
then SARGE would claim that an error was made when, in fact, none was.
Currently there exists no machinery which allows the user te argue agsinat
the decisions of SARGE. Though errors of this nature occur very rarely, it
would be useful to give the user the capability of overcoming the declsions
of the syatem.

Another one of Martin's programs is uvsed for parsing the input expression
inte prefix notation. The input line is read, character by character, by one
of our programs which transforms the expression somewhat before giving it to
Martin's parsing routine (e.g., special attention must be paid to the integral
sign syncax). The result of the parse of

int Zx+l dx

is

(integral {(plus f{times 2 =) 1) %).
If the expression is a sum 0f integrals thenm it Is transformed inte an integral
of a sum. Hence line 2 of figure 1 i3 atored internally exactly as line 1 is.
This transformation simplifies the coding. It should be noted that the system
currently requires that an expression reduce either to a simple integral cor to
an expression involving no integrals. Hence Integration-by-parts is an illegal
trans fermation. The changes necessary to overcome this restriction can he
easily made.

It should be clear that, in addition to the routines mentioned above, we
require a symbolic differentiation program {used, for example, in dgt:rmining
the correctnass of a proposed answer), a simplification program {an important
compenent of the substitution checking mechaniam), and a "solve" pEOgEAm
(alse needed in substitutions). These routines were stolen from our work on
SIN(2), the infamous symbolic integrator. For the operation of these routines
we required the SCHATCHEN pattetrn matching program. The SCHATCHEN language
allows one to express concepts like "a quadraticin x" quite concisely. We
have not made much use of SCHATCHEN in the current SARCE svstem, although we
expact that an improved werslon will find its presence gquite useful,

The main routine in SARGE,; also called BARCE, 1s a falely straight-
forward interpreter of the input lines. Whenever an error occurs & chechk ia
made to determine whether any rulea exist about how to treat the ioput line.
If rules exist and the input line fits the expected error condition, & note
is made in a location called 'help'. Otherwise "help' is unchanged.

The main program is executed interpretively during the operation of the
system because there 1s no space available in which to compile it amd becauves

it changes so drastically. The three interactiona described inm figures 1 = 3

each require about twenty seconds of execution time and a similar amount of
swapping time. Hence the answer to the question posed in the beginning of
this section is -- SARGE works slowly. It is likely that a three=fold
improvement in speed could be had if the entire system were compiled.

There are, at present, two modes in which a problem is proposed to the
user. In the slave mode the program proposes cne of a get of huilt=-in
problems. This mode is activated by typing 'SLAVE NIL'. 1In the master mode,
the user decides the problem on which he wants to work. This mode is activated

by typing "MASTER NIL'. 1In either case, control reverts to LISP following an

interactiomn.

Critique and Puture Directions

Below we shall consider some criticisms of the present SARGE system.

L} The syntax of SARGE is cne dimensicnal. It should be two dimensional.
The uze of a typewriter as the input medium hinders a natural interaction with
the computer. A RAND Tablet or some similar device is clearly called for.
Programs which parse mathematical expressions written on a BEAND Tablet have
been desigmed by Andersom (3) and Martim (4)}. BSuch preograms should be
operational soom. Howewver, there are some difficulties with the use of a
BAMD Tablet for this applicatiom. The typewriter input forces on the user a
line=by=line format. Given the freedom possible with a RAND Tablet, the user
iz likely to generste much input which does not conform to SARGE's syntax
{(e.g., side calculations for the determination of derivatives, doodles, etc.).
Thie will make the paraing problem & good deal more complicated. Furthermore
a user staticon which includes a scope and a BAND Tablet is a good
deal more ewxpensive and consumes more computer time than a station which
gimply has a typewriter console.

2) The system is too inefficient for practical use by a large body of
students. Thias is principally due to the scavenger approach we adopted in
designing the system. A specially designed version should run substantially
fastcer.

3} The error diagnosing capabllity of the systém is not very powarful.
What appears to be necessary here is a sophisticated analvsis of the mistakes
that students frequently make in integration problems. Such research could
procesd in several atagea. At one stage one might determine & set of commonly
made errors (such as the error in substitution of Eigures 1 and 3}. These
errors would be known to the program and it would determine when such errors
account for the input expresaslon. In & second step, one would analyege the

interactions astudenta have with such & program. This analysis could be used

to improve the disgnostic capability. Finally one would want the program to
build models of the behavior of each student so that the problemg which are
posed and the disgnosis givenm by the system becomes individualized. These
are nop=trivial objectives which fasce many difficulties. One cbvious source
of difficulty is the intelligent student who will try to "program' the system
in order to see what it will do under certsin situstions. The system should
bae clever enough to recognize when it is being 'hacked'.

The current error commeénts are not at all subtle. It would be
preferable if one could proceed in stages by using hints a2t first. If & scripc
were avallable to the program, then auch himta eould be built inte the
gaeript for each problem. We have tried to avolid the script-based spproach
ag much 23 possible. We have depended on the knowledge that the program has
of the material to help it in diagnoses. BSuch knowledge iz wsuwslly lackimg in
script-based teaching systems. However, one wavy of extending the present
gyatem would involve the use of scripts. For exsmple, one could include in
a script several methods of solution and several common mistakes made om
each particular problem. Im crdur_:c keep the system as flexible as possible
one would have to determine how far the studant has progressed in following a
given solution method, and how to return to such built-in selutions from the
solution developed by the student. This problem, too, is hardly trivial.

In summary, it would seem to us that a marriage of the script-based
approach and the 'knowledge-based' approach is preferable to either gpproach.
However there are difficult problems in making such & marriage a viable

propoaition.

ugar
computer
computer
uger
computer
nser

computer
uger

computer
computer
computer
user
computer
usar
computer
usar

computar

user

computer
computar
computer
usar
compu tar
usar
computer
user
usar
computer
usar
computer
usar
compukar
usSar

computer

s

glave nil
0 PROBLEM INT (X+1)(¥+2) DX
0
1 transf int x5 +3x + 2 dx
1
2 transf int x52 dx + int 2Zx dx 4 intidx

AN ERRDOR OCCURRED AFTER LINE 1 WAS ANALYZED
help

THE DIFFERENCE BETWEEN THE EXPECTED EXFRESSION AND YOURS IS
X

1

2 transf int x$2 dx + int 3x dx + lot 2 dx

2

3 partof 2
3

4 gubst w=x32,

int x$2 dx
int y dy

AN ERROR OCCURRED AFTER LIKE 3 WAS ANALYZED
help

IR YOUR SUBSTITUTION ¥OU FORGOT TO DIVIDE BY THE DERIVATIVE
0OF THE TRAMSFOBMATION
3
4 gubst w=x=b2,
&4
5 ret,d
3
& subst y=x5(1/2), int y?
foang 3 x53/3

int 0.5 y$0.5 dy

3]
7 partof Z int 3 x dx
7
& ana? 1.5x52
8
9 ans 0 line({6) #+line{B8) +2=
CORRECT

Figure 1

computer 0 PROBLEM INT SIN(X)COS(X) DX

computer o

user 1 transf int 0.5sin{Zx)dx

computer 1

USEeT 2 transf 0.5 int sin{2x) dx
computer 2

UsSer 3 subst y=lx, 172 int 172 siniy) dv
computer 3

UsSEer § ansd (L/2)({L72)({=cosiy))

computer &

User 5 ans0 =1/4cos(2x) (sin(x)52 + cos(x)$2)
compuber CORRECT

Figure 2

wier
compu ter
user
computer
user
-1

coamputer

user
uear
Uugear
usaT
user
computer

fast mil
HIL
mastetr nil
3 PROBLEM
int a%(2x)f{ 1 + es{4x)) d=
1 subst y=e$x, int ¥$2/(Ll+y54) dy

AN ERROR OCCURRED AFTER LIKE 0 WAS ANALYZED
oh,ves

1 subst y=efx, int y/(l+¥54) dy
2 sub, z=yi2, int 0.5/(1+=52) dz

3 ans 2 1/2 arctan{z)
4 ams O 1/2 arctan({e$x)$2)
CORRECT

Figure 3

1)

2}

1)

£)

Refarences

Martin, W. A., "Symbolic Mathematical Laboratery”, Report MAG-TR-36
(Thesis), Project MAC, M.I.T., January 1947,

Moses, J., "Symbolic Integration', Report MAC-TR-47 (Thesis), Project
MAC, M.L.T., December 1947,

Anderson, R. H., "Syntax Directed Recognition of Hand-Printed Two-
Dimensional Mathematics", doctoral dissertation, Harvard University,
January 1968,

Martin, W. A., "A Fast Parsing Scheme for Hand-Printed Mathematical
Expressions", MAC-M-360, Project MAC, M.I1I.T., October 1967,

