MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo No. 1589 October 1996 Revised

General Purpose Parallel Computation on a DINA Substrate

Andrew J. Blumberg

Abstract

In this paper I describe and extend a new DNA computing paradigm introduced
in Blumberg [4] for building massively parallel machines in the DNA-computing
models described by Adelman [1, 2], Cai et. al.[5], and Liu et. al.[8]. Employ-
ing only DNA operations which have been reported as successfully performed, I
present an implementation of a Connection Machine [7], a SIMD (single-instruction
multiple-data) parallel computer as an illustration of how to apply this approach
to building computers in this domain (and as an implicit demonstration of PRAM
equivalence). This is followed with a description of how to implement a MIMD
(multiple-instruction multiple-data) parallel machine. The implementations de-
scribed herein differ most from existing models in that they employ explicit com-
munication between processing elements (and hence strands of DNA).
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1 Introduction

Recently there has been some very exciting work in performing computation using DNA
and some tools of molecular biology. For the most part, this research has focused on a
constraint-based model for solving search problems. That is, most of the computation
models and results have operated in the following manner—DNA strands are synthesized
to contain encodings of all possible solutions of the problem in question. Then, the multi-
set of strands is filtered to remove all strands not satisfying some constraint. This process
is repeated until the only strands that have satisfied all of the constraints (and hence
remain in the test-tube or on the adhesion surface) are solutions to the problem. The
advantage in this model of the DNA substrate is that the number of filtering operations
depends on the complexity of the problem (e.g. the depth of the circuit or the size of
the graph) but not on the possible number of solutions tested.

Unfortunately, for a number of reasons I believe that this conception of DNA
computation will (at least in its present form) be of relatively limited utility. Some of the
reasoning is simple—for problems which suffer exponential growth in the space of possible
solutions as the size of the problem grows (e.g. NP-complete problems), the size of the
possible solution space rapidly outstrips the maximum number of DNA strands that can
fit in a milliliter of solution (roughly 10*°). For example, in the case of the satisfiability
problem (deciding on the existence of a satisfying assignment for a logical expression
in CNF form), a milliliter of solution will suffice to check at most about 70 variables
(2™ ~ 10%°), assuming ideal conditions. Increasing working volume will not help, as the
exponential growth of the problem will rapidly outstrip the linear gains to be had from
the expanded computing volume and additionally the increased volume will decrease the
reaction rates because of increased path length between molecules in solution.

Now consider the operational constraints imposed by this traditional model of
DNA computation—there are grave limitations imposed by the very nature of the model.
At the algorithm level, the major flaw in the conventional model of DNA computing
is that there is no facility for communication of information between strands of DNA;
e.g.between processing elements.

It is easy to see that this operation is extremely useful-the arguments are analo-
gous to the arguments for parallel processing computers in general. For example, consider
the area of image processing. For concreteness, let us take the example of filtering an
1024 X 1024 image. This is a relatively trivial undertaking given communication between
processors—each processor assumes responsibility for a pixel, and the computation can
be performed using a small number of local interactions. But in the constraint model,
each strand would have to represent a possible solution to the filtering problem-requiring
each strand to be at least a million base pairs long (depending on the efficiency of the
encoding). Furthermore, an unfeasibly large number of constraints would have to be
applied to filter the pool down to the correct filtered solution.

For other examples, consider problems in simulation—e.g.air-flow calculations, cir-
cuit simulation, efc.Given intercommunication between “processing elements”, there exist
simple algorithms for performing all of these on massively parallel hardware. Further-
more, even were it possible to do these things simply in the traditional model, a great
deal of effort would have to be spent developing the algorithms. But why disregard the
vast amount of prior research on parallel computing? It seems a much better solution



2 2 DNA COMPUTING MODEL

to modify the model to allow us to tap into the rich existing body of parallel algorithms
rather than require a whole new discipline of algorithm construction.

As such, it is extremely important to develop a model of DNA computation which
allows easy implementation of general purpose parallel computation. Quite recently there
were some steps in this direction [6] in which an algorithm for addition with DNA was
demonstrated. While very clever, this algorithm suffers from a number of operational
defects. First of all, it is not a parallel algorithm in the sense that in a given test-tube
only one addition can occur. This appears to throw away the greatest asset of DNA based
computation, massive parallelism. Furthermore, the output of the algorithm is not in the
same form as the input; a nontrivial transformation has to occur before the algorithm
can be run again. This paper is intended to serve as a guideline for research in this
area. We develop a superior model of parallel computation which could be implemented
using today’s technology. However, I do not claim that this is necessarily the best way
to do this-but it is one way and perhaps elements of this solution will prove useful in
constructing a final solution.

In the following sections I detail an abstract model of DNA computation origi-
nally described in [4]. This model is employed to perform the implementation of SIMD
computing machines on the DNA substrate. I will present the mapping between the
DNA substrate and the operation of a Connection Machine [7], a massively parallel
SIMD computer (which implies a mapping between the DNA substrate and a PRAM).
The analogy seems a natural one; the original Connection Machine was composed of a
very large number of very simple processors. Thus it is ideal for implementation in the
DNA domain. This mapping allows software developed for the Connection Machine as
the machine instruction level to be compiled down to DNA operations and carried out
in the molecular setting. This of course provides the advantage of enormously greater
parallelism than was ever possible in silicon.

I wish to emphasize the fact that the abstract model to be presented in the follow-
ing sections is bound to actual DNA computation in the sense that all of the operations
described have already been performed in an experimental setting and discussed in the
literature. This model is a specification for computation bound to an implementation
substrate, not simply a metaphor for computation at a DNA level. Of course, the model
is not restricted to work only on the traditional methods of manipulating DNA—Dbut it
can be implemented in that domain (and I expect that the initial set of experiments to
confirm and explore the models described herein will be executed in that domain).

2 DNA Computing Model

The base instruction set of the computational model will be grounded on a DNA substrate
as follows. A “legal” strand of DNA will correspond to a bit-string using the variable-
length word encoding method discussed in Adleman [1] (where the strand consists of
<bit-label-0> <bit-value-0> <bit-label-0> <bit-label-1> <bit-value-1> ... ). In general,
a strand will correspond to a specific processing element.

Any tube of DNA manipulated in the following discussions is assumed to contain a
multiset populated by legal stands of DNA distributed according to the specific problem.



The following operations can be performed on such a tube of DNA :

1. Separate via constraints : In this operation a single tube of DNA is split into two
tubes based on the given constraint; all strands satisfying the constraint in one tube,
all strands failing to satisty the constraint in the other tube. These constraints at
the physical level are phrased in terms of the presence or absence of base pairs in
the strand. However, we will typically consider “higher-order” constraints which
refer to bits in the representation encoded on the strand, for conciseness.

2. Merge : Two tubes are mixed together to form one tube.

3. Append (bit or tag): Appends to all strands in a tube the specified object. Typically
either bits or tags are appended. A bit is a triple consisting of <bit-label> <bit-
value> <bit-label> as detailed above. A tag is simply a unique sequence of base
pairs which we use to distinguish different parts of the strand. In discussions
to follow, tags will be referred to with names like “NEW?”. These names are for
convenience of discussion only and do not make any implications about the bases
which make up the tag.

These both are higher-order operations built on the basic physical operation of
ligating a base.

4. Cut on tag : Cuts all strands in a tube along the specified tag. Actually performed
using restriction enzymes.

5. Detect : Detects if there is any DNA present in a tube at all.

All of these operations can presently be performed in an experimental setting—
e.g. this model can be implemented with current DNA technology. Also, although
these operations (and the rest of this discussion) are phrased in terms of Adleman’s
[1, 2] solution-based embodiment of DNA computing, it is straightforward to translate
to the surface-based embodiment discussed in Liu et. al.[8] and Cai et. al.[5]. In this
case, the merge operation is unnecessary and separate is replaced by mark (with the
other operations being specialized to operate only on marked strands). The algorithms
provided below must be changed trivially to handle these changes to the underlying
model.

3 Basic Algorithmic Structure

To describe the algorithms for computation, I need to clarify the exact level at which the
algorithm is operating. In the traditional model, the instruction stream of the algorithm
is embodied wholly in the physical processes going on. The data varies across strands,
but the same thing is done to all strands at every step of the computation—the instruction
stream is fixed.

Implementing traditional parallel computation (and in particular communication
between processing elements) seems to depend on being able to modify the instruction
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stream. Since this is not practical at the physical level (we don’t want to be testing
the tube and then performing different physical operations) the modification of the in-
struction stream has to be done by separating the set of strands into a small number of
different tubes. For each of these sub-tubes, a distinct activity will be performed and
then the tubes are merged together again. This notion turns out to be very powerful—-
different things happen depending on specifics of the strands, but it is never necessary
to explicitly investigate the nature of any of the strands.

Essentially, this process takes advantage of localization of computational depen-
dence. Consider data represented as a string of bits. If we can know a priori that the
result of some computation on this string of bits only depends on the values of bits n
and m, then we can perform this computation in the DNA model easily as follows. We
separate all of the strands into four tubes, depending on the pairs of values of bits n and
m. Then, for each of the four sub-tubes we perform whatever operation is indicated by
the bit values which we know hold over all strands in the given sub-tube. Typically this
will involve concatenating some value to the end of the strands. Finally, we merge all of
the sub-tubes together again and perform the next operation.

The number of separations performed depends only on the algorithm and the
length of the computation, not on any specific details of strands. Of course, the number
of sub-tubes required increases exponentially in the number of dependent bits, so it is
advantageous to keep the number of bits needed small. Fortunately, this turns out not
to be a particularly restrictive constraint.
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4 Implementation of the Connection Machine

It is possible to employ this model to design an infinite variety of specialized algorithms,
and in fact this is done in [4]. However, I would now point out that there has been a
great deal of work in the past ten years in the field of SIMD algorithm design, perhaps
best exemplified by the Connection Machine [7]. Therefore, rather than attempt to
further reinvent the wheel, I present now a mapping enabhng the implementation of a
Connection Machine in a computatlonal framework supporting the basic operations we
discussed above - in particular, in the DNA computing domain.

4.1 Processors

The Connection Machine consists of a large number of very simple processors. Fach
processor consists of memory, some flags, and simple logical circuitry. At each step, the
processor reads two bits from memory and one flag bit and combines them to produce
two bits of output and a flag output.

So let each strand of DNA represent a single processor (for the time being). The
basic format for the strands will be as follows—a unique tag specifying the name of the
processor, a sequence of bits representing the memory, and a sequence of bits representing
the flags. This format will be expanded slightly during the following discussions as
needed.

The instruction sequence is implemented at the level of the physical DNA manip-
ulation operations. Given an instruction which specifies two read locations from memory,
a flag to read, two write locations in memory, and a flag to write, we perform the following
operation :

1. Separate the CM tube into an active tube and an inactive tube depending on the
values of certain flag bits (this enables processors to be “turned off” to permit
simulation of a wide variety of processor topologies). We will now only work with
the active tube.

2. Separate the active tube into eight sub-tubes depending on the values of the read
locations and the read flag; there are three bits which control the nature of the
operation performed.

3. For each sub-tube, externally perform the logical operation and write the result bits
to the write locations and the write flag. That is, the logical operation performed
is specified at the instruction (physical) level. So for each sub-tube we compute
externally the results and apply this by writing the correct bits and flag value.

4. Merge all of the tubes to reform the general CM tube.

I need to expand on the algorithm for performing the write operation described
above. There are a number of ways to write values into the strands. The method we will
describe here re-writes each strand, incorporating the new values.
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1. Write the tag “NEW?” to the end of each strand in the tube.
2. Set count = 0 (this is a bookkeeping step external to the tube).

3. If count is not equal to one of the two write locations, separate into two tubes based
on the value of bit count.

4. In this case, we are simply copying the current bit-values.

(a) For tube 0, append the value 0 to the end of the strand.
(b) For tube 1, append the value 1 to the end of the strand.
(c) Merge tubes.

5. If count is equal to one of the write locations, append the bit value to be written
to all strands.

6. Increment count. If count < the size of the processor strand (total number of bits),
goto step 3.

7. Cut strands at “NEW?” tag.

8. Separate based on presence of “NEW?” tag. Throw away old strands.

At the completion of this algorithm, the strands are in the same format as before
and so the operation can be iterated (presuming we have a strategy for controlling the
inevitable errors which will arise in this computation).

However, there is one more feature of the processor operation in the Connection
Machine we have overlooked—the global bit. Each processor can set a global bit, the
OR of which is available at the instruction level. This is easily implemented in the DNA
model by simply filtering for strands with the proper bit set and performing the detection
operation to determine if any such strands exist.

This conception of SIMD computing uses the DNA itself simply as memory—the
instruction operations are all carried out at the level of tube operations. This is possible
since the power of our operation set enables the strands of DNA to simply contain the
data which varies over the processors—there is no need to encode information about
how to compute at each processor. This is actually a substantial improvement in space
efficiency over the silicon Connection Machine (which had a small general logic unit in
each processor).

4.2 Interconnect

In many ways, the interesting part of the construction we are discussing is the algorithm
for communication between strands. More than anything else, this distinguishes the com-
puting model discussed herein from traditional views on DNA computing. Furthermore,
it is the most useful aspect of this construction, for it can be generalized and abstracted
to be employed as a solution in many different architectures on DNA substrates.
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However, certain new problems must be addressed in our discussion of this al-
gorithm. For the most part in the preceding discussion, I have been working with an
idealized model of the actual DNA processing in which it is assumed that all of the op-
erations have 100% efficiencies and introduce no errors. However, when discussing the
interconnection algorithm we need to consider certain pragmatic issues in order to be
assured that our algorithms are correct.

Specifically, we have the following problem. In a realistic implementation of the
machine described herein, there will necessarily be redundancy—several thousand identi-
cal DNA strands corresponding to a given processor of the Connection Machine. As long
as we ensure that at no time do any processors disappear due to loss of DNA, then we
can be assured that most of the processors will be in identical and correct states. How-
ever, communication between processors raises new and grave dangers. Specifically, any
communication algorithm we consider must ensure that each copy of a given processor
receives the same information in a given time-step; otherwise we risk divergent behaviors.
Although it will probably be interesting to consider the nondeterministic model of com-
putation supported by having processors which diverge at run-time, this is inconsistent
with the traditional conception of computing algorithms and is Certamly inappropriate
in the context of simulating the connection machine.

First, I will present an algorithm whereby a sender can transmit a message to a
recipient which is willing to accept messages from that particular sender . This algo-
rithm will then be used as the basic building-block of a protocol which will guarantee
consistency. In the following algorithm description, the dash will indicate concatenation
and the function WC will indicate the Watson-Crick complement. Further, assume
each processor has been given an unique 1D tag.

1. Concatenate to the sending processors the string “MESSAGE1” (a tag)-WC(ID
of recipient)-WC(ID of sender)-WC(data to be sent)-"MESSAGE2” (a tag) .

2. Cut the strands after the “MESSAGEL” tag.

3. The messages (denoted by the “MESSAGE2” tag) are separated from the tube.
4. (Optional) The messages are amplified.

5. Remove the “MESSAGE2” tag from the messages.

6. Remove the “MESSAGEL” tag from the strands.

7. Concatenate to a given processor its ID tag and the ID tag of the processor it is
presently willing to receive data from.

8. The messages are merged with the processor strands. Since the message consists
of two ID tags and the data, this will result in the message sticking to the end
of a recipient processor strand (with appropriate 1D tags) with the message data
hanging off the end. Adding polymerase will then result in the copying of the
complement of the data onto the processor strand.

9. The messages are melted off the processors and separated out.
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10. The message is incorporated into the appropriate location of the strand by using an
algorithm mostly identical to the memory write algorithm (re-copying) described
above.

Employing this algorithm, I will now describe how we can build hypercubes and
thereby implement traditional packet-routing algorithms on our DNA Connection Ma-
chine. Let us further expand the representation for each processor such that a given
processor incorporates arbitrarily ordered lists of the n processors it can receive from
and the n processors it can send to.

Now, perform routing by an 2n stage process. During the first n stages, each
processor can generate a message to be sent to the nth processor on the list it can send
to. Then, in each of the next n stages the processors concatenate with the ID tag of
the nth processor they can receive from and then hybridize with appropriate messages.
Since at each receiving stage only a single class of message can hybridize to a given type
of processor, we are guaranteed that all processors of a specific type will receive the same
data (presuming a sufficient quantity of message strands).

Let’s clarify this a little bit via an example. Consider process number 11. This
processor can receive messages from processors 1, 3, and 6 and can send messages to 1,
2, and 4. So now we will walk through a step of operation focused on this processor.
Flrst the processor performs some computation depending on the global instruction and
its ﬂags and memory bits (as described above) ~this involves a variety of separations and
mixings, but we aren’t particularly interested in this process presently. At the conclusion
of the computation stage, we enter the communication stage.

Now we go through three sending stages. At the first stage, processor 11 has
the option to send a message intended for processor 1. If its program specifies, it will
generate a message (as described in the algorithm above) which contains its ID (11), the
ID of the recipient processor (1), and some data. At the second stage, 11 can send a
message intended for processor 3, and at the last stage it can send a message intended
for processor 6. This three-stage event is performed for all processors simultaneously.

Finally we have three receiving stages. At the first stage, processor 11 generates
an appropriate tag at its end such that it will hybridize with messages sent from processor
1 to processor 11. All of the messages generated in the sending stage are mixed with the
processor strands and allowed to hybridize. If something does hybridize to processor 11,
we know this is a message from processor 1 and it can be incorporated into the memory
of processor 11 (via the described copying process) appropriately. Next, processor 11
generates the tag to accept messages from processor 2 to processor 11 (having removed
the old tag) and similarly incorporates such messages if they arrive. Finally, processor
11 accepts messages from processor 4.

The reason for the incorporation into the recipient of both its own ID and the ID of
the processor it is willing to receive from is that this guarantees that at any time, all of the
copies of a given processor which receive a message will receive only the same message-
even if multiple messages for that particular processor exist. In an implementation in
which the processor simply received messages based on its ID, if two different processors
sent to it different copies could receive different messages and there would be no local
way to determine who had received what.
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This scheme is very well-suited for the implementation of a hypercube. At any
given routing step a processor can receive information from all of the processors “con-
nected” to it and send information to all of the processors “connected” to it. Expanding
to include more processors is trivial-—the only consequence is an increase in the size of
a given processor strand. The capacity of the lines is dependent on the amount of space
on a strand the implementor is willing to devote to message storage.

Also, note that since the lists of processors are stored in “memory” on the strand,
it should be possible to implement dynamic connection changes depending on software.
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4.3 Initial Generation

The discussion of the algorithms for computation and communication above all presume
the existence of appropriately configured processor strands. I have avoided discussion of
this because this is strictly an operational problem—not an algorithmic one-and I because
I believe that this can be readily addressed with current tools. There exist methods for
reasonably synthesizing all of the n-bit strings [1,2,4]. These can be easily adapted to
produce the random variation of parts of the processor strands, such as the 1D’s, as well
as what might be called the controlled variation of the lists of communication processors.
These processes will suffice for construction of the entire strand when the initial data of
the processors is assumed to be essentially random.

It is a somewhat more challenging problem to consider sending specific data to
each processor—as would be the case in the image processing example we discussed. There
is really no way to do this without at some point synthesizing a strand representing the
data (either directly in the processor or as some large message strand which will be sent
to each processor). Although this may be quite slow under current technologies, it is
certainly technically feasible and we expect that this will be ameliorated by accelerations
in process speed. In the interim such a model may be practically limited to random initial
data for most processors or initial data generated by computation from the smaller set
of processors which can receive data from the outside.

5 Interim Observations and Comments

The previously described algorithms will allow a Connection Machine SIMD computer to
be implemented on a substrate supporting a fairly simple set of operations (in particular
the DNA substrate). This machine will be comparatively slow in terms of global oper-
ations per second (limited by the time taken for separation technology) but will have
an enormous number of processors to compensate for this relative sloth. We wish to
emphasize the point that this model provides a coupling between algorithms written for
the Connection Machine and the DNA substrate—via the mapping defined above, all
such algorithms can be compiled into DNA-based operations. Furthermore, all of the
DNA-based operations are feasible under current technology and explicit performance of
all of them has been described in the literature.

6 Building a MIMD machine

The Connection Machine is a SIMD machine—each processor executes the same instruc-
tion during a given time step. And while this seems a particularly apt metaphor for
DNA-based computation, it is certainly possible to implement a machine in which each
processor implements different instructions during a given time step—a MIMD machine.
This can be done at a number of levels. One possibility is to perform emulation of a
MIMD machine at the software level on top of the Connection Machine substrate—this
emulation will incur merely a constant slowdown [7]. Alternatively, we can perform
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the implementation directly—simply by separating the active machine tube into differ-
ent tubes depending on bits (stored on each strand) which encode specific instructions.
However, since we need a different tube for each distinct instruction, there are practical
pressures to keep instruction sets fairly small (e.g.RISC size instruction sets) or retain
the SIMD characteristics.

7 Error Handling

For the most part, the matter of handling the inevitable errors that will arise in the
computation has been largely ignored. Strategies for handling error are described in
a separate paper. Briefly, I claim that redundancy coupled with repeated separations
to increase probability of success, PCR amplification to counter loss of processor, and
voting schemes for output are sufficient. An elaboration of this claim as well as detailed
arguments in support of it will be found in the separate paper.

& Conclusion

Having established the insufficiency of the traditional methods of DNA computation,
I have presented an implementation of a Connection Machine in the DNA substrate.
Since the Connection Machine implements a PRAM, this is an implicit demonstration
the present technologies for DNA computation support the implementation of a PRAM
in a relatively direct fashion. Although a central component of my claim is that this
machine can be implemented on present technology, my intent is less to promote a specific
architecture and more to promote a paradigm. That is, I intend this paper to provide
a guideline by example as to the kinds of machine models that should be considered
for implementation in the DNA substrate. For DNA computation to be viable, it is
imperative that research be conducted on active computation as described in this paper,
rather than on the passive constraint pruning model.
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