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& mumerical method for Eﬂlving lincar, two=dimensional clliptic bowndaree
value problems is presented. The method is ecasentially the Ritz procedurs
which wses: polynomial spline functions to approximate the exact asolucion.
The spline functions are constructed by defining a polynomial functicm

over each of a set of disjoint subdomains.and imposing certain compatibility
conditions along common boundaries between subdomains. The main advantage
of the method is that it does not even require the continuity of the spline
functions across the boundaries between subdomains. Therefore it is easy

to construct classes of spline functions which will prndﬁ:e any specified
rate of CONMVETrgence . .



1. LHTRODUCT ION

Buring 1;I1E laat few years polynomial splimes have bean wsed to ochiain
numerical solutions of specific elliptic boundary value problems [ 2_3‘4,]
This paper presents a general formulation of this type for solwing two=
dimensional elliptic hl:rundar.}' value problems. The method is essentially
the Ritz procedure applied to a finicte dimensional space of polynomial

gpline functiomns. The formulationm can be extended to higher dimensional

cases and to simultaneous systems,
Ve Jenote by G a bounded cpen demain in the Euclidesn plane with boundary

aG and closure G. For a function :JEEJ{E:I we dencte by H |u the maxinmm

.6
norm  mAX  mAX ]]}H u{;}| and denote by ||'iu II !-.1 a the norm j‘ E ltla u{;} |2d;
|L'.E|_£._1 % . ' L |:_T|:gj

o
Here O = {n:nl. -:EE} is the multiple index of length icx| -+ gnd D is the

corresponding partial derivative. We denote by |u|.l c the semi-norm
5§

(! E I|n“u|3.£)”? Let L

o=

E b (;}Dﬂ: be a real strongly elliptic
ja|s2m &

operator of order 2m defined in c. Suppose that HHECN{E) and G is of class

o
¢ . Let the bilinear form asseciated with the operator L be given by

(1.1) Blu,v) = Z _!- {{n':' ) (b P 1..'}} dx

iulgm
|B |=m

1/2



vhere u,yeC (G). Then L = Z (-1) || B (b Dﬂ}. We assume that Bil.,-)
[migm o
|B |==

gatisfies the Garding's inequality in the following form:
2 -
(1.2) [Blogsgp) |2 Clplp,g Tor all ge c(G")

where G' is any open subset of G.
For & given £.C7(G), let ;Ec‘u"{Ej be the infinitely differentiable solution

gatisfying the equation Lu = f and satisfving zero Ddrichlet data on the

boundary. Then

(1.3) B(y, u) = i X wepeCy(6)

2.  TWO-DIMENSIONAL SPLINE FUNCTIONS

Subdivide the domain G by a grid h inte a finite number of subdomains
such that each subdomain is a polygon with infinitely differentiable curvilinear
gides. We call any such subdomain a cell. Let {8;] be the set of grid lines

forming the sides of cells. We require that the interior of any grid line Si



must not contain a vertex. Let sup (Length of Ei} = h. We denote by [Gi} the
i

disjoint collection of interiors of the cells and lot Gﬁ = GI
i

Assume that each grid line is given by an equation of the foem

Ny % = £ {g,)

1

v =8 {Eill

where -‘;i iz the distance along the grid line Ei measured from ome of the

vertices which It connects. The unit tangent vector I‘:i = {tl’tEJ at & point on

the grid lime and the unit normal n

i = {=t2,t1] are defined by the equation:

df  fAE
(1.5} 6 o= T —
4 965
[: -
L
i i dgifdﬁi_
2 aF. 2 iz, Y E
[ E'EE-) + 0 EETJ ]
L i
(i)

If u aﬂ“{ai},let Dﬁjl u{i) denote the r-th deviwative of l.1|“1'II in the
]



direction of the normal Ei’ defined if 5, ia one of the gides of @ . Fop every

i i

cell, we define the following quanticies:

1.6 7 o 1 k DEj:I (i) defined for all k ang ¢
(1.8) Yt h!-:-]-l .[ i Tn,rT - IE;h:j whenever
_1 ﬂ;‘.rﬂn-l

and O<kopte-(m-1)

where p is some fixed integer >0 and independent uf:,?. Also if w is a vertex
of a cell G, » define u2'™ = D u(u) for a1l o such that 0z|a|< m-2.

We define a ﬂlassgx’{b,p) of functions with domain G as fallows: Let
{It,}ri} denote the local coordimates of a cell Gi, chtained by translatiom
of the erigin to a2 point in Gi' If uélﬁb,g}, then u{i} = u restricted to Ei

is given by an equation of the form

(L.7% " =a_. +alD ®y + a

such that the following compatibility conditiens are satisfied:

(i) For all k and T and whenever defined



(1.8) ué{_ = u o if S, = a0, %,

il
=

and u;{_ if Sj = a.GrE.Gi

(i1} At & vertex w, for all |u:1|5 =2

] ]
1,w 1% w

(1.9) u = u, if w belongs te both Gi and Gi,
and uwl'¥ = 0 1f the wesG
o &

We also require that

(1.10) Bz m¥op

How we impose the following conditions on the clase of admissible grids:

Firast we Introducemon-dimensional coordinates xo= xi.-"h, Y, - }'ifh. Ti-i = £ ix’h

- JHe iy _  iir law_ dswe T
and guantities Aik_ Ejh:h Ty % Ll!“_‘n {de.ru ., hl | 50 that

ny

(i) _
{1.11) utt = A+ A .

¥, + ous
=] gﬂﬂ.‘ﬁ

! i

i



(l.12)  ul = _! z *j‘ {htﬂijllu{i}d!ﬂ: gL = {nlﬂlnﬂ;mir;w;-
]

For a given cell Gi, Lek ani be the wector space spanned by the quantities
i i -
Uki and '|.|I_.:"||'il and let Ai be the wvector space spanned by the coefficients Aj

L

Then we have a linear transformation

(1.13) T

We choose ni gufficiently large so that Ti is onto. How let Ei be the kernel

of Ti and let Ei be the complement of Ki' Then Ti induces an isomorphism
(1.14) T, 1A 3V,

We require that : (a) Values of n, are bounded uniformly with respect to all

i
admissible grids and the absclute values of the eigenvalues of Ei are’ bounded
away from zero uniformly with respect to all admissible grids. (b) There exists

. @ positive constant §; such that for any admisaible grid,

length of SL
h 2 by

inf
i



{c) There exists a positive constant By such that for ewvery admissible grid,
and for every cell, there exists a point {xﬂ,yﬂj in that cell such that the
gquare {{“’?}”“'"b|‘52h’LF'?ol5ﬁzh} is contained in the cell. (d) Modulo

translation, roetation and scale factor, grid lines Si are restricted to a

finite munber of shapes. (e) There exists a constant Eq such that the number
of cells that any straight line through ¢ intersects is less than CD;h~

If the cells are triangular or rectangular in shape with straight sides

and if they satisfy conditions (b) and (e¢), then it is possible to choose a

gingle integer n for n, in Eq. (1.7) such that condition {a) iz satisfied for

i

all such cells. To show this for triangular cells, consider a cell Gl in the
form of an isosceles right-angled triangle with hypothenuse h unics long and
with erigiln of the local coordinate system at ome of the vertices. Since the

crangformation T, for this particular cell dees net depend upen h, we can find

i

an integer n for n, inm Eg. (1.7) such that condition {2 is satisfied fer all

i

values of h, NHow comaider any other triamgular cell Gy which satisfiea condi-
tions (b) and (c). Set n, o= Without less of generality we can assume that

G

¢ has the origin of the local coordinate system at ome of its vertices. There



exists a non=singular linear tranaformation 5 mapping Gi cnbo Ei,. Mo

gpecification of the guantities u;

tien of all gquantities of the form

]

1 I1!‘F Ik
hk+l ]

(1) (1)

Lyt Eu"

(i)

u

3 W

i
and u

]

lkr

dE,
i

{1f defined) fmplics specifica=-

Derdr’ am=1
et
Ogkept{r+r' }-(m-1)

where Diji, u{i} denotes the r'-th derivative of uil} in the direction of the
3

tangent ; defined if 35

1

ig one of the sides of Gi.

Therefore 5 induces an iscmovrphism

(1.17) 8, + V,

(1.18)

(1.19)

Therefore we have a commutative diagram

T
4 > A i »
l ol J, ®3
qr—s Y1

l’ﬁ
V.
i

3 a
0

H]



This, in turn, implics a commutative diagram

{1.20)

Therefore Ti' ig nonsingular, Now we claim that cendition (a) is satisfied.

" For, 1f not, there exists a sequence of triangular cells Eﬂkj such that the
corresponding sequence of the lowest abaclute eigenvalues of the transforma-
tions Ek tends to zero, But any triangular ;Eli is specified by six gquantities,
namely the non-dimensional coordinates of its vertices. Therefore the sequence
of triangles can be embedded as a closed subapace lying in the closed annulus
in _',ﬁﬁ, lying bctmrreen the unit sphere and the sphere of radius by Since the
annulus is compact, the Eﬂ:'l'.'ll:.l.Et':l,‘.'E G, has an accumulation point. By continuity,
the triangular cell Ghn :urrgapnnding to the accumulation point satisfies com-

ditions (k) and (e} and haz singular Tkn which contradicte (1.20}.
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In the same fashiom, we can choose a single integer in Egq. (1.7) which
will satisfy condition (a) for all rectangular cells provided that condit . ons

(b) and (e) are satisfied.

For practical applications, it suffices to segment a domain using tri-
angular and re::.tangular cells as well as g finite number of special shapes to
handle a curved boundary.

Thn.vectnt Epace 'affb,pj ig constructed as follows, For each cell G&, W

have an isomorphism A :.T"."i .55.111. Then a function ug']‘,"(b,p} 13 defined by

i

specifying the quantities

for each grid line not

A
Yhr ke T Mer in aG
i
" = u;'w = l.:é"r o=, for each wvertex not
in aG
(1)

for each ecell G, .

and an element of K i

We require that
wl, = 04fS, isinac

and u '™ = 0 ifw is in a6
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We extend the (semi) norms ﬁ.!,]11|1,|1],]|| and the bilinecar form B(- ,-) Eo
?f([up} by restricting the integrals to Gﬂq

) W
Let ¥V be a vector space spanned by the guantities uir, u {EJ and w not in
3G) with the basis {e ). Let K = EaKi with basis [ki]q Let W = ¥V o K. Then
i
we have an isomorphism I : T0(',p) 5 W. The images of ey and kj under I form

a bagis for TFT +B). Denote this basis by Euia

1, FORMULATICON

We seek a solution E;?F{],pj such thﬁt the equation
{1.21) Bt} = " pEdE

ig gatisfied for all ¢E’FE 2. We show that Eg. (L.21% has a unique golution
and that 07 (i-m) = o(n®H ¥y for Os|o|am-1 .

For a nmumerical golution of Eg. (1.21) we reduce it to an equivalent matrix
equation as follows. We want to find $EH such that o = I_l{aj satisfies

Eq. (1.21). Carrying out the integrations, B{yp,n} = (v,B v) where v = I(y),
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} where Ei - B{ui,u T. Also

i) ] 3

{ 4 ) is the ioner product and B is a matrix [E
d‘;fﬂ; = (v,F)} where F.V and {ts 1-th component is given by _’Eifd;: Therefore

Eq. {1.21) is equivalemt to the matrix equation:

{1.22) Bvs=F

If within each cell, we approximate the coefficients b-:aﬁ and the function
f by polynomials use of quadrature formilas for integration of polynomials over
simplexgs[j} simplifies the computation of E. The computation is carried out

by computing B':“i. s} eell by cell.

3

4. CONVERGENCE

In the following El' EI’ «oe denote positive numbers, the cheice of which

does not depend upﬂﬂﬁ *

Lemma 1l: Let utrsth,p}. Let Sj be a grid line contained in aGiﬂaGL,and

= I
let u= = u restricted to Gi amd ui = 1 rastricted to Gi" Then for |ﬂ|5m-l

(1.23) aup

i i’ m=L= |z )
(ﬁrﬂasj 111“1.1 (% .¥)-D u Iimﬂ'sl:lh | |{|U|M,G£+|u|m.g

)
i'
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If Sj = aGir'aG, then for ]c:|f;rn-=l

{1'-2}'-"} Sup i m.l- r
x9Des, D" (x,¥) |<C || l“l:n,si

Proof: Suppose that Sj connecks vertices w, and Wy Without loss of genevality

we can assume that W) is the erigin and that the x-axis passes through Wy« Let |

.‘-".j be the length of 5

¥ How consider a subspace a, of the vector space A

spanned by {4 . a"-l& Age oo "n,m-lg and a subspace I:r-n of Vs spanned by

i w l.Ti

] "wl '1'-1 - -
L |t | =2 » Uy }1'1]5-111-2 and Uﬂnﬂl*l - (Ifm =1, then hﬂ ts ome

dimensional , spanned by Uiju}. Let j :Qf = ""i be the inclusion map and
; o
p v - {3'-,:, ke the projection map. Then it is easy to check that the map

P {S.Lﬂ - Ej"u given by the composition p-uriu_t ig an isemerphism and therefore

'-_-“.ﬂ CIi. Morecver since grid lines are restricted to a finite number of

shapes and I".j.l“h e [.5.1,1.1:. it follows that the absclute values of the eigen-

values of are bounded away from zerc uniformly with repect to I} .
t L ¥

Let h'l be the complement of b’ﬂ. in V¥, and ':!_1 be the complement of @

i

i:nE

r r L} 1
1 L-Etﬂ.b,ﬂl_.. !}:’, Eh:l be the corresponding spaces defined for the cell Gi"
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Lek uajﬁﬂb.p] and let weW and kgK be the vectors corresponding Lo .
Let the projection of w onte W, be v and let v = v gv ¢ hgﬁ hl'm1“f” Vnﬁjiu

[ ] -1 3 =
and L hT' Lekt a, =15 {uﬂ} and let the unigue polynomial corresponding Co 8

m=1 .
be P = ﬁun + BlD s + s ¥ Bn,mrlYi . Bimilarlvy, the corvesponding vecLor

m=1

! .« But
o,m-1"1

r L] 1 = | — L] L]
VLE Gh determines a unique polynomial P Enn + Elﬂ ﬁi~~-+ﬁ

v_=v'., Therefore P = P'.
L] a
_7t -
Let d = T, ((ogv,)) and d = (dd)) ¢ @0 vhere d g4, and dylhy
- s W
Let Tﬁ = T1 restricted to L‘q’ q = o,1. Then poT + peT, iz the zero map and
" - = -t ich 1 hat 4f d_ =

PoT, = 74¢ TherefoTe 'liﬂ =TTy |:"|'-l I:d":l}.} which implies tha o I:.ll,:,,:n_,'

Yand dyo= (v,

m,o? *tt ?“!“i}. Then |?aliﬂz max |wﬂ| for

?lﬂ; LI | ?ﬂ}m_l %B'lg.n

2.
We define the following norms:

For q = (g

s Apgr s qu,m-llgtqﬂ define the norm ||q||=?ﬂ? qujl;
|

= | ;
For r = {r__» Tyge ""rﬂ,ni}Ectl define the norm %lrﬁlq{?ET]]rijlr
]

1
_—
=

For & = .o & ni}gﬁi, define the norm ]1E]¥= max |3ij|

Mo o, (i.3)
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For ros = 2 (LK, define the non |[z|| = ||r|| + ||s]|-

. Hose

Then |4, |16, |14y ||- Stmilarly ||dg][<Cy|[¢]]] For the cell G,

T i o be th tor
'_I'i_[r.jl.‘:al:l + dﬂ} E-dl}} = v, Let the projection of k onto Ki & the wvec _

' ' P k! o= (1. Th
ki - {km,-ﬂ-’ kﬂ;ﬂi} and let :Il .;.]:_I-:i = Ei and dl {E.'I-:I @i en

il
mi=1 m

u{ﬂ‘ :Bnﬂ'ﬁf ::H'" 'H:Bﬂ m_, 'm.l}!i +':km'gﬂm;g}xi+“.+"'kﬂ,l'l.i+.ll'ﬂ'1'ﬂ-i:lwi
o) 1 i
1" . 'I'I'l q ! '

= (B :H'--*"'{ﬁﬂ m=1"Yo m—.]_} i mm,-::u m, ik i"" Hiy niﬂ .ni} i

P 1 m
1.1“'}'1.1.{1 }={Tﬂﬂ-?;0}+** .+{'1III1:I,I:I:I'].FT1:I'-,I.'I I}f +{k|'|'| o 'm E}-kl'ﬂ,f." YTI'I D}Ki""

|'.

Therefore sup lllu, {i}{x,y} D, “’ }{:{,}'* |{::| (||fi|| + “fi'”}
(x.¥) 51 '

I«I;m we claim that

(1.25) A

1 1111.,G-i
To prove this observe that

moi) .2 1/2
peel [f —"E‘—ﬁz—"a z ) & _dy ]
“ b
| |n,Gi ui+u2qm Exilﬁfi i i
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' m {i)
The quadratic fom [ , [ ( 2) rmi.ﬂi:|
. ﬁl 2=m ax aE .

_ is positive definite om the linear space C'f‘ulﬁi. Therefore

1/2
inf
ﬂ#ztn,lgr.i lz,2] - &, #0. W, 1 & function of 1 and |;| . Suppose :Lnf?n-

[1=1] L i _ 1.4

Then there exists a sequence or cells G} such th:at the corresponding
. sequence M = 0. Now each G contains a point {Elf.":'rk:' .at.'ui the sguare

@ = {(x,7) HH'Rkl:dlﬁas]j"?k!ﬂ'lﬂz}. Let«[ , ]' denote the bilinear form [ , |
;aatrl.cl:ed o t'_'ne. square g, - Then there exi;;l:a a sequence of points {Kk.-,‘!fk);
|I-[k],;1-§2, ¥, |sl-5, =nd a corresponding sequence 1‘_1k] such that ||z, ||=1 and
[zkpakﬂl- 0. By compactness, there exists a subgequence {Kk_,‘fkj,zk } con=
verging to [xkn ’Ek&’zkﬁ] in mzaaq,.lg]ﬁi such that ||zk || = 1 and [kak.:].' =0
which is a4 contradiction of the positive-definiteness of [ 5 1" This proves

the claim. Imequality (1.23) follows. The proof of Inequality (1.24) is similar.

Lemma 2: Let uE‘J?(I;,,p:I. Then

———-

{l.E'EI:I u - ﬂg i
e, « & I,
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Proof: Without loss of generality we may assume that none of the gr{d lines
iz parallel fa the coordinate axes. Define a fuﬁ:tiqn u' ﬂang by letting

u' = u on Gn and u' = 0 elsewhere. For any {Lne ¥y =y, intersecting GD. pick
points {xa,yni and Exh.yn} in a6 such that all points having coapdinates
{xiynj and Fying in G be between {xﬂ,y&l and {xh,yu}- Foé a fixed o = {ﬁlﬁazi,

1&1 = m-l.:define s function

1 () = le':" u'(x, + X )0y, Af (x, + el =%, ) ¥,) G,
0 otherwlse

Then Ju{t} is plecewise continuous and differentiable over open gegments

{'d"tn:’ {tn’tl:’*“'(tk’m}' where tﬂ = oy tl-: = 1.
peﬂne .Iu{tiﬂ' = Lim J_(t)

t_..l:i

t=t >0

and 3 (t,=) =Lim J (€)

t-tti

t—ti{ﬂ

dJ -
Let J&{t} = Eﬁi-fur t in one of the cpen segments listed above. Then
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LY

i+l
1_._'1".! = .I (t +:| + j J&{T}d-r for £=0, 1,...,k-1. .. For any point
t
i

J{I:

teltyat )

ENGIERNOE IJ;J (0 dr

i

L

! Liuaivc:nl.2 -[f‘_, (T (654 = L (eg)) + _[ J;crjd{lz
j=o A
o

L
s;[i {J (tﬂ-.]{tj-}‘a] +2[J; ..T;{'r}d-[]ﬂ
3= LT

5Ei[ﬁ {.I {t +) -..1 t;]_:'}] + zt[j |J' {1}|2d.1]
=0

by Cauchy-Schwarz Inequality.From Inequalities (1.23) and (L.24),

. 7 2 2z
E[thtjﬂ -Ju{tj-'}} g EEE?“Em.Gk_ g 1c5|u|m’Gn

v S 2
From Inequality (1.25), |Ju{'}| & h_z |uiu1,l:}k 1f
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: {:Bﬂ{.:.h - :r:n}, jru]l: Gk Therefore

¢
2 2 2 1 2
. {J'{r}l dr # hE |u| /hT 2 = |u|
Jt' fu | k *m,ﬂk h mjﬂ'n
fu]

Condition: (e} on the class of admissible grids implies that 1 = En_ and

h
: compactness of GD implies that 51:..‘.213T
. 2
Therafore |7 {I::HE £ E_B_ 3u|2.
i ' o h m,0
5]
and  |1Dgulll, o = 13 [llewm ¢ S8 [u] for [a] = m-1
E 1
o e m,:
h o
By successive integratlions Iin a similar fashion,
o ul ] 3 EE |u| for |u| g m=1
i a.l.'.-'a = e m'ﬂn !

he
 The lemma follows.
We state without proof the following speeial form of the Green's

- formula. The proeof is similar to the one given in reference [1]
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Lemma 3. There exist linear differemtial oporators !ﬂh{ﬂ,}frﬂ'} for (H.:;}gl:JaGi

) i
with coefficients bounded uni formly with respect to all {x,y) and :|11.|';|, suzh
that le. ig of order zk and for all ueEH{E] and m’]’;{‘;-{.,p],

(1.28) L_PL:; = B{,P.u}l+ b E L{n ot D, ol By g qudE
a

k_*"‘-G i=

l.‘:]] 1: |:". )
EEBG JE .L Emlj

where the grid line § = 3G_MaG," eor B3GN 3G
k :r.k !Lkr ik

Lemsma L, For a given u E C (E)

{l.EE}i‘I g Lu - B(gu)| s Cljhw]'?#!m a for all ¢ E'j;'ﬂ'_*ql:']' and aznl]_l--llI
o

) o
Froof: If o = (m, o), let d = m!oy! and
i
(%, :.*f‘ = = 1 }r% Then by Tavlers' thecrem
a1 &x
= v Z ;l; o ulx,, ¥,) & - 5 )y - y, b+ Rixy)

.l,ll | spbm



21

grmtl-f |

where ||hF H{x,y}|||-&€ln and
G

d = distance between points (x,y) and ixa, ?ﬂla
Now any grid line $, 1s given by the equaticns x = £, (e )y ¥ = g (E ).

Let {xn, yﬂ} be & point in Ek' Since fk and g, are ¢ functions and since

the number of shapes of grid lines is finite, it is possible to choose

[ such that

10
pm=J r
(1.29) T qu = rED g cfp TR (R
phm=j+1
where || |R“{F;k_.}| | |q,{ & E]_l:lEk

Substituting (1.29) in Eq. (1.27)
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pFjtlem k

dﬁ ghu = 3 g, ' :Z: 'h -

3 5,436 §=0 =0

L)

m-1 p+;41-u:

g % R IR LN
& EaG '

S

L
when |[[|R} , {Ek}llfsk € ¢10EF+j+ "

S8ince ¢ satisfies the compatibility conditions {1.3),

1kk i;k

tj = ﬁj if 5, = BGifW&Ei.
k k

ikk

L =p if 5 @ A, Mai

i | k ik

8y Cauchy-Schwarz Inequality,

g
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2m-1=1) - |3 2 ptij+d-m) .
PR [h f[l-il + |4 .J}][ _[j_,_ i de
1 “10 { %m 5 mo, =Gy Zék L & k}

{using Inequalicies (1.23), (1.24))

2 2

2{m=1-j) 2
£ Ecl €0 [h |1|p|m£ 5

} [ hli?+j+2_m}h {area of G} }

0

2{ptl) ), 2
£ G, b |:-:m:,:1r

Similarly

{ Z
Ekﬂjﬂ

i 2 _
, K 2(p+l) .2
f”n_'.““ Ry 9% } © by @ 'ﬂ'lm,nc_
=
k

p+l [
Therefore J‘«bLu - B{¢,u)| = ':13 h !'::‘"m,-:
Gr:l
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Theorem 1: Equatiom (1.21) has a uﬁiqye golution ugr_tr'{l‘.',p} and

" u__ + ]:HAE
(1.31) ||| '“H.|u;|-].,.{3':r § Cygh _

1.32 il . Lptl
r" :I 1 im,Gﬂ = Lz?]'l

Praof: EUPPDHE fﬂt tp.,;;'}?{?ﬁ,p}, B(m’ﬁ} = .D for all e
- ™ E
- 0= lB{u,u}lEC[uhm o
. .G,
i a = 1.26
OERL |||U|H-1’Gn 0 by Iﬂtqu?lity{ }

g=0

- &

y Eg. (1.21) has a unique ";i:- *hp)-

Using Taylor's theorem, within esch cell, we can write the exact solu-

Ction as u = ."{xi’?ij + R{xi,}ri}l wherE‘uI:xi .yi} ig a polynomial of degree

h1+ni_|a| for

ny and ”DI:I!R(I-L*?L}HG,Gi p 'l::M ¥

<Py

iy _mil _y id L o =i,w _ lw
Let “Ukl ﬂkl 4] Kl and "I.T{: - U U,

Then |”"H | = ciﬁhniﬂ and |"Uci:m] Eﬂmhniﬂ
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Let J')“Lrij , ui'“} - deW,
L o all Jswak,R,u
_-1
Let a = Ti id} ol {El.'_ll.'_l’ R ﬁﬁ'*'ﬂ.ij‘
ni+l
Then Hijl -:015 ||d” ;Em h
Lete "ulx,,v,) =a +a, x 4+ ... a }rni
1*4 oo 1 i I::-,ni i
wvhere a, ., = A .u"hi+'1
is] i]
Then hlﬂi'|"¥|

|19, "V |a,-:;i L7 for [af s,

Let I:!'1_1 = 'y + ™ and U "'_1..1- - m‘u + Then Quapjf':b=91-'

ting- ] |

and ”Iln:u ||E,Gi 5'318 h |L‘t2| =y

Let pu =wu - “ug'ﬁ'ﬂj-,r'}

EE&H-;} = ,L‘f.r_au = ﬁ-:.u} {Lu}

[
= B (u, uw) + {ﬁau} (Lu) - B E,-:-,LL.E}}
By Inequality (1.29)

IB(Au,au) |<|B {au,'i?ﬂ +Ciq WP | au]

m,G
[
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How the Cauchy-Schwarz Inequality implies that

I-"'I] i"'ln

;I:]..33} Infﬁutu}lf-ﬁlgl Jﬁul |m’Gﬂ[ [u[ [mlgaﬁczah [ rﬂ"“f rm,'ﬂu

~ : (p+l) ;
Therefore [B{ﬂu,u} Fgﬂzl h |hujm @ by Inequalities (1.10) and (1.26).
o .

Inequalities (1.2) and (1.33) imply that

(p+l)
I"-'-""lli..'n,ﬂﬂ|I 524 h

Inequality {1.26} implies that

112 ot i, <5 ¥

ey = 18978 ||y @ =] ] ] 2 u . W
e 1 ot A1 s, + 5]y 6 €08

. o (p+l)
md - |urtlg,q <Cay b



REFERENCES

[1]

[z}

[3]

(4]

ACMON, S. Lectures on Elliptic Boundary Value Problems.
Hew York. Van Mostrand, 1965,

AHLBERG, J.H., WILSOW, E.N., WALSH, J.L. The Theory of
Splines and their Applications. New York.
Academic Press, 1967,

CIARLET, P.G., SCHULTZ, M.H., VARGA, R.5. MNumericsl Methods

of high-order accuracy for Nomlinear Boundary Value
Froblems.I. One dimensional problem. Numer.Math.9,
394-430, 1967.

CLOUGH, R.W., TOCHER, J.L. Finite element stiffrness matrices
for snalysis of plate bending. Proceedings of
conference on Matrix Methods in Structural Mechanics,
Alr Force Flight Dynamics Laboratory, Air Force

Institute of Technology, W.P, Air Force Base, Dayton,
Ohic.p5l5, December, 1965,

HAMMER, P.C., MARLOWE, 0.J., STROUD, A.H. Numerical Integration
over Simplexes and Cones. Math. Tables and other
Aids to Comp. V. 10, 130 - 136, 19509.



