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Abstract

Recovering three-dimensional information from two-dimensional images is the fundamental goal of
stereo techniques. The problem of recovering depth (three-dimensional information) from a set of
images is essentially the correspondence problem: Given a point in one image, find the corresponding
point in each of the other images. Finding potential correspondences usually involves matching some
image property. If the images are from nearby positions, they will vary only slightly, simplifying the
matching process.

Once a correspondence is known, solving for the depth is simply a matter of geometry. Real images
are composed of noisy, discrete samples, therefore the calculated depth will contain error. This error
is a function of the baseline or distance between the images. Longer baselines result in more precise
depths. This leads to a conflict: short baselines simplify the matching process but produce imprecise
results; long baselines produce precise results but complicate the matching process.

In this paper, we present a method for generating dense depth maps from large sets (1000’s) of
images taken from arbitrary positions. Long baseline images improve the accuracy. Short baseline
images and the large number of images greatly simplifies the correspondence problem, removing
nearly all ambiguity. The algorithm presented is completely local and for each pixel generates an
evidence versus depth and surface normal distribution. In many cases, the distribution contains a
clear and distinct global maximum. The location of this peak determines the depth and its shape can
be used to estimate the error. The distribution can also be used to perform a maximum likelihood fit
of models directly to the images. We anticipate that the ability to perform maximum likelihood esti-
mation from purely local calculations will prove extremely useful in constructing three dimensional
models from large sets of images.
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1 Introduction

Recovering three-dimensional information from
two-dimensional images is the fundamental goal
of stereo techniques. The problem of recovering
the missing dimension, depth, from a set of im-
ages is essentially the correspondence problem:
Given a point in one image find the correspond-
ing point in each of the other images. Finding po-
tential correspondences usually involves match-
ing some image property in two or more images.
If the images are from nearby positions, they will
vary only slightly, simplifying the matching pro-
cess.

baseline

P

depth
p1 p2

C1 C2

Figure 1: Stereo calculation.

Once a correspondence is known, solving for
depth is simply a matter of geometry. Real im-
ages are noisy, and measurements taken from
them are also noisy. Figure 1 shows how the
depth of point P can be calculated given two im-
ages taken from known cameras C1 and C2 and
corresponding points p1 and p2 within those im-
ages, which are projections of P. The location of
p1 in the image is uncertain, as a result P can lie
anywhere within the left cone. A similar situa-
tion exists for p2. If p1 and p2 are corresponding
points, then P could lie anywhere in the shaded
region. Clearly, for a given depth increasing the
baseline between C1 and C2 will reduce the un-
certainty in depth. This leads to a conflict: short
baselines simplify the matching process, but pro-
duce uncertain results; long baselines produce
precise results, but complicate the matching pro-
cess.

One popular set of approaches for dealing

with this problem are relaxation techniques1

[6, 9]. These methods are generally used on
a pair of images; start with an educated guess
for the correspondences; then update them by
propagating constraints. These techniques don’t
always converge and don’t always recover the
correct correspondences. Another approach is
to use multiple images. Several researchers,
such as Yachida [11], have proposed trinocular
stereo algorithms. Others have also used spe-
cial camera configurations to aid in the corre-
spondence problem, [10, 1, 8]. Bolles, Baker and
Marimont [1] proposed constructing an epipolar-
plane image from a large number of images. In
some cases, analyzing the epipolar-plane image
is much simpler than analyzing the original set
of images. The epipolar-plane image, however,
is only defined for a limited set of camera po-
sitions. Tsai [10] and Okutomi and Kanade [8]
defined a cost function which was applied di-
rectly to a set of images. The extremum of this
cost function was then taken as the correct cor-
respondence. Occlusion is assumed to be negli-
gible. In fact, Okutomi and Kanade state that
they “invariably obtained better results by using
relatively short baselines.” This is likely the re-
sult of using a spatial matching metric (a corre-
lation window) and ignoring perspective distor-
tion. Both methods used small sets of images,
typically about ten. They also limited camera
positions to special configurations. Tsai used a
localized planar configuration with parallel op-
tic axes; and Okutomi and Kanade used short
linear configurations. Cox et al [2] proposed a
maximum-likelihood framework for stereo pairs,
which they have extended to multiple images.
This work attempts to explicitly model occlu-
sions, although, in a somewhat ad hoc manner.
It uses a few global constraints and small sets of
images.

The work presented here also uses multi-
ple images and draws its major inspiration from
Bolles, Baker and Marimont [1]. We define a
construct called an epipolar image and use it to
analyze evidence about depth. Like Tsai [10]
and Okutomi and Kanade [8] we define a cost
function that is applied across multiple images,
and like Cox [2] we model the occlusion pro-
cess. There are several important differences,

1For a more complete and detailed analysis of this and
other techniques see [5, 7, 4].
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however. The epipolar image we define is valid
for arbitrary camera positions and models some
forms of occlusion. Our method is intended to
recover dense depth maps of built geometry (ar-
chitectural facades) using thousands of images
acquired from within the scene. In most cases,
depth can be recovered using purely local in-
formation, avoiding the computational costs of
global constraints. Where depth cannot be recov-
ered using purely local information, the depth
evidence from the epipolar image provides a
principled distribution for use in a maximum-
likelihood approach [3].

2 Our Approach

In this section, we review epipolar geometry and
epipolar-plane images, then define a new con-
struct called an epipolar image. We also discuss
the construction and analysis of epipolar images.
Stereo techniques typically assume that relative
camera positions and internal camera calibra-
tions are known. This is sufficient to recover
the structure of a scene, but without additional
information the location of the scene cannot be
determined. We assume that camera positions
are known in a global coordinate system such as
might be obtained from GPS (Global Positioning
System). Although relative positions are suffi-
cient for the discussion in this section, global po-
sitions allow us to perform reconstruction incre-
mentally using disjoint scenes. We also assume
known internal camera calibrations. The nota-
tion we use is defined in Table 1.
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Figure 2: Epipolar geometry.

Pj 3D world point.
Ci Center of projection for the ith

camera
�i
i Image plane.

p
j
i Image point. Projection

of Pj onto �i
i .

�k
e Epipolar plane.

`ie;k Epipolar line. Projection of �k
e

onto �i
i .

EPk Epipolar plane image.
Constructed using �k

e .
p? Base image point. Any point in

any image.
C? Base camera center. Camera

center associated with p?.
�?
i Base image. Contains p?.

`? Base line. 3D line passing
through p? and C?.

Ek Epipolar image. Constructed
using p?. k indexes all possible
p?’s.

F(x) Function of the image at point x
(e.g. image intensities,
correlation window, features).

X (x1; x2) Matching function. Measures
match between x1 and x2
(large value better match).

�(j; �) Match quality. Analyze E .
fE jCg Set of all E’s such that C is true.dP1P2 Unit vector in the direction from

P1 to P2.
d(p

j
i ) Depth of image point pji . If low

confidence or unknown, then 1.
Ml Modeled object. Object whose

position and geometry have
already been reconstructed.

Table 1: Notation used in this paper.
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2.1 Epipolar Geometry

Epipolar geometry provides a powerful stereo
constraint. Given two cameras with known cen-
ters C1 and C2 and a point P in the world, the
epipolar plane �e is defined as shown in Figure
2. P projects to p1 and p2 on image planes �1

i

and �2
i respectively. The projection of �e onto �1

i

and �2
i produces epipolar lines `1e and `2e . This

is the essence of the epipolar constraint. Given
any point p on epipolar line `1e in image �1

i , if the
corresponding point is visible in image �2

i , then
it must lie on the corresponding epipolar line `2e .
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Figure 3: Epipolar-plane image geometry.

2.2 Epipolar-Plane Images

Bolles, Baker and Marimont [1] used the epipo-
lar constraint to construct a special image which
they called an epipolar-plane image. As noted
earlier, an epipolar line `ie contains all of the
information about the epipolar plane �e that
is present in the ith image �i

i . An epipolar-
plane image is built using all of the epipolar
lines

n
`ie;k

o
from a set of images

�
�i
i

	
which

correspond to a particular epipolar plane �k
e

(Figure 3). Since all of the lines
n
`ie;k

o
in an

epipolar-plane image EPk are projections of the
same epipolar plane �k

e , for any given point p

in EPk, if the corresponding point in any other
image �i

i is visible, then it will also be in-
cluded in EPk. Bolles, Baker and Marimont ex-
ploited this property to solve the correspondence
problem for several special cases of camera mo-
tion. For example, with images taken at equally
spaced points along a linear path perpendicu-
lar to the optic axes, corresponding points form
lines in the epipolar-plane image; therefore find-

ing correspondences reduces to finding lines in
the epipolar-plane image.

For a given epipolar plane �k
e , only those

images whose camera centers lie on �k
e�n

Ci jCi�
k
e = 0

o�
can be included in epipolar-

plane image EPk. For example, using a set of
images whose camera centers are coplanar, an
epipolar-plane image can only be constructed for
the epipolar plane containing the camera cen-
ters. In other words, only a single epipolar
line from each image can be analyzed using an
epipolar-plane image. In order to analyze all
of the points in a set of images using epipolar-
plane images, all of the camera centers must be
collinear. This can be serious limitation.
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Figure 4: Epipolar image geometry.

2.3 Epipolar Images

For our analysis we will define an epipolar im-
age E which is a function of one image and a
point in that image. An epipolar image is sim-
ilar to an epipolar-plane image, but has one crit-
ical difference that ensures it can be constructed
for every pixel in an arbitrary set of images.
Rather than use projections of a single epipolar
plane, we construct the epipolar image from the
pencil of epipolar planes defined by the line ?̀

through one of the camera centers C? and one
of the pixels p? in that image �?

i (Figure 4). �i
e
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is the epipolar plane formed by `? and the ith

camera center Ci. Epipolar line `ie contains all
of the information about `? present in �i

i . An
epipolar-plane image is composed of projections
of a plane; an epipolar image is composed of pro-
jections of a line. The cost of guaranteeing an
epipolar image can be constructed for every pixel
is that correspondence information is accumu-
lated for only one point p?, instead of an entire
epipolar line.
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Figure 5: Set of points which form a possible cor-
respondence.

To simplify the analysis of an epipolar im-
age we can group points from the epipolar lines
according to possible correspondences (Figure
5). P1 projects to p1i in �i

i ; therefore
�
p1i
	

has
all of the information contained in

�
�i
i

	
about

P1. There is also a distinct set of points
�
p2i
	

for P2; therefore
n
p
j
i j for a given j

o
contains all

of the possible correspondences for Pj. If Pj

is a point on the surface of a physical object
and it is visible in

�
�i
i

	
and �?

i , then measure-
ments taken at p

j
i should match those taken

at p? (Figure 6a). Conversely, if Pj is not a
point on the surface of a physical object then
the measurements taken at p

j
i are unlikely to

match those taken at p? (Figures 6b and 6c).
Epipolar images can be viewed as tools for ac-
cumulating evidence about possible correspon-
dences of p?. A simple function of j is used to
build

n
Pj j 8i < j : kPi � C?k

2
< kPj � C?k

2
o

. In
essence, fPjg is a set of samples along `? at in-
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Figure 6: Occlusion effects.
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creasing depths from the image plane.

2.4 Analyzing Epipolar Images

An epipolar image E is constructed by organizingn
F(p

j
i ) j F() is a function of the image

o
into a two-dimensional array with i and j as the
vertical and horizontal axes respectively. Rows
in E are epipolar lines from different images;
columns form sets of possible correspondences
ordered by depth2 (Figure 7). The quality �(j)

of the match between column j and p? can be
thought of as evidence that p? is the projection
of Pj and j is its depth. Specifically:

�(j) =
X
i

X (F(p
j
i );F(p?)); (1)

where F() is a function of the image and X () is a
cost function which measures the difference be-
tween F(pji ) and F(p?). A simple case is,

F(x) = intensity values at x

and
X (x1; x2) = �jx1 � x2j:

Real cameras are finite, and p
j
i may not be con-

tained in the image �i
i

�
p
j
i 62

�
�i
i

	�
. Only terms

for which p
j
i 2

�
�i
i

	
should be included in (1). To

correct for this, �(j) is normalized, giving:

�(j) =

X
i j pji2f�

i
i
g

X (F(p
j
i );F(p?))

X
i j pji2f�

i
i
g

1
: (2)

Ideally, �(j) will have a sharp, distinct peak
at the correct depth, so that

argmax
j

(�(j)) = the correct depth of p?:

As the number of elements in
n
p
j
i j for a given j

o
increases, the likelihood increases that �(j) will
be large when Pj lies on a physical surface and
small when it does not. Occlusions do not pro-
duce peaks at incorrect depths or false posi-
tives3. They can however, cause false negatives

2The depth of Pj can be trivially calculated from j,
therefore we consider j and depth to be interchangeable.

3Except possibly in adversarial settings.
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Figure 7: Constructing an epipolar image.
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Figure 8: False negative caused by occlusion.
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or the absence of a peak at the correct depth (Fig-
ure 8). A false negative is essentially a lack of
evidence about the correct depth. Occlusions can
reduce the height of a peak, but a dearth of con-
curring images is required to eliminate the peak.
Globally this produces holes in the data. While
less then ideal, this is not a major issue and can
be addressed in two ways: removing the contri-
bution of occluded views, and adding unoccluded
views by acquiring more images.
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Figure 9: Exclusion region for Pj .

A large class of occluded views can be elim-
inated quite simply. Figure 9 shows a point Pj

and its normal nj. Images with camera centers
in the hashed half space cannot possibly view
Pj. nj is not known a priori, but the fact that
Pj is visible in �?

i limits its possible values. This
range of values can then be sampled and used to
eliminate occluded views from �(j). Let � be an
estimate of nj and dCiPj be the unit vector along
the ray from Ci to Pj, then Pj can only be visible
if dCiPj � � < 0.

If the vicinity of
�
�i
i

	
is modeled (perhaps

incompletely) by previous reconstructions, then
this information can be used to improve the cur-
rent reconstruction. Views for which the depth4

d(p
j
i ) at p

j
i is less than the distance from �i

i to
Pj can also be eliminated. For example, if M1

and M2 have already been reconstructed, then
i 2 f1; 2; 3g can be eliminated from �(j) (Figure
8). The updated function becomes:

�(j; �) =

X
i2S

X (F(pj
i );F(p?))X

i2S

1
(3)

4Distance from �i
i to the closest previously recon-

structed object or point along the ray starting at Ci in the
direction of pji .

where

S =

8><>:i
�������
p
j
i 2

�
�i
i

	
dCiPj � � < 0

d(p
j
i ) � kCi � Pjk

2

9>=>; :

Then, if sufficient evidence exists,

argmax
j;�

(�(j; �)) )

(
j = depth of p?
� an estimate of nj

:

One way to eliminate occlusions such as those
shown in Figure 8 is to process the set of epipo-
lar images fEkg in a best first fashion. This is
essentially building a partial model and then
using that model to help analyze the difficult
spots. �(j; �) is calculated using purely local
operations. Another approach is to incorporate
global constraints.

3 Results

Synthetic imagery was used to explore the char-
acteristics of �(j) and �(j; �). A CAD model
of Technology Square, the four-building complex
housing our laboratory, was built by hand. The
locations and geometries of the buildings were
determined using traditional survey techniques.
Photographs of the buildings were used to ex-
tract texture maps which were matched with the
survey data. This three-dimensional model was
then rendered from 100 positions along a “walk
around the block” (Figure 10). From this set of
images, a �?

i and p? were chosen and an epipolar
image E constructed. E was then analyzed using
two match functions:

�(j) =

X
i jpji2f�

i
i
g

X (F(pj
i );F(p?))

X
i jpji2f�

i
i
g

1
(4)

and

�(j; �) =

X
i2S

� dCiPj � �
�
X (F(pj

i );F(p?))X
i2S

dCiPj � �
(5)

where

F(x) = hsv(x)5 = [h(x); s(x); v(x)]T (6)
5hsv is the well known hue, saturation and value color

model.
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Figure 10: Examples of the rendered model.

X ([h1; s1; v1]
T
; [h2; s2; v2]

T) = (7)

�

�
s1 + s2

2

�
(1� cos (h1 � h2))�

(2� s1 � s2) jv1 � v2j :

Figures 11 and 12 show a base image �?
i with

p? marked by a cross. Under �?
i is the epipolar

image E generated using the remaining 99 im-
ages. Below E is the matching function �(j) (4)
and �(j; �) (5). The horizontal scale, j or depth,
is the same for E , �(j) and �(j; �). The vertical
axis of E is the image index, and of �(j; �) is a
coarse estimate of the orientation � at Pj . The
vertical axis of �(j) has no significance; it is a
single row that has been replicated to increase
visibility. To the right, �(j) and �(j; �) are also
shown as two-dimensional plots6.

Figure 11a shows the epipolar image that re-
sults when the upper left-hand corner of the fore-
ground building is chosen as p?. Near the bot-
tom of E , `ie is close to horizontal, and p

j
i is the

projection of blue sky everywhere except at the
building corner. The corner points show up in
E near the right side as a vertical streak. This
is as expected since the construction of E places
the projections of Pj in the same column. Near
the middle of E , the long side to side streaks

6Actually,
P

�
�(j; �)=

P
�
1 is plotted for �(j; �).

result because Pj is occluded, and near the top
the large black region is produced because p

j
i 62

�i
i . Both �(j) and �(j; �) have a sharp peak7

that corresponds to the vertical stack of corner
points. This peak occurs at a depth of 2375
units (j = 321) for �(j) and a depth of 2385
(j = 322) for �(j; �). The actual distance to the
corner is 2387.4 units. The reconstructed world
coordinates of p? are [�1441;�3084; 1830]T and
[�1438;�3077; 1837]T respectively. The actual co-
ordinates8 are [�1446;�3078; 1846]T.

Figure 11b shows the epipolar image that re-
sults when a point just on the dark side of the
front left edge of the building is chosen as p?.
Again both �(j) and �(j; �) have a single peak
that agrees well with the depth obtained using
manual correspondence. This time, however, the
peaks are asymmetric and have much broader
tails. This is caused by the high contrast be-
tween the bright and dark faces of the building
and the lack of contrast within the dark face.
The peak in �(j; �) is slightly better than the one
in �(j).

Figure 11c shows the epipolar image that re-
sults when a point just on the bright side of the
front left edge of the building is chosen as p?.

7White indicates minimum error, black maximum.
8Some of the difference may be due to the fact that p?

was chosen by hand and might not be the exact projection
of the corner.
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Figure 11: �?
i , p?, E , �(j) and �(j; �).
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Figure 12: �?
i , p?, E , �(j) and �(j; �).
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This time �(j) and �(j; �) are substantially dif-
ferent. �(j) no longer has a single peak. The
largest peak occurs at j = 370 and the next
largest at j = 297. The manual measurement
agrees with the peak at j = 297. The peak at
j = 370 corresponds to the point where ?̀ exits
the back side of the building. �(j; �), on the other
hand, still has a single peak, clearly indicating
the usefulness of estimating �.

In Figure 12a, p? is a point from the inte-
rior of a building face. There is a clear peak in
�(j; �) that agrees well with manual measure-
ments and is better than that in �(j). In Figure
12b, p? is a point on a building face that is oc-
cluded (Figure 8) in a number of views. Both �(j)

and �(j; �) produce fairly good peaks that agree
with manual measurements. In Figure 12c, p?
is a point on a building face with very low con-
trast. In this case, neither �(j) nor �(j; �) pro-
vide clear evidence about the correct depth. The
actual depth occurs at j = 386. Both �(j) and
�(j; �) lack sharp peaks in large regions with lit-
tle or no contrast or excessive occlusion. Choos-
ing p? as a sky or ground pixel will produce a
nearly constant �(j) or �(j; �).

To further test our method, we reconstructed
the depth of a region in one of the images (Fig-
ure 13). For each pixel inside the black rectan-
gle the global maximum of �(j; �) was taken as
the depth of that pixel. Figure 14a shows the
depth for each of the 3000 pixels reconstructed

            

Figure 13: Reconstructed region.

plotted against the x image coordinate of the
pixel. Slight thickening is caused by the fact that
depth changes slightly with the y image coordi-
nate. The cluster of points at the left end (near
a depth of 7000) and at the right end correspond
to sky points. The actual depth for each pixel

was calculated from the CAD model. Figure 14b
shows the actual depths (in grey) overlaid on top
of the reconstructed values. Figure 15 shows the
same data ploted in world coordinates9. The ac-
tual building faces are drawn in grey, and the
camera position is marked by a grey line extend-
ing from the center of projection in the direction
of the optic axis. The reconstruction shown (Fig-
ures 14 and 15) was performed purely locally at
each pixel. Global constraints such as ordering
or smoothness were not imposed, and no attempt
was made to remove low confidence depths or
otherwise post-process the global maximum of
�(j; �).

4 Conclusions

This paper describes a method for generating
dense depth maps directly from large sets of im-
ages taken from arbitrary positions. The algo-
rithm presented uses only local calculations, is
simple and accurate. Our method builds, then
analyzes, an epipolar image to accumulate evi-
dence about the depth at each image pixel. This
analysis produces an evidence versus depth and
surface normal distribution that in many cases
contains a clear and distinct global maximum.
The location of this peak determines the depth,
and its shape can be used to estimate the er-
ror. The distribution can also be used to per-
form a maximum likelihood fit of models to the
depth map. We anticipate that the ability to
perform maximum likelihood estimation from
purely local calculations will prove extremely
useful in constructing three-dimensional models
from large sets of images.
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the plots.
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Figure 14: Reconstructed and actual depth
maps.
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Figure 15: Reconstructed and actual world
points.
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