
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1594 November, 1996

Direct methods for estimation of structure and
motion from three views

Gideon P. Stein and Amnon Shashua
gideon@ai.mit.edu shashua@cs.huji.ac.il

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

We describe a new direct method for estimating structure and motion from image intensities of multiple
views. We extend the direct methods of [7] to three views. Adding the third view enables us to solve for
motion, and compute a dense depth map of the scene, directly from image spatio-temporal derivatives in
a linear manner without �rst having to �nd point correspondences or compute optical 
ow.

We describe the advantages and limitations of this method which are then veri�ed through simulation and
experiments with real images.
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1 Introduction

In this paper we present a new method for comput-
ing motion and dense structure from three views. This
method can be viewed as an extension of the 'direct
methods' of Horn and Weldon [7] from two views (one
motion) to three views (two motions). These methods
are dubbed 'direct methods' because they do not require
prior computation of optical 
ow. As with other gra-
dient methods we assume small image motions on the
order of a few pixels.

Applying the constant brightness constraint [6] to the
trilinear tensor of Shashua and Werman [12, 15] results
in an equation relating camera motion and calibration
parameters to the image gradients (�rst order only). We
get one equation for each point in the image and we
have a �xed number of parameters which results in a
highly over-constrained set of equations. Starting with
the general uncalibrated model we proceed through a
hierarchy of reduced models �rst by assuming calibrated
cameras and then by assuming the Longuett-Higgins and
Prazdny small motion model [9]. This is described in
section (2). We then show how to solve the simpli�ed
model for the motion parameters (section 3).

This method has advantages over both optical 
ow
methods [9][10] and feature based methods [15]. We
combine the information from all the points in the image
and thus we avoid the aperture problem which makes
computation of optical 
ow di�cult. There is also no
need to explicitly de�ne feature points. Points which
have little or no gradient simply contribute little to the
least squares estimation. Information from all points
that have gradients is used.

These advantages are highlighted in a scene where we
have a set of vertical bars in front of a set of horizon-
tal bars and behind everything a uniform background.
In this case optical 
ow methods will fail because of
the straight bars and the aperture problem. Point fea-
ture based methods fail because the intersections of the
lines in the image, which will be detected as 'features' do
not correspond to real features in space. Many natural
scenes such as tree branches or man made objects such
as window frames, lamp posts and fences often give rise
to these problems.

Section (4) describes some of the implementation de-
tails needed to make the method work. Sections (5) and
(6) show the results of applying this method to simu-
lated and real images. The method is shown to produce
useful results in both camera motion and depth estima-
tion. Section (7) discusses some of the open questions
and suggests possible solutions.

1.1 Previous Work

The 'direct methods' were pioneered by Horn and Wel-
don in [7]. Using only a single image pair one has N
equations in N +6 unknowns, where N is the number of
points in the image, so some added constraint is needed.
Negahdaripour and Horn [11] present a closed form solu-
tion assuming a planar or quadratic surface. McQuirk [8]
shows that, assuming a pure translation model, the sub-
set of the image points with a nonzero spatial derivative
but a zero time derivative gives the direction of motion.

The FOE is on a line perpendicular to the gradient at
these points. But by using only this subset of the points
we are throwing away the information from most of the
image. Heel [5] uses multiple images from an image se-
quence. He then employs Kalman �lters to build up a
structure model from more than one image pair but the
core computation is fundamentally the same single image
pair computation.

This work is based on the work of Shashua and Hanna
[14]. Here we describe the results of implementing these
ideas in practice. During the course of implementation
various subtleties and limitations were discovered.

2 Mathematical Background

2.1 Notations

The pin-hole camera model in homogeneous coordinates
is represented by a 3�4 camera matrix A producing the
following relation: p �= Ax where x varies in 3D space, p
varies over the 2D image plane, and �= denotes equality
up to scale. Since only relative camera positioning can
be recovered from image measurements, the �rst camera
matrix (camera 0) can be represented by [I; 0]. In a
pair of views, p = [I; 0]x and p0 �= Ax, the left 3 � 3
minor of A stands for a 2D projective transformation of
the chosen plane at in�nity and the fourth column of
A stands for the epipole (the projection of the center of
camera 0 on the image plane of camera 1). In particular,
in a calibrated setting the 2D projective transformation
is the rotational component of camera motion and the
epipole is the translational component of camera motion.

We will occasionally use tensorial notations, which
are brie
y described next. We use the covariant-
contravariant summation convention: a point is an ob-
ject whose coordinates are speci�ed with superscripts,
i.e., pi = (p1; p2; :::). These are called contravariant vec-
tors. An element in the dual space (representing hyper-
planes | lines in P2), is called a covariant vector and
is represented by subscripts, i.e., sj = (s1; s2; ::::). In-
dices repeated in covariant and contravariant forms are
summed over, i.e., pisi = p1s1 + p2s2 + :::+ pnsn. This
is known as a contraction. For example, if p and s rep-
resent a coincident point and line in P2, then pisi = 0.
Vectors are also called 1-valence tensors. 2-valence ten-
sors (matrices) have two indices and the transformation
they represent depends on the covariant-contravariant

positioning of the indices. For example, a
j
i is a mapping

from points to points, and hyperplanes to hyperplanes,

because a
j
ip

i = qj and a
j
i sj = ri (in matrix form: Ap = q

and A>s = r); aij maps points to hyperplanes; and aij

maps hyperplanes to points. When viewed as a matrix
the row and column positions are determined accord-

ingly: in a
j
i and aji the index i runs over the columns

and j runs over the rows, thus bkj a
j
i = cki is BA = C in

matrix form. An outer-product of two 1-valence tensors

(vectors), aib
j, is a 2-valence tensor c

j
i whose i; j entries

are aib
j | note that in matrix form C = ba>.

Matching image points across three views will be de-
noted by p; p0; p00; the coordinates will be referred to as
pi; p0j; p00k, or alternatively as non-homogeneous image
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coordinates (x; y); (x0; y0); (x00; y00).

2.2 Strati�cation of Direct Motion Models

Three views, p = [I; 0]x; p0 �= Ax and p00 �= Bx, are
known to produce four trilinear forms whose coe�cients
are arranged in a tensor representing a bilinear function
of the camera matrices A;B:

�
jk
i = t0jbki � t00ka

j
i (1)

where A = [a
j
i ; t

0j] (a
j
i is the 3�3 left minor and t0 is the

fourth column of A) and B = [bki ; t
00k]. The tensor acts

on a triplet of matching points in the following way:

pis
�
j r

�

k�
jk
i = 0 (2)

where s
�
j are any two lines (s1j and s2j ) intersecting at p

0,

and r
�
k are any two lines intersecting p00. Since the free

indices are �; � each in the range 1,2, we have 4 trilinear
equations (which are unique up to linear combinations).
More details can be found in [4, 12, 15, 13].

Geometrically, a trilinear matching constraint is pro-
duced by contracting the tensor with the point p of im-
age 0, some line coincident with p0 in image 1, and some

line coincident with p00 in image 2. In particular, we
may use the tangent to the iso-brightness contour at p0

and p00, respectively. In other words, one can recover in
principle the camera matrices across three views in the
context of the \aperture" problem, as noticed by [16].
Alternatively, if we represent the tangent to the corre-
sponding iso-brightness contours by the instantaneous
spatio-temporal derivatives at p (shown next), we will

get a constraint equation involving the unknowns �
jk
i

and the spatio-temporal derivatives at each pixel | the
constraint is linear in the unknowns. This constraint was
introduced by [14] under the name \Tensor Brightness
Constraint". This is brie
y derived next.

We can describe any line, in particular a line through
p0, as a linear combination of the vertical (1; 0;�x0) and
horizontal (0; 1;�y0) lines. Let the coe�cients of the
linear combination be the components of the image gra-
dient Ix; Iy at (x; y) in image 0, then the line s0 has the
form:

S0 =

 
Ix
Iy

�x0Ix � y0Iy

!

The contribution of x0; y0 can be removed by using the
constant brightness equation due to [6]:

u0Ix + v0Iy + I0t = 0 (3)

where u0 = x � x0, v0 = y � y0 and I 0t is the discrete
temporal derivative at (x; y), i.e., I1(x; y)�I0(x; y) where
I1 and I0 are the image intensity values of the second
and �rst images, respectively. Following substitution we
obtain,

S0 =

 
Ix
Iy

I0t � xIx � yIy

!
(4)

Likewise, the tangent to the iso-brightness contour at p00

is,

S00 =

 
Ix
Iy

I00t � xIx � yIy

!
(5)

where I00t is the temporal derivative between images 0
and 2. The tensor brightness constraint is therefore:

s00ks
0

jp
i�

jk
i = 0: (6)

We have one such equation for each point on the im-
age where s00k and s0j can be computed from the image

gradients and p = (x; y; 1)T are the (projective) image
coordinates of the point in image 0. We wish to solve for

�
jk
i which combines the motion and camera parameters
Starting from the general model (27 parameter model)

of the constraint equation one can introduce a hierarchy
of reduced models, as follows. By enforcing small-angle
rotation on the camera motions, i.e., A = [I + [w0]x; t

0]
and B = [I + [w00]x; t

00] where w0; w00 are the angular
velocity vectors and [�]x is the skew-symmetric matrix
of vector products, the tensor brightness constraint is
reduced to a 24-parameter model which in matrix form
looks like:

I00t S
0>t0� I0tS

00>t00+S0
>
[t0w00>]V 00

�S00
>
[t00w0>]V 0 = 0;

(7)
where

V 0 = p� S0 =

 
�Iy + y(I0t � xIx � yIy)
Ix � x(I0t � xIx � yIy)

xIy � yIx

!

and

V 00 = p� S00 =

 
�Iy + y(I00t � xIx � yIy)
Ix � x(I00t � xIx � yIy)

xIy � yIx

!

If, in addition, we enforce in�nitesimal translational
motion (the Longuett-Higgins & Prazdny [9] motion
model), which results in the image motion equations:

u0 =
1

z
(t0
1
� xt0

3
)� w0

3
y +w0

2
(1 + x2)� w0

1
xy (8)

v0 =
1

z
(t0
2
� yt0

3
) + w0

3
x�w0

1
(1 + y2) + w0

2
xy

then S has the simpler form:

S =

 
Ix
Iy

�xIx � yIy

!
(9)

and

V =

 
�Iy � y(xIx + yIy )
Ix + x(xIx + yIy)

xIy � yIx

!
(10)

and we obtain a 15-parameter model of the following
form:

I00t S
T t0 � I 0tS

T t00 + ST [t0w00T
� t00w0T ]V = 0 (11)

We now have one such equation for each point in the
image. It is a set of bilinear equations in the unknowns
t0; t00; w0; w00. After solving for the camera motions (to be
described later in the paper) we can solve for the dense
depth map from the equations:

KS>t0 + V >w0 + I0t = 0 (12)

KS>t00 + V >w00 + I00t = 0 (13)

where K = 1

z
denotes inverse of the depth at each pixel

location. Equations (12)(13) are obtained by substitut-
ing (eq. 8) in equation (3) and rearranging the terms.
See [7] for more details.
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3 Solving the bilinear equation

3.1 The pure translation case

In the pure translation case equation (11) becomes:

I00t S
T t0 � I0tS

T t00 = 0 (14)

We have one such equation for each image point and we
can write it out in the matrix form:

At = 0 (15)

where:
t =

�
t0x t0y t0z t00x t00y t00z

�T
(16)

andA is anN�6 matrixwith the i0th row (corresponding
to the i0th pixel) given by:

( I00t Si1 I00t Si2 I 00t Si3 I0tSi1 I0tSi2 I0tSi3 ) (17)

Since we wish to avoid the trivial solution t = 0 we will
add the constraint ktk = 1. The least squares problem
now maps to problem of �nding ktk = 1 that minimizes:

tTATAt = 0 (18)

The solution is the eigenvector of ATA corresponding to
the smallest eigenvalue.

3.2 The general small motion case

In the general case we are confronted with the bilin-
ear equation (11). There is no standard way to solve
these bilinear problems and we have chosen to treat the
6 translation parameters and the 9 outer product terms
[t0w00T�t00w0T ] as 15 intermediate parameters. Although
they are not independent if we act as if they are, then
they can be solved for as in section (3.1) but with a
15� 15 matrix A. After recovering the 15 intermediate
parameters we compute w0 and w00 from [t0w00T � t00w0T ]
using the computed translation.

This is the general idea but it is not that simple. If we
consider the N � 15 matrix A we note that the columns
of A are not independent.

Lemma 1 The matrix A is of rank � 13.

Proof: The 7th, 11th and 15th elements along each row
add up to zero.

A(i; 7) + A(i; 11) +A(i; 15) =

= Si1Vi1 + Si2Vi2 + Si3Vi3

= S � V

= S �P � S

= 0

Therefore the vector

c0 = (0; 0; 0; 0; 0;0; 1; 0;0;0;1; 0; 0;0;1)T (19)

is in the null space of A. The correct solution vector is
also in the null space of A. Therefore the null space of
A has rank � 2 and A is of rank � 13.

The matrix A is in theory of rank 13 not 14. Suppose
we found a vector b0 in the null space of A such that
c0 � b0 6= 0. The two vectors c0 and b0 span the null
space of A and the desired solution vector b is a linear
combination of the two:

b = b0 + �c0 (20)

In order to �nd � given c0 and b0 we must apply some
constraint. We choose to enforce the constraint that the
matrix [t0w00T � t00w0T ] be of rank 2.

Clearly the choice of � will have no a�ect the �rst
6 elements of the vector b. Let us arrange the last 9
elements of b, b0 and c0 into the corresponding 3 � 3
matrices B, B0 and C0. We are now looking for an �
such that:

Rank(B0 � �C0) = 2 (21)

Since C0 in our case is the identity matrix, the solution
for � is given by the eigenvalues of B0. We choose the
one with the smallest absolute value. The vector b0 is the
eigenvector corresponding to the second smallest eigen-
value of the matrix ATA. (The vector c0 corresponds to
the smallest.)

Based on the previous arguments the algorithm for
�nding the motion parameters is as follows:

1. Compute the N � 15 matrix A from equation (11).

2. Find the eigenvector corresponding to the second
smallest eigenvalue of the matrix ATA. This is b0.

3. The �rst 6 elements of b0 are the two translations,
t0 and t00.

4. Arrange the other 9 elements of b0 into a 3 � 3
matrix B0.

5. Construct a rank 2 matrix B from B0:

B = B0 � �I (22)

6. Solve:
[t0w00T

� t00w0T ] = B (23)

for w0 and w00, given t0 and t00 from step (3).

3.3 The singular case:

This method fails when the two motions are in the same
(or opposite) directions. This is obvious in the pure
translation case. If the second translation vector t00 is
proportional to the translation vector t0 then equation
(13) is simply a scaled version of equation (12) adding
no new information. Under current research is a way to
overcome this problem (section 7) and initial results look
promising.

4 Implementation details

4.1 Iterative re�nement and coarse to �ne

processing

The constant brightness constraint is a linearized form of
the Sum Square Di�erence (SSD) criteria. The linear so-
lution can be thought of as a single iteration of Newton's
method applied to the problem. Iterative re�nement is
performed as follows: First one calculates motion and
depth using the above equations. Then, using the depth
and motion, images 1 and 2 are warped towards image
0. A correction to the depth and motion is computed
using the warped images. In the ideal case, as the �nal
result the warped images should appear nearly identical
to image 0.

We have to be careful here. If at every iteration we
compute only the correction to the motion we will end up
trying to compute very small values of �t. At this point
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our equations will be badly conditioned and highly af-
fected by noise. The idea is to devise our iterations in
such a way as to always be computing a gradually im-
proving estimate of the translation t rather than the in-
cremental improvements, but using temporal derivatives
from closer and closer images.

Let 	0, 	1 and 	2 be the three image. Assume we

have K̂ , t̂j , ŵj, from the previous iteration. The image

motions ûj and v̂j can be computed using K̂, t̂j and ŵj

in equation (8). These are then used to warp images 	1

to 	̂1 and 	2 to 	̂2. After warping, the images satisfy
the brightness constraint equation:

Ixdu
0 + Iydv

0 + Î0t = 0 (24)

Ixdu
00+ Iydv

00 + Î00t = 0

where the temporal derivatives at each pixel are given
by:

Î0t = 	̂1 �	0 (25)

Î00t = 	̂2 �	0

and duj, dvj are the (still unknown) di�erences between
computed image motions and the real image motions:

duj = uj � ûj (26)

dvj = vj � v̂j

Let:
�j = Ixû

j + Iyv̂
j (27)

which can also be written as:

�j = K̂ST t̂j + V T ŵj (28)

Substituting equations (27) and (26) in equation (24) we
get:

Ixu+ Iyv + (Î0t � �0) = 0 (29)

Ixu+ Iyv + (Î 00t � �00) = 0

Substituting equation (8) in equation (29) we get modi-
�ed versions of the equations (12) and (13)

KST t0 + V Tw0 + (I0t � �0) = 0 (30)

KST t00 + V Tw00 + (I00t � �00) = 0

We start our �rst iteration with K̂, t̂j , ŵj all zero and
therefore � = 0 as well.

In order to deal with imagemotions larger than 1 pixel
we use a Gaussian pyramid for coarse to �ne processing
[2][3].

4.2 Computing the depth, smoothing and

interpolation.

After recovering the camera motions, equations (12) and
(13) give us a way of computing the depth at every point
where ST t0 or ST t00 are non zero. In order to combine
the information from both images and to interpolate over
areas where the image gradients are small we chose an
interpolation scheme called Local Weighted Regression.
This method was chosen because it is simple to imple-
ment but could very well be replaced by other methods
such as RBF's, B-splines or thin-plate interpolation.

(a) (b)

Figure 1: The texture image (a) and simulated depth
map(b) used for simulation experiments.

Equation (31) shows the cost function used to com-
pute the depth at a given point:

minargK

X
x;y2R

X
j

�(x; y)jST tj jp
�
KST tj + V Twj + I

j
t

�2
(31)

The sum is over a region R and over the two motions
j = 1; : : : ; 2. The windowing function �(x; y) allows one
to increase the weight of the closer points. We used a
function created by convolving two box �lters together.
It is a crude approximation to a Gaussian. The jST tjjp

term reduces the weight of points which have a small gra-
dient or where the gradient is perpendicular to that cam-
era motion since these cases are highly a�ected by noise.
We used p = 1. The size of the region R depends on the
amount of smoothing and interpolation required. During
the iteration process we used a region of 5� 5 or 7� 7.
In order to get 'prettier' results, after the last iteration,
we replaced K which is a locally constant depth model
with a locally planar model K(x; y) = Kxx+Kyy +K0

and increased the region of support to 30� 30.

5 Simulation

To test the method we took the 320�240 texture image
(�g. 1a) and de�ned the depth at each point in the image
according to the equation:

Z(x; y) = 1000 + 400 �
�
sin(

x

25
) + sin(

y

50
)
�

(32)

The depth map is shown in �gure (1b). We then warped
it according to two given motions and equation (8). We
used the original image and the two warped images as
input to our algorithm and computed the motion and
depth. The motion was chosen so that the image motion
was 8 pixels or less. The �rst image was warped by a
translation of t0 = (2000; 0; 500) and no rotation. The
second image was warped by a rotation w00 = (0:5; 0; 0)
and a translation t00 = (0; 2000; 0). The rotation and
translation were chosen so that they combined to reduce
the overall motion. The focal length was f = 50.

We used 4 levels of coarse to �ne processing and 2
iterations at each level. Figure (2a) shows the recon-
structed depth map at the �nest level. Figure (2b, 2c)
shows the 3D rendering of the surface using a local con-
stant depth �t and a local planar �t respectively. Apart
from a few outliers around the edges the surface is qual-
itatively correct. Table (1) shows the given motion and
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(a) Depth map - local constant �t.

(b) Local constant �t.

(c) Local planar �t.

Figure 2: The estimated K(x; y) = 1

Z
(inverse depth)

from simulation.

Table 1: Estimated camera motion in simulation exper-
iments
Translation

real estimate
FOE 1: (360, 120 ) (369.4, 119.8)
FOE 2: (160, inf ) (170.8, 6097)
Rotation

real estimate
W1 (0,0,0) (-0.0018, 0.00034, 0.0012)
W2 (-0.5,0,0) (-0.48, 0.0055, 0.0096)

Table 2: Image coordinates of two example points in the
three images

Image 0 Image 1 Image 2
Head (255,206) (254,195) (264,206)
Cork (72,291) (70,283) (78,291)

the resulting motion estimates. The results are shown
using a 7 � 7 region for depth estimation. Varying the
size of the region from 3� 3 to 11� 11 had less than 1%
e�ect on the motion estimation.

6 Experiments with real images

6.1 Experimental procedure

The images were taken with a Phillips 1

3
inch CCD video

camera and an 8mm lens. Image capture was performed
using the SGI Indy built in frame grabber at 640� 480
pixel resolution. Figure (3a) shows one of three images
used for the experiment. The depth in the image ranged
from 450mm to 750mm. The camera was mounted on
a lightweight tripod. After taking the �rst image the
camera was lowered 3mm and a second image was taken.
The tripod was then moved a few millimeters to the right
for the third image. No special care was taken to ensure
precise motion. Image motions were 6� 11pixels. Table
(2) shows the measured image coordinates for two points
in the three images: one on the head and one on the cork
panel on the image left.

6.2 Results

The results are shown for the case where images were
processed using 4 levels of coarse to �ne processing with
2 iterations at each level. Varying the number of iter-
ations from 1 through 4 had no qualitative impact but
using a single iteration caused a small change in the re-
sulting motion estimates. A 7�7 region was used for the
local constant depth �t at all levels. Table (3) shows the
estimated camera motions. It shows that the �rst mo-
tion was along the Y axis and the second motion along
the X axis and that for both cases the rotation was neg-
ligible. This is qualitatively correct. We do not have
accurate ground truth estimates.

Figure (3b) shows the recovered depth map (in fact
this shows K(x; y) = 1

Z
). Figure (3c) shows a 3D ren-

dering of the surface K(x; y). The K values have been
scaled by 100.0. The rendering uses an orthographic
projection. In order to get smoother and more visually
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Table 3: Motion estimates from real images.

FOE 1 (-603.7, -8055)
FOE 2 (16302, 300.2)
W1 (0.00022, -0.00055, -0.0217)
W2 ( -0.00027 -0.00017 -0.00062 )

pleasing results a local planar �t was used for the �nal
stage using a 30� 30 region of support. The results are
shown in �gures (4a, 4b). There is noticeable smoothing
and overshoots at depth discontinuities and the tip of
the nose. In (4b) the texture was removed for clarity.

7 Discussion and future work

We have presented a new method for recovering struc-
ture and motion from 3 views. This method does not
require feature correspondence or optical 
ow. We have
shown, using simulation and experiments with real im-
ages, that the method can qualitatively recover depth
and motion in the general, small motion case. These re-
sults are promising but more experiments are needed to
test the accuracy of the motion estimation.

Occlusions do not pose a signi�cant problem in the
motion estimation since they take up only a small part
of the total image area. The depth estimates obtained
along the occlusion boundary will be inaccurate.

In general one can only obtain a depth estimate where
there is a gradient. In order to get a dense depth map
one must perform some form of interpolation. The local
constant or linear �t which we have used is super�cially
similar to the smoothness assumptions employed by op-
tical 
ow techniques to overcome the aperture problem.
We could bene�t from some details of these techniques
such as adaptive window size. The main di�erence is
that here, the smoothness does not a�ect our motion es-
timation and is for cosmetic reasons, while for optical

ow methods the smoothness assumption is key to the
whole process. Another di�erence is that we are smooth-
ing the depth image for which it might make sense to
assume a local planar or quadratic model. This is very
much application dependent.

There are two important theoretical questions left
open. The �rst involves solving the bilinear equation
(11). We have chosen to enforce a rank 2 constraint
on the matrix [t0w00T � t00w0T ] but there might be other
possible constraints to use. Furthermore, we make the
matrix rank 2 by subtracting �I where � is the eigen-
value closest to zero. But perhaps we should use one
of the other two eigenvalues. On the practical side, it
might be best to solve equation (11) as a nonlinear opti-
mization problem with the linear solution as the initial
guess.

The second open problem deals with the current limi-
tation that the two motions cannot be collinear since this
has been shown (section 3.3) to be a singular case. On
the other hand no such limitation exists in the discrete
case [15]. There is a question whether this is a general
phenomena resulting from using the constant brightness
equation or whether this is speci�c to the LH model.
There are two avenues to proceed. We can go back to

(a)

(b)

(c)

Figure 3: One of the three input images (a) and the
estimated K(x; y) = 1

Z
inverse depth map (b) and 3D

rendering of the surface with K scaled by 100.0 (c). Uses
7� 7 region and a local constant depth model.
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(a)

(b)

Figure 4: 3D rendering of the estimated surface
K(x; y) = 1

Z
(inverse depth) scaled by 100.0. Uses

30 � 30 region and a locally planar depth model. Note
the overshoot along the depth discontinuities around the
head.

more complex motion models described in section (2),
the 24 parameter model or even the full 27 parameter
'Tensor Brightness Constraint' equation.

Alternatively one can look again at the 'Constant
Brightness Equation' (3). In our implementation we cal-
culate Ix and Iy at image 0. Ix and Iy and therefore the
vector S are the same for both image pairs. If instead,
the derivatives were computed at image 1 and image 2
the equations (12) and (13) would give us independent
equations even in the collinear motion case.
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