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Abstract

The Support Vector Machine (SVM) is a new and very promising classi�cation technique developed by Vapnik and
his group at AT&TBell Laboratories [3, 6, 8, 24]. This new learning algorithm can be seen as an alternative training
technique for Polynomial, Radial Basis Function and Multi-Layer Perceptron classi�ers. The main idea behind the
technique is to separate the classes with a surface that maximizes the margin between them. An interesting property
of this approach is that it is an approximate implementation of the Structural Risk Minimization (SRM) induction
principle [23]. The derivation of Support Vector Machines, its relationship with SRM, and its geometrical insight,
are discussed in this paper.

Since Structural Risk Minimization is an inductive principle that aims at minimizing a bound on the generalization
error of a model, rather than minimizing the Mean Square Error over the data set (as Empirical Risk Minimization
methods do), training a SVM to obtain the maximum margin classi�er requires a di�erent objective function. This
objective function is then optimized by solving a large-scale quadratic programming problem with linear and box
constraints. The problem is considered challenging, because the quadratic form is completely dense, so the memory
needed to store the problem grows with the square of the number of data points. Therefore, training problems
arising in some real applications with large data sets are impossible to load into memory, and cannot be solved
using standard non-linear constrained optimization algorithms.

We present a decomposition algorithm that can be used to train SVM's over large data sets. The main idea
behind the decomposition is the iterative solution of sub-problems and the evaluation of, and also establish the
stopping criteria for the algorithm. We present previous approaches, as well as results and important details of our
implementation of the algorithm using a second-order variant of the Reduced Gradient Method as the solver of the
sub-problems.

As an application of SVM's, we present preliminary results in Frontal Human Face Detection in images. This
application opens many interesting questions and future research opportunities, both in the context of faster and
better optimization algorithms, and in the use of SVM's in other pattern classi�cation, recognition, and detection
applications.
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1 Introduction

In this report we address the problem of implementing a new pattern classi�cation technique recently

developed by Vladimir Vapnik and his team at AT&T Bell Laboratories [3, 6, 8, 24] and known as Support

Vector Machine (SVM). SVM can be thought as an alternative training technique for Polynomial, Radial

Basis Function and Multi-Layer Perceptron classi�ers, in which the weights of the network are found by

solving a Quadratic Programming (QP) problem with linear inequality and equality constraints, rather

than by solving a non-convex, unconstrained minimization problem, as in standard neural network training

techniques. Since the number of variables in the QP problem is equal to the number of data points, when

the data set is large this optimization problem becomes very challenging, because the quadratic form is

completely dense and the memory requirements grow with the square of the number of data points. We

present a decomposition algorithm that guarantees global optimality, and can be used to train SVM's over

very large data sets (say 50,000 data points). The main idea behind the decomposition is the iterative

solution of sub-problems and the evaluation of optimality conditions which are used both to generate

improved iterative values, and also establish the stopping criteria for the algorithm.

We demonstrate the e�ectiveness of our approach applying SVM to the problem of detecting frontal faces

in images, which involves the solution of a pattern classi�cation problem (face versus non-face patterns)

with a large data base (50,000 examples). The reason for the choice of the face detection problem as an

application of SVM is twofold: 1) the problem has many important practical applications, and received a

lot of attention in recent years; 2) the di�culty in the implementation of SVM arises only when the data

base is large, say larger than 2,000, and this problems does involve a large data base.

The paper is therefore divided in two main parts. In the �rst part, consisting of sections 2 and 3 we

describe the SVM approach to pattern classi�cation and our solution of the corresponding QP problem in

the case of large data bases. In the second part (section 4) we describe a face detection system, in which

the SVM is one of the main components. In particular, section 2 reviews the theory and derivation of

SVM's, together with some extensions and geometrical interpretations. Section 3 starts by reviewing the

work done by Vapnik et al. [5] in solving the training problem for the SVM. Section 3.1.1 gives a brief

description and references of the initial approaches we took in order to solve this problem. Section 3.2

contains the main result of this paper, since it presents the new approach that we have developed to solve

Large Database Training problems of Support Vector Machines.

Section 4 presents a Frontal Human Face Detection System that we have developed as an application of

SVM's to computer vision object detection problems.

2 Support Vector Machines

In this section we introduce the SVM classi�cation technique, and show how it leads to the formulation

of a QP programming problem in a number of variables that is equal to the number of data points. We

will start by reviewing the classical Empirical Risk Minimization approach, and showing how it naturally

leads, through the theory of VC bounds, to the idea of Structural Risk Minimization (SRM), which is a

better induction principle, and how SRM is implemented by SVM.

2.1 Empirical Risk Minimization

In the case of two-class pattern recognition, the task of learning from examples can be formulated in the

following way: given a set of decision functions

ff�(x) : � 2 �g; f� : <N ! f�1; 1g
where � is a set of abstract parameters, and a set of examples

(x1; y1); : : : ; (x`; y`); xi 2 <N
; yi 2 f�1; 1g
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drawn from an unknown distribution P (x; y), we want to �nd a function f�� which provides the smallest

possible value for the expected risk:

R(�) =

Z
jf�(x)� yj P (x; y)dxdy

The functions f� are usually called hypothesis, and the set ff�(x) : � 2 �g is called the hypothesis space

and denoted by H. The expected risk is therefore a measure of how good an hypothesis is at predicting the

correct label y for a point x. The set of functions f� could be for example, a set of Radial Basis Functions

or a Multi-Layer Perceptron with a certain number of hidden units. In this case, the set � is the set of

weights of the network.

Since the probability distribution P (x; y) is unknown, we are unable to compute, and therefore to minimize,

the expected risk R(�). However, since we have access to a sampling of P (x; y), we can compute a stochastic

approximation of R(�) , the so called empirical risk:

Remp(�) =
1

`

X̀
i=1

jf�(xi)� yij

Since the law of large numbers guarantees that the empirical risk converges in probability to the expected

risk, a common approach consists in minimizing the empirical risk rather than the expected risk. The

intuition underlying this approach (the Empirical Risk Minimization Principle) is that if Remp converges

to R, the minimum of Remp may converge to the minimum of R. If convergence of the minimum of Remp

to the minimum of R does not hold, the Empirical Risk Minimization Principle does not allow us to make

any inference based on the data set, and it is therefore said to be not consistent. As shown by Vapnik

and Chervonenkis [25, 26, 23] consistency takes place if and only if convergence in probability of Remp

to R is replaced by uniform convergence in probability. Vapnik and Chervonenkis [25, 26, 23] showed

that necessary and su�cient condition for consistency of the Empirical Risk Minimization Principle is the

�niteness of the VC-dimension h of the hypothesis space H. The VC-dimension of the hypothesis space H
(or VC-dimension of the classi�er f�) is a natural number, possibly in�nite, which is, losely speaking, the

largest number of data points that can be separated in all possible ways by that set of functions f�. The

VC-dimension is a measure of the complexity of the set H, and it is often, but not necessarily, proportional

to the number of free parameters of the classi�er f�.

The theory of uniform convergence in probability developed by Vapnik and Chervonenkis also provides

bounds on the deviation of the empirical risk from the expected risk. A typical uniform Vapnik and

Chervonenkis bound, which holds with probability 1� �, has the following form:

R(�) � Remp(�) +

vuuth

�
ln 2l

h
+ 1

�
� ln �

4

l

8� 2 � (1)

where h is the VC-dimension of f�. From this bound it is clear that, in order to achieve small expected risk,

that is good generalization performances, both the empirical risk and the ratio between the VC-dimension

and the number of data points has to be small. Since the empirical risk is usually a decreasing function

of h, it turns out that, for a given number of data points, there is an optimal value of the VC-dimension.

The choice of an appropriate value for h (which in most techniques is controlled by the number of free

parameters of the model) is crucial in order to get good performances, especially when the number of data

points is small. When using a Multilayer Perceptron or a Radial Basis Functions network, this is equivalent

to the problem of �nding the appropriate number of hidden units. This problem is known to be di�cult,

and it is usually solved by some sort of cross-validation technique.

The bound (1) suggests that the Empirical Risk Minimization Principle can be replaced by a better

induction principle, as we will see in the next section.
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2.2 Structural Risk Minimization

The technique of Structural Risk Minimization developed by Vapnik [23] is an attempt to overcome the

problem of choosing an appropriate VC-dimension. It is clear from eq. (1) that a small value of the

empirical risk does not necessarily imply a small value of the expected risk. A di�erent induction principle,

called the Structural Risk Minimization Principle, has been proposed by Vapnik [23]. The principle is

based on the observation that, in order to make the expected risk small, both sides in equation (1) should

be small. Therefore, both the VC-dimension and the empirical risk should be minimized at the same time.

In order to implement the SRM principle one needs then a nested structure of hypothesis spaces

H1 � H2 � : : : � Hn � : : :

with the property that h(n) � h(n+ 1) where h(n) is the VC-dimension of the set Hn. Then equation (1)

suggests that, disregarding logarithmic factors, the following problem should be solved:

min
Hn

0
@
Remp[�] +

s
h(n)

l

1
A (2)

The SRM principle is clearly well founded mathematically, but it can be di�cult to implement for the

following reasons:

1. The VC-dimension of Hn could be di�cult to compute, and there are only a small number of models

for which we know how to compute the VC-dimension.

2. Even assuming that we can compute the VC-dimension of Hn, it is not easy to solve the minimization

problem (2). In most cases one will have to minimize the empirical risk for every set Hn, and then

choose the Hn that minimizes eq. (2).

Therefore the implementation of this principle is not easy, because it is not trivial to control the VC-

dimension of a learning technique during the training phase. The SVM algorithm achieves this goal,

minimizing a bound on the VC-dimension and the number of training errors at the same time. In the

next section we discuss this technique in detail, and show how its implementation is related to quadratic

programming.

2.3 Support Vector Machines: Mathematical Derivation

In this section we describe the mathematical derivation of the Support Vector Machine (SVM) developed

by Vapnik [24]. The technique is introduced by steps: we �rst consider the simplest case, a linear classi�er

and a linearly separable problem; then a linear classi�er and non-separable problem, and �nally a non-linear

classi�er and non-separable problem, which is the most interesting and useful case.

2.3.1 Linear Classi�er and Linearly Separable Problem

In this section we consider the case in which the data set is linearly separable, and we wish to �nd the

\best" hyperplane that separates the data. For our purposes, linearly separable means that we can �nd a

pair (w; b) such that:

w � xi + b � 1 8xi 2 Class 1 (3)

w � xi + b � �1 8xi 2 Class 2 (4)

The hypothesis space in this case is therefore the set of functions given by

fw;b = sign(w � x+ b) (5)
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Notice that if the parameters w and b are scaled by the same quantity, the decision surface given by (5)

is unchanged. In order to remove this redundancy, and to make each decision surface correspond to one

unique pair (w; b), the following constraint is imposed:

min
i=1;:::;`

jw � xi + bj = 1 (6)

where x1; : : : ;x` are the points in the data set. The set of hyperplanes that satisfy (6) are called Canonical

Hyperplanes. Notice that all linear decision surfaces can be represented by Canonical Hyperplanes, and

constraint (6) is just a normalization, which will prove to be very convenient in the following calculations.

If no further constraints are imposed on the pair (w; b) the VC-dimension of the Canonical Hyperplanes is

N + 1 [24], that is, the total number of free parameters. In order to be able to apply the Structural Risk

Minimization Principle we need to construct sets of hyperplanes of varying VC-dimension, and minimize

both the empirical risk (the training classi�cation error) and the VC-dimension at the same time. A

structure on the set of canonical hyperplanes is de�ned by constraining the norm of the vector w. In fact,

Vapnik shows that, if we assume that all the points x1; : : : ;x` lie in the unit N -dimensional sphere, the set

ffw;b = sign(w � x+ b) j kwk � Ag (7)

has a VC-dimension h that satis�es the following bound [24] [23]:

h � minfdA2e; Ng+ 1 (8)

If the data points lie inside a sphere of radius R, then (8) becomes h � minfdR2
A
2e; Ng + 1. The

geometrical reason for which bounding the norm of w constraints the set of canonical hyperplanes is very

simple. It can be shown that the distance from a point x to the hyperplane associated to the pair (w; b)

is:

d(x;w; b) =
jx �w + bj
kwk (9)

According to the normalization (6) the distance between the canonical hyperplane (w; b) and the closest

of the data points is simply 1
kwk . Therefore, if kwk � A then the distance of the canonical hyperplane to

the closest data point has to be larger than 1
A
. We can then conclude that the constrained set of canonical

hyperplanes of eq. (7) is the set of hyperplanes whose distance from the data points is at least 1
A
. This is

equivalent to placing spheres of radius 1
A
around each data point, and consider only the hyperplanes that

do not intersect any of the spheres, as shown in �gure (1).

If the set of examples is linearly separable, the goal of the SVM is to �nd, among the Canonical Hyperplanes

that correctly classify the data, the one with minimum norm, or equivalently minimum kwk2, because
keeping this norm small will also keep the VC-dimension small. It is interesting to see that minimizing

kwk2 (in this case of linear separability) is equivalent to �nding the separating hyperplane for which

the distance between the two convex hulls (of the two classes of training data), measured along a line

perpendicular to the hyperplane, is maximized. In the rest of this paper, this distance will be referred to

as the margin. Figure (2) gives some geometrical interpretation of why better generalization is expected

from a separating hyperplane with large margin.

To construct the maximum margin or optimal separating hyperplane, we need to correctly classify the

vectors xi of the training set

(x1; y1); : : : ; (x`; y`); xi 2 <N

into two di�erent classes yi 2 f�1; 1g, using the smallest norm of coe�cients. This can be formulated as

follows:
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1/A

||w|| < A

Figure 1: Bounding the norm of w is equivalent to constraint the hyperplanes to remain outside spheres

of radius 1
A
centered around the data points.

Minimize �(w) =
1

2
kwk2

w; b

subject to

yi(w � xi + b) � 1 i = 1 : : :`

(10)

At this point, this problem can be solved using standard Quadratic Programming (QP) optimization

techniques and is not very complex since the dimensionality is N + 1. Since N is the dimension of the

input space, this problem is more or less tractable for real applications. Nevertheless, in order to easily

explain the extension to nonlinear decision surfaces (which will be described in section 2.3.3), we look at

the dual problem, and use the technique of Lagrange Multipliers. We construct the Lagrangian

L(w; b;�) =
1

2
kwk2 �

X̀
i=1

�i[yi(w � xi + b)� 1]; (11)

where � = (�1; : : : ; �`) is the vector of non-negative Lagrange multipliers corresponding to the constraints

in (10).

The solution to this optimization problem is determined by a saddle point of this Lagrangian, which has

to be minimized with respect to w and b, and maximized with respect to � � 0. Di�erentiating (11) and

setting the results equal to zero we obtain:

@L(w; b;�)

@w
= w �

X̀
i=1

�iyixi = 0 (12)
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(a) (b)

Figure 2: (a) A Separating Hyperplane with small margin. (b) A Separating Hyperplane with larger

margin. A better generalization capability is expected from (b).

@L(w; b;�)

@b

=
X̀
i=1

�iyi = 0 (13)

Using the superscript � to denote the optimal values of the cost function, from equation (12) we derive:

w� =
X̀
i=1

�
�
i yixi (14)

which shows that the optimal hyperplane solution can be written as a linear combination of the training

vectors. Notice that only those training vectors xi with �i > 0 contribute in the expansion (14).

Substituting (14) and (13) into (11) we obtain:

F (�) =
X̀
i=1

�i � 1

2
kw�k2 =

X̀
i=1

�i � 1

2

X̀
i=1

X̀
j=1

�i�jyiyjxi � xj (15)

Writing (15) in matrix notation, incorporating non-negativity of � and constraint (13) we get the following

dual quadratic program:

Maximize F (�) = � � 1 � 1

2
� �D�

subject to

� � y = 0

� � 0

where y = (y1; : : : ; y`) and D is a symmetric `� ` matrix with elements Dij = yiyjxi � xj .
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Notice that complementary slackness conditions of the form:

�
�
i [yi(w

� � xi + b
�)� 1] = 0 i = 1; : : : ; ` (16)

imply that �i > 0 only when constraint (10) is active. The vectors for which �i > 0 are called Support

Vectors. From equation (16) it follows that b� can be computed as:

b

� = yi �w� � xi
for any support vector xi. By linearity of the dot product and equation (14), the decision function (5) can

then be written as:

f(x) = sign

 X̀
i=1

yi�
�
i (x � xi) + b

�
!

(17)

2.3.2 The Soft Margin Hyperplane: Linearly Non-Separable Case

We now consider the case in which we still look for a linear superating surface, but a separating hyperplane

does not exist, so that it is not possible to satisfy all the constraints in problem (10). In order to deal

with this case one introduces a new set of variables f�ig`i=1, that measure the amount of violation of the

constraints. Then the margin is maximized, paying a penalty proportional to the amount of constraint

violations. Formally, one solves the following problem:

Minimize �(w;�) =
1

2
kwk2 + C(

X̀
i=1

�i)
k (18)

w; b;�

subject to

yi(w � xi + b) � 1� �i i = 1; : : : ; ` (19)

�i � 0 i = 1; : : : ; ` (20)

where C and k are parameters which have to be determined beforehand and de�ne the cost of constraints

violation. Other monotonic convex functions of the errors can be de�ned (see [8] for the more general case).

Notice that minimizing the �rst term in (18) amounts to minimizing the VC-dimension of the learning

machine, thereby minimizing the second term in the bound (1). On the other hand, minimizing the second

term in (18) controls the empirical risk, which is the �rst term in the bound (1). This approach, therefore,

constitutes a practical implementation of Structural Risk Minimization on the given set of functions. In

order to solve problem (18), we construct the Lagrangian:

L(w; b;�;�;�) =
1

2
kwk2 �

X̀
i=1

�i[yi(w � xi + b)� 1 + �i]�
X̀
i=1

i�i + C(
X̀
i=1

�i)
k
; (21)

where the non-negative multipliers � = (�1; : : : ; �`) and � = (1; : : : ; `) are associated with constraints

(19) and (20) respectively. The solution to this problem is determined by the saddle point of this La-

grangian, which has to be minimized with respect to w, � and b, and maximized with respect to � � 0

and � � 0. Di�erentiating (21) and setting the results equal to zero, we obtain:

@L(w; b;�;�;�)

@w
= (w�

X̀
i=1

�iyixi) = 0 (22)
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@L(w; b;�;�;�)

@b

=
X̀
i=1

�iyi = 0 (23)

@L(w; b;�;�;�)

@�
=

8<
: kC

�P`
i=1 �i

�k�1 � �i � i = 0 k > 1

C � �i � i = 0 k = 1:
(24)

When k > 1, by denoting

X̀
i=1

�i =

�
�

Ck

� 1

k�1

; (25)

we can rewrite equation (24) as:

� � �i � i = 0: (26)

From equation (22) we obtain:

w� =
X̀
i=1

�

�
i yixi (27)

Substituting (27), (23) and (25) into (21) we obtain:

F (�; �) =
X̀
i=1

�i �
X̀
i=1

X̀
j=1

�i�jyiyjxi � xj � �

k

k�1

(kC)
1

k�1

�
1� 1

k

�
(28)

Therefore, in order to obtain the Soft Margin separating hyperplane we solve:

Maximize F (�; �) = � � 1� 1
2
� �D�� �

k

k�1

(kC)
1

k�1

�
1� 1

k

�
subject to

� � y = 0

� � �1

� � 0

(29)

where y = (y1; : : : ; y`) and D is a symmetric `� ` matrix with elements Dij = yiyjxi � xj .
When k = 1, that is, penalizing linearly the violations in constraint (19), the set of equations (29) simpli�es

to:

Maximize F (�) = � � 1� 1
2
� �D�

subject to

� � y = 0

� � C1

� � 0

(30)

The value k = 1 is assumed for the rest of this paper, since it simpli�es the mathematical formulation and

has shown very good results in practical applications. By the linearity of the dot product and equation

(27), the decision function (5) can be written as:

f(x) = sign

 X̀
i=1

yi�
�
i (x � xi) + b

�
!

(31)
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where b� = yi �w� �xi, for any support vector xi such that 0 < �i < C (that is a support vector which is

correctly classi�ed). In order to verify this, notice that complementary slackness in the conditions of the

form:

�
�
i [yi(w

� � xi + b
�)� 1 + �i] = 0 i = 1; : : : ; ` (32)

imply that �i > 0 only when constraint (19) is active, establishing the need for �i > 0. On the other hand,

(19) can be active due to �i > 0, which is not acceptable since xi would be a misclassi�ed point. For k = 1

in equation (24) we have i = C � �i. Since i is the multiplier associated with constraint (20), i > 0

implies �i = 0, establishing the su�ciency of �i < C. Notice that this is a su�cient condition, since both

i and �i could be equal to zero.

Note:

Our calculation above of the threshold value b assumes the existence of some �i such that 0 < �i < C.

We have not found a proof yet of the existence of such �i, or conditions under which it does not exist.

However, we think this is a very reasonable assumption, because it is equivalent to the assumption that

there is at least one support vector which is correctly classi�ed. So far our computational results indicate

that this assumption is correct, and we will use it in the rest of this paper.

2.3.3 Nonlinear Decision Surfaces

Previous sections have only treated linear decision surfaces, which are de�nitely not appropriate for many

tasks. The extension to more complex decision surfaces is conceptually quite simple, and is done by mapping

the input variable x in a higher dimensional feature space, and by working with linear classi�cation in that

space. More precisely, one maps the input variable x into a (possibly in�nite) vector of \feature" variables:

x! �(x) = (a1�(x); a2�2(x); : : : ; an�n(x); : : :) (33)

where fang1n=1 are some real numbers and f�ng1n=1 are some real functions1. The Soft Margin version of

SVM is then applied, substituting the variable x with the new \feature vector" �(x). Under the mapping

(33) the solution of a SVM has the form:

f(x) = sign (�(x) �w� + b

�)) sign

 X̀
i=1

yi�
�
i�(x) � �(xi) + b

�
!

(34)

A key property of the SV machinery is that the only quantities that one needs to compute are scalar

products, of the form �(x) � �(y). It is therefore convenient to introduce the so-called kernel function K:

K(x;y)� �(x) � �(y) =
1X
n=1

a

2
n�n(x)�n(y) (35)

Using this quantity the solution of a SVM has the form:

f(x) = sign

 X̀
i=1

yi�
�
iK(x;xi) + b

�
!

(36)

and the quadratic programming problem (30) becomes:

1The numbers fang
1

n=1 are clearly unnecessary, and could be absorbed in the de�nition of the f�ng
1

n=1, but we use them
here just because they make the formulation easier.
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Maximize F (�) = � � 1� 1
2� �D�

subject to

� � y = 0

� � C1

� � 0

(37)

where D is a symmetric, semi-positive de�nite, ` � ` matrix with elements Dij = yiyjK(xi;xj). Notice

that the decision surface (36) is now a nonlinear function, given by linear superposition of kernel functions,

one for each support vector. The idea of expanding the input space in a feature space is therefore useful

only if we �nd some solution to the following problem: starting from the feature space or starting from the

kernel.

Problem 2.1 Find a set of coe�cients fang1n=1 and a set of features f�ng1n=1 such that:

1. the scalar product K(x;y) = �(x) � �(y) is well de�ned (for example the series converges uniformly);

2. the scalar product K(x;y) = �(x) � �(y) is easy to compute as a function of x and y;

In addition to these requirements, we also should require the features �i to be such that the scalar product

K(x;y) de�nes a class of decision surfaces which is \rich" enough (for example includes some well-known

approximation schemes). There are two di�erent approaches to this problem.

Starting from the feature space

One approach consists in choosing carefully a set of features with \good" properties. For example, an

obvious choice would be to take as features �i(x) monomials in the variable x up to a certain degree.

Assuming, for simplicity, to work in a one-dimensional space, one could choose:

�(x) = (1; x; x2; : : : ; xd)

where d could be very high, and the coe�cients ai are all equal to one. In this case the decision surface

is linear in the components of �, and therefore a polynomial of degree d in x. This choice is unfortunate,

however, because the scalar product

�(x) � �(y) = 1 + xy + (xy)2 + : : : (xy)d

is not particularly simple to compute when d is high. However, it is easy to see that, with a careful choice

of the parameters ai things simplify. In fact, choosing

an =

 
d

n

!

it is easy to see that

�(x) � �(y) =
dX

n=0

 
d

n

!
(xy)n = (1 + xy)d

which considerably reduces the computation. A similar result, although with a more complex structure of

the coe�cients an, is true in the multivariable case, where the dimensionality of the feature space grows

very quickly with the number of variables. For example, in two variables we can de�ne:

�(x) = (1;
p
2 x1;

p
2 x2; x

2
1; x

2
2;

p
2 x1x2) (38)

In this case it is easy to see that:

11



K(x;y) = �(x) � �(y) = (1 + x � y)2 (39)

It is straightforward to extend this example to the d-dimensional case. For example, in 3 dimensions we

have:

�(x) = (1;
p
2 x1;

p
2 x2;

p
2 x3; x

2
1; x

2
2; x

2
3;

p
2 x1x2;

p
2 x1x3;

p
2 x2x3)

and the scalar product is still of the form of eq. (39). Still in 2 dimension we can use features which are

monomials of degree 3:

�(x) = (1;
p
3 x1;

p
3 x2;

p
3 x21;

p
3 x22;

p
6x1x2;

p
3 x21x2;

p
3 x1x

2
2; x

3
1 ; x

3
2 )

and it can be shown that:

K(x;y) = (1 + x � y)3

It can also be shown that if the features are monomials of degree less or equal to d, it is always possible to

�nd numbers an in such a way that the scalar product is

K(x;y) = (1 + x � y)d (40)

In the following we provide a few more examples of how one could choose the features �rst, and then, with

a careful choice of the coe�cients an, arrive at an analytical expression for the kernel K.

In�nite dimensional feature spaces

We consider one dimensional examples. Multidimensional kernels can be built using tensor products of

one-dimensional kernels.

1. Let x 2 [0; �] and let us consider the following feature space:

�(x) = (sin(x);
1p
2
sin(2x);

1p
3
sin(3x); : : : ;

1p
n

sin(nx); : : :)

Then

K(x; y) = �(x) � �(x) =
1X
n=1

1

n

sin(nx) sin(ny) =
1

2
log

�����sin
x+y
2

sin x�y
2

�����
which corresponds to the choice an = 1p

n
.

2. Let x 2 [0; 2�], h a positive number such that h < 1, and let us consider the following feature space:

�(x) = (1; h
1

2 sin(x); h
1

2 cos(x); h sin(2x); h cos(2x); : : : ; h
n

2 sin(nx); h
n

2 cos(nx); : : :)

Then

K(x; y) = �(x) � �(x) = 1 +

1X
n=1

h
n sin(nx) sin(ny) +

1X
n=1

h
n cos(nx) cos(ny) =

=
1

2�

1� h
2

1� 2h cos(x� y) + h
2

which corresponds to the choice an = h

n

2 .
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3. In the two examples above we have an in�nite number of features, but countable. We can also construct

cases in which the number of features is in�nite and uncountable. Let us consider the following map:

�(x) =

�q
~
G(s)eix�s j s 2 R

d

�

where ~
G(s) is the Fourier Transform of a positive de�nite function, and where we work, for simplicity,

with complex features. This corresponds to a kernel

K(x;y) = �(x) � �(y) =
Z
Rd

ds ~
G(s)ei(x�y)�s = G(x� y):

which corresponds to a continuum of coe�cients a(s) =

q
~
G(s).

Starting from the kernel

Another approach consists in looking for a kernel which is known to have a representation of the form (35)

for some set of �i, but whose explicit analytic form may not be known.

In order to �nd a solution to this problem we need some preliminary facts. Let us call positive de�nite

kernel any function K(x;y) on 
� 
, with 
 � R
d, with the property that:

nX
i;j=1

K(xi;xj)cicj � 0 8xi;xj 2 
 ; 8ci; cj 2 R (41)

In the following, we will assume that 
 � [a; b]d The kernel K de�nes an integral operator that is known

to have a complete system of orthonormal eigenfunctions:Z


dy K(x;y)�n(y) = �n�n(x) (42)

In 1976, Stewart [20] reported that, according to a theorem of Mercer from 1909 [13] the following state-

ments are equivalent:

1. The function K(x;y) is a positive de�nite kernel;

2. Z
[a;b]d

dxdy K(x;y)g(x)g(y)� 0 8g 2 C([a; b]d)

3. The eigenvalues �n in eq. (42) are all positive;

4. The series

K(x;y) =

1X
n=1

a

2
n�n(x)�n(y)

(where a2n =
1
�n

) converges absolutely and uniformly.

This leads to the following:

Statement 2.1 Any feature vector �(x) = (a1�(x); �2(x); : : : ; �n(x); : : :) such that the fang1n=1 and the

f�ng1n=1 are respectively the eigenvalues and the eigenfunctions of a positive de�nite kernel K(x;y) will

solve problem (2.1), and the scalar product �(x) � �(y) has the following simple expression:

�(x) � �(y) = K(x;y)
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A number of observations are in order:

� Vapnik (1995) uses the condition (2) above to characterize the kernels that can be used in SVM.

De�nition (41) can be used instead, and might be more practical to work with if one has to prove the

\admissibility" of a certain kernel.

� There is another result similar to Mercer's one, but more general. Young (1909) proves that a kernel

is positive de�nite if and only if

Z


dxdy K(x;y)g(x)g(y)� 0 8g 2 L1(
)

� The kernels K that can be used to represent a scalar product in the feature space are closely related

to the theory of Reproducing Kernel Hilbert Spaces (RKHS) (see appendix A in (Girosi, 1997)[9]). In

fact, in 1916 Moore [15] considers a more general setting for positive de�nite kernels, and replaces 


in eq. (41) with any abstract set E. He calls these functions positive Hermitian matrices and shows

that to any such K one can associate a RKHS.

In table (1) we report some commonly used kernels.

Kernel Function Type of Classi�er

K(x;y) = exp(�kx� yk2) Gaussian RBF

K(x;y) = (1 + x � y)d Polynomial of degree d

K(x;y) = tanh(x � y� �)

(only for some values of �) Multi Layer Perceptron

Table 1: Some possible kernel functions and the type of decision surface they de�ne.

2.4 Additional Geometrical Interpretation

Just as Figure (2) shows why better generalization is expected from maximizing the margin, one should

wonder: do the support vectors have any geometrical common characteristic? Are they just scattered

points used in a linear combination? It turns out that they are not.

In order to �nd the optimal decision surface, the support vector training algorithm tries to separate, as

best as possible, the clouds de�ned by the data points from both classes.

Particularly, one would expect points closer to the boundary between the classes to be more important in

the solution than data points that are far away, since the �rst are harder to classify. These data points,

in some sense, help shape and de�ne better the decision surface than other points. Therefore, the support

vectors are from a geometrical point of view border points.

A direct consequence of the preceding argument delivers another important geometrical and algorithmic

property, which is that, usually, the support vector are very few.

These ideas can be justi�ed algebraically through the optimality conditions derived in section 3.2.1.

Figure (3) shows examples of the preceding geometrical interpretations with polynomial and RBF classi�ers.

2.5 An Interesting Extension: A Weighted SVM

The original formulation of the SVM in the existing literature can be extended to handle two frequent

cases in pattern classi�cation and recognition:

� An unequal proportion of data samples between the classes.

� A need to tilt the balance or weight one class versus the other, which is very frequent when a classi�-

cation error of one type is more expensive or undesirable than other.

14



(a) (b)

Figure 3: Decision Surfaces given in (a) by a polynomial classi�er, and in (b) by a RBF, where the

Support Vectors are indicated in dark �ll. Notice the reduce number of them and their position close to

the boundary. In (b), the Support Vectors are the RBF centers.

The way to derive this extension is to allow equation (37) to be:

Maximize F (�) = � � 1� 1
2
� �D�

subject to

� � y = 0

�i � C
+1 for yi = +1

�i � C
�1 for yi = �1

� � 0

(43)

where y = (y1; : : : ; y`), D is a symmetric `x` matrix with elements Dij = yiyjK(xi;xj), and C
+ and C

�

are positive constants.

Equation (18) for k = 1 now becomes:

min �(w;�) =
1

2
kwk2+ C

+(
X

i:yi=+1

�i) + C

�(
X

i:yi=�1
�i) (44)

and equations (19) and (20) remain unchanged.

The quadratic program (43) can be interpreted as penalizing with higher penalty (C+ or C�) the most
undesirable type of error through equation (44) . It is also important to notice that this extension has no

real impact on the complexity of the problem of �nding the optimal vector of multipliers �, since only the

bounding box constraints have changed.

Notice that this extension could be changed even further to allow, for example, higher values of C for

highly reliable or valuable data points and lower values for data points of less con�dence or value.

3 Training a Support Vector Machine

Solving the quadratic program (37) determines the value of �� and therefore the desired decision surface

given by equation (34).This optimization process is referred to as Training a Support Vector Machine. This
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section covers previous, current, and possible future approaches in solving this problem.

One important characteristic of (37) is that the quadratic form matrix D that appears in the objective

function ( even though symmetric ) is completely dense and with size square in the number of data vectors.

This fact implies that due to memory and computational constraints, problems with large data sets (above

� 5,000 samples) cannot be solved without some kind of data and problem decomposition.

Section 3.1 deals with approaches to solving small problems, both because they constitute a natural �rst

step, and also because the decomposition algorithm described in section 3.2 iteratively solves small sub-

problems of the type given by (37).

3.1 Previous Work

The training of a SVM with small data sets was �rst approached by Vapnik et al. [5] using a constrained

conjugate gradient algorithm. Briey described, conjugate gradient ascent was used to explore the feasible

region until the step would move the solution outside of it. When that happened, the largest step along

the conjugate direction was taken, while maintaining feasibility. Every time a variable �i reached 0,

the corresponding data point was removed (therefore reducing and approximating the solution) and the

conjugate gradient process was re-started.

The next approach taken by Vapnik et al. [5], was to adapt to this problem the algorithm for bounded

large-scale quadratic programs due to Mor�e and Toraldo [16]. Originally, this algorithm uses conjugate

gradient to explore the face of the feasible region de�ned by the current iterate, and gradient projection

to move to a di�erent face. The main modi�cation was to only consider binding (and therefore frozen)

those variables that were equal to one of the bounds and for which movement along the gradient would

take them outside the feasible region.

During the process of this research, the training problem for small data sets has been approached with

two di�erent algorithms and three computer packages: Zoutendijk's method of feasible directions, ( using

CPLEX to solve the LP's ), GAMS/MINOS ( using GAMS as the modeling language and MINOS 5.4

as the solver ), and a second-order variant of the reduced gradient method ( algorithm implemented in

MINOS 5.4 ). A summary of these approaches and some computational results are reported next:

3.1.1 Methods Description

Zoutendijk's Method (case of linear constraints) [29][1]:

In order to solve a nonlinear problem of the form:

Maximize f(x)

subject to

Ax � b

Ex = e

(45)

this method follows the following skeletal approach:

1. Find x1 with A1x1 = b1, A2x1 < b2 and Ex1 = e, partitioning A
T = [AT

1 ; A
T
2 ] and b = [b1;b2]. Let

k = 1.

2. Given xk, A1xk = b1 and A2xk < b2, �nd dk, the optimal solution of:

Maximize rf(xk) � d
subject to

A1d � 0

Ed = 0

�1 � d � 1

(46)

3. If rf(xk) � dk = 0, Stop. Else go to 4.
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4. Find a step-size �k , solution to:

Maximize f(xk + �d)

subject to

0 � � � �max

(47)

where

�max =

8<
: min

d̂i>0
( b̂i
d̂i
) if d̂ 6� 0

1 if d̂ � 0

with b̂ = b2 �A2xk and d̂ = A2dk.

5. Let xk+1 = xk + �kdk. Let k = k + 1. Go to step 2.

Step 2 involves solving a linear program, which is usually very easy to .In the case of training a SVM, step

2 becomes:

Maximize f(d) = (1�D�k) � d
subject to

� � d = 0

�1 � di � 0 for �i = C

0 � di � 1 for �i = 0

�1 � di � 1 otherwise

(48)

and step 4 selects �k = min(�opt; �max), where:

�opt =
d � 1� d �D�
�2d �Dd and �max = min

di 6=0
f min
�i<C;di>0

(
C � �i

di

); min
�i>0;di<0

(
��i
di

)g

One interesting modi�cation that was done to this algorithm in order to help its speed in the computer

implementation, was to solve the problem several times with increasing upper bound C. The starting value

of C was usually very low, and it was scaled several times until it reached the original value. The solutions

were also scaled and used as a starting point for the following iteration.

From a computational point of view, this method behaved a lot better than a naive constrained conjugate

gradient implementation, both in terms of speed and graceful degradation with the increase of C.

On the other hand, this implementation had serious di�culties in cases where most of the �i's were strictly

between their bounds. The zigzagging and slow convergence it presented allowed GAMS/MINOS and

MINOS 5.4 to outperform it by several orders of magnitude.

GAMS/MINOS:

GAMS is a modeling language that allows fast description and maintainability of optimization problems.

As a language, GAMS generates the speci�ed model and calls a user-speci�ed solver, depending on the

type of problem at hand. In the case of nonlinear programs, MINOS is one of these solvers.

The work done with GAMS/MINOS was very important. At the beginning, it o�ered a veri�cation of the

implementation of Zoutendijk's method and a point of comparison in terms of speed and accuracy, but

most important, it later pointed to the idea of using MINOS 5.4 directly, without the overhead that GAMS

could represent.

Another reason for considering important the work done with GAMS/MINOS was the improvement in the

training speed due to a problem reformulation. The original problem given by (37) can be rewritten as:
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Maximize F (�;
) = � � 1� 1
2
� �


�;


subject to

� � y = 0

D� = 


� � C1

� � 0

(49)

Although strange at �rst sight, this transformation allows a much faster function and gradient evalua-

tion, and was responsible for an important speedup in both steps of the solution (model generation and

optimization). This was enough reason to use it as the formulation when using MINOS 5.4.

MINOS 5.4:

MINOS 5.4 solves nonlinear problems with linear constraints using Wolfe's Reduced Gradient algorithm in

conjunction with Davidson's quasi-Newton method. Details of its implementation are described by Murtagh

and Saunders in [17], and MINOS 5.4 User's Guide [18] and Bazaraa et al. [1] present an overview with

some heuristics and comparisons.

Wolfe's Reduced Gradient method depends upon reducing the dimensionality of the problem by represent-

ing all variables in terms of an independent set of them. Under non-degeneracy assumptions (to facilitate

this brief description), a program of the form:

Minimize f(x)

subject to

Ax = b

x � 0

can be decomposed into A = [B;N ] ; x = (xB;xN) with B non-singular, xB > 0 and xN � 0.

By denoting the gradient rf(x) = (rBf(x);rNf(x)) and a direction vector d = (dB;dN), the system

Ad = 0 holds for any choice of dN by letting dB = �B�1dN .
De�ning r = (rB; rN) � rf(x)�rBf(x)B

�1
A = (0;rNf(x)�rBf(x)B

�1
N) as the reduced gradient,

it follows that rf(x) � d = rN � dN . Therefore, in order to have a feasible direction d to be an improving

feasible direction (feasibility and rf(x) � d < 0), a vector dN must be chosen such that rN � dN < 0 and

dj � 0 for xj = 0. This can be accomplished by choosing dB = �B�1d
N
and:

d
Nj

=

(
�rj if rj � 0

�xjrj if rj > 0

for j 2 N .After determining the improving feasible direction d, a line-search procedure is used to determine

the step-size, and an improved solution is obtained.

Reduced gradient methods allow all components of dN to be non-zero. On the opposite side, for example,

the simplex method for linear programming examines a similar direction-�nding problem, but allow only

one component of dN to be non-zero at a time. It is interesting to see that although the second strategy

looks too restrictive, the �rst one also can result in a slow progress, as sometimes only small step-sizes are

possible due to the fact that many components are changing simultaneously.

In order to reach a compromise between the two strategies mentioned above, the set of non basic variables

xN can be further partitioned into (xS ;xN 0), with the corresponding decomposition of N = [S;N 0] and
dN = (dS ;dN 0). The variables xs are called superbasic variables, and are intended to be the driving force

of the iterates while xN 0 is �xed and xB is adjusted to maintain feasibility [17].

Notice that the direction vector d can be accordingly decomposed through a linear operator Z of the form:

d =

2
64 dB
dS
dN 0

3
75 =

2
64 �B�1

S

I

0

3
75dS � ZdS (50)
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and now the search direction along the surface of the active constraints is characterized as being in the

range of a matrix Z which is orthogonal to the matrix of constraint normals, i.e.,

AZ =
�
B; S;N

0�
2
64 �B�1

S

I

0

3
75 = 0: (51)

By expressing the directional derivative rf(x) � d as:

rf(x) � d = rf(x) �ZdS = [rSf(x)�rBf(x)B
�1
S]dS = rS � dS (52)

where rS = rSf(x)� rBf(x)B
�1
S, and the direction �nding problem can therefore be reduced to:

Minimize rS � dS
subject to

�xj jrj j � dj � jrjj for xj superbasic:

(53)

Given that the direction �nding problem described by equation (53) uses a linear approximation to the

objective function, slow and zigzagging convergence is likely to happen when the contours of f are at or

thin in some directions. Therefore, we would expect faster convergence when this approach is upgraded

by taking a second-order approximation to f . More formally, the goal is to minimize a second-order

approximation to the direction �nding problem given by:

f(x) +rf(x) � d+ 1

2
d �H(x)d (54)

over the linear manifold Ad = 0.

Using equations (52) and (50), (54) transforms into:

minfrS � dS + 1

2
dS � ZT

H(x)ZdSg (55)

where the matrix ZT
H(x)Z is called the reduced Hessian.

Setting the gradient of (55) equal to zero results in the system of equations:

Z

T
H(x)ZdS = �rS (56)

Once dS is available, a line-search along the direction d = ZdS is performed and a new solution is obtained.

MINOS 5.4 implements (56) with certain computational highlights [17]:

1. During the algorithm, if it appears that no more improvement can be made with the current partition

[B; S;N 0], that is, krSk < ", for a suitably chosen tolerance level ", some of the non-basic variables

are added to the superbasics set. Using a Multiple Pricing option, MINOS allows the user to specify

how many of them to incorporate.

2. If at any iteration a basic or superbasic variable reaches one of its bounds, the variable is made

non-basic.

3. The matrices Z, H(x) and Z
T
H(x)Z are never actually computed, but are used implicitly

4. The reduced Hessian matrix ZT
H(x)Z is approximated by RT

R, where R is a dense upper triangular

matrix.

5. A sparse LU factorization of the basis matrix B is used.
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3.1.2 Computational Results

In order to compare the relative speed between these methods, two di�erent problems with small data-sets

were solved in the same computational environment:

1. Training a SVM with a linear classi�er in the Ripley data-set. This data-set consists of 250 samples

in two dimensions which are not linearly separable. Table 2 shows the following points of comparison:

� The di�erence between GAMS/MINOS used in the original problem and in the transformed

version (49).

� The performance degradation su�ered by the conjugate gradient implementation under the in-

crease of the upper bound C, and on the opposite hand, the negligible e�ect on GAMS/MINOS

(modi�ed) and MINOS 5.4.

� A considerable advantage in performance by MINOS 5.4.

2. Training a SVM with a third degree polynomial classi�er on the Sonar data-set. This data-set consists

of 208 samples in 60 dimensions which are not linearly separable, but are polynomially separable. The

results of this experiments are shown in Table 3 and exhibit the following points of comparison:

� The di�culty experienced by �rst-order methods like Zoutendijk's method to converge when the

values of the �i's are strictly between the bounds.

� The clear advantage in solving the problem directly with MINOS 5.4, removing the overhead

created by GAMS and incorporating the knowledge of the problem into the solution process

through, for example, fast and exact gradient evaluation, use of symmetry in the constraint

matrix, etc.

� Again, a negligible e�ect of the upper bound C on the performance, when using MINOS.

An important computational result is the sub-linear dependence of the training time with the dimensionality

of the input data. In order to show this dependence, Table 4 presents the training time for randomly-

generated 2,000 data-points problems, with di�erent dimensionality, separability, and upper bound C.

Methods

C Conjugate Gradient Zoutendijk GAMS/MINOS GAMS/MINOS Modi�ed MINOS 5.4

10 23.9 sec 12.4 sec 906 sec 17.6 sec 1.2 sec

100 184.1 sec 37.9 sec 1068 sec 19.7 sec 1.4 sec

10000 5762.2 sec 161.5 sec 1458 sec 22.6 sec 2.3 sec

Table 2: Training time on the Ripley data-set for di�erent methods and upper bound C. GAMS/MINOS

Modi�ed corresponds to the reformulated version of the problem.

Methods

C Zoutendijk GAMS/MINOS Modi�ed MINOS 5.4

10 4381.2 sec 67.0 sec 3.3 sec

100 N/A 67.1 sec 3.3 sec

10000 N/A 67.1 sec 3.3 sec

Table 3: Training time on the Sonar Dataset for di�erent methods and upper bound C.

3.2 A New Approach to Large Database Training

As mentioned before, training a SVM using large data sets (above � 5,000 samples) is a very di�cult

problem to approach without some kind of data or problem decomposition. To give an idea of some
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memory requirements, an application like the one described later in section 3 involves 50,000 training

samples, and this amounts to a quadratic form whose matrix D has 2:5 � 109 entries that would need, using

an 8-byte oating point representation, 20,000 Megabytes = 20 Gigabytes of memory!

In order to solve the training problem e�ciently, we take explicit advantage of the geometric interpretation

introduced in Section 2.4, in particular, the expectation that the number of support vectors will be very

few. If we consider the quadratic programming problem given by (37), this expectation translates into

having many of the components of � equal to zero.

In order to decompose the original problem, one can think of solving iteratively the system given by (37),

but keeping �xed at zero level, those components �i associated with data points that are not support

vectors, and therefore only optimizing over a reduced set of variables.

To convert the previous description into an algorithm we need to specify:

1. Optimality Conditions: These conditions allow us to decide computationally, if the problem has

been solved optimally at a particular global iteration of the original problem. Section 3.2.1 states and

proves optimality conditions for the QP given by (37).

2. Strategy for Improvement: If a particular solution is not optimal, this strategy de�nes a way to

improve the cost function and is frequently associated with variables that violate optimality conditions.

This strategy will be stated in section 3.2.2.

After presenting optimality conditions and a strategy for improving the cost function, section 3.2.3 intro-

duces a decomposition algorithm that can be used to solve large database training problems, and section

3.2.4 reports some computational results obtained with its implementation.

3.2.1 Optimality Conditions

In order to be consistent with common standard notation for nonlinear optimization problems, the

quadratic program (37) can be rewritten in minimization form as:

Minimize W (�) = �� � 1+ 1
2� �D�

�

subject to

� � y = 0 (�)

�� C1 � 0 (�)

�� � 0 (�)

(57)

where �, � = (�1; : : : ; �`) and � = (�1; : : : ; �`) are the associated Kuhn-Tucker multipliers.

Since D is a positive semi-de�nite matrix (see end of section 2.3.3) and the constraints in (57) are linear,

the Kuhn-Tucker (KT) conditions are necessary and su�cient for optimality, and they are:

Dimension

Separable Non-Separable

C 4 16 256 4 16 256

10 60.7 sec 106.4 sec 613.5 sec 292.9 sec 476.0 sec 1398.2 sec

100 36.0 sec 69.2 sec 613.7 sec 313.5 sec 541.0 sec 2369.4 sec

10000 21.8 sec 56.2 sec 623.0 sec 327.4 sec 620.6 sec 3764.1 sec

Table 4: Training time on a Randomly-generated Dataset for di�erent dimensionality and upper bound C.
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rW (�) +���+ �y = 0

� � (�� C1) = 0

� �� = 0

� � 0

� � 0

� � y = 0

�� C1 � 0

�� � 0

(58)

In order to derive further algebraic expressions from the optimality conditions(58) , we assume the existence

of some �i such that 0 < �i < C (see end of section 2.3.2), and consider the three possible values that each

component of � can have:

1. Case: 0 < �i < C:

From the �rst three equations of the KT conditions we have:

(D�)i � 1 + �yi = 0 (59)

Noticing that

(D�)i =
X̀
j=1

�jyjyiK(xi;xj) = yi

X̀
j=1

�jyjK(xi;xj)

and that for 0 < �i < C,

f(xi) = sign(
X̀
j=1

�jyjK(xi;xj) + b) =
X̀
j=1

�jyjK(xi;xj) + b = yi

we obtain the following:

(D�)i =
yi � b

yi

= 1� b

yi

(60)

By substituting (60) into (59) we �nally obtain that

� = b (61)

Therefore, at an optimal solution ��, the value of the multiplier � is equal to the optimal threshold

b
�.

2. Case: �i = C:

From the �rst three equations of the KT conditions we have:

(D�)i � 1 + �i + �yi = 0 (62)

By de�ning

g(xi) =
X̀
j=1

�jyjK(xi;xj) + b
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and noticing that

(D�)i = yi

X̀
j=1

�jyjK(xi;xj) = yig(xi)� yib

equation (62) can be written as:

yig(xi)� yib� 1 + �i + �yi = 0

By combining � = b (derived from case 1) and requiring �i � 0 we �nally obtain:

yig(xi) � 1 (63)

3. Case: �i = 0:

From the �rst three equations of the KT conditions we have:

(D�)i � 1� �i + �yi = 0 (64)

By applying a similar algebraic manipulation as the one described for case 2, we obtain

yig(xi) � 1 (65)

3.2.2 Strategy for Improvement

In order to incorporate the optimality conditions and the expectation that most �i's will be zero into an

algorithm, we need to derive a way to improve the objective function value using this information. To do

this, let us decompose � in two vectors �B and �N , where �N = 0, and B and N partition the index

set, and that the optimality conditions hold in the subproblem de�ned only for the variables in B. In

further sections, the set B will be referred to as the working set. Under this decomposition the following

statements are clearly true:

� We can replace �i = 0, i 2 B, with �j = 0, j 2 N , without changing the cost function or the feasibility

of both the subproblem and the original problem.

� After such a replacement, the new subproblem is optimal if and only if yjg(xj) � 1. This follows

from equation (65) and the assumption that the subproblem was optimal before the replacement was

done.

The previous statements suggest that replacing variables at zero levels in the subproblem, with variables

�j = 0, j 2 N that violate the optimality condition yjg(xj) � 1, yields a subproblem that, when

optimized, improves the cost function while maintaining feasibility. The following proposition states this

idea formally.

Proposition: Given an optimal solution of a subproblem de�ned on B, the operation of replacing �i = 0,

i 2 B, with �j = 0, j 2 N , satisfying yjg(xj) < 1 generates a new subproblem that when optimized,

yields a strict improvement of the objective function W (�).

Proof: We assume again the existence of �p such that 0 < �p < C. Let us also assume without loss of

generality that yp = yj (the proof is analogous if yp = �yj). Then, there is some � > 0 such that �p�� > 0,

for � 2 (0; �). Notice also that g(xp) = yp. Now, consider � = �+ �ej � �ep, where ej and ep are the jth

and pth unit vectors, and notice that the pivot operation can be handled implicitly by letting � > 0 and

by holding �i = 0. The new cost function W (�) can be written as:
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W (�) = �� � 1 + 1

2
� �D�

�� � 1 + 1

2
[� �D�+ 2� �D(�ej � �ep) + (�ej � �ep) �D(�ej � �ep)]

W (�) + �

"
g(xj)� b

yj

� 1 +
b

yp

#
+
�
2

2
[K(xj ;xj) +K(xp;xp)� 2ypyjK(xp;xj)]

W (�) + � [g(xj)yj � 1] +
�
2

2
[K(xj;xj) +K(xp;xp)� 2ypyjK(xp;xj)]

Therefore, since g(xj)yj < 1, by choosing � small enough we have W (�) < W (�).

q.e.d

3.2.3 The Decomposition Algorithm

Suppose we can de�ne a �xed-size working set B, such that jBj � `, and it is big enough to contain all

support vectors (�i > 0), but small enough such that the computer can handle it and optimize it using

some solver. Then the decomposition algorithm can be stated as follows:

1. Arbitrarily choose jBj points from the data set.

2. Solve the subproblem de�ned by the variables in B.

3. While there exists some j 2 N , such that g(xj)yj < 1, where

g(xj) =
X̀
p=1

�pypK(xj;xp) + b

replace �i = 0, i 2 B, with �j = 0 and solve the new subproblem.

Notice that this algorithm will strictly improve the objective function at each iteration and therefore will

not cycle. Since the objective function is bounded (W (�) is convex and quadratic, and the feasible region

is bounded), the algorithm must converge to the global optimal solution in a �nite number of iterations.

Figure 4 gives a geometric interpretation of the way the decomposition algorithm allows the rede�nition

of the separating surface by adding points that violate the optimality conditions.

3.2.4 Computational Implementation and Results

We have implemented the decomposition algorithm using the transformed problem de�ned by equation

(49) and MINOS 5.4 as the solver.

Notice that the decomposition algorithm is rather exible about the pivoting strategy, that is, the way it

decides which and how many new points to incorporate into the working set B. Our implementation uses

two parameters to de�ne the desired strategy:

� Lookahead: this parameter speci�es the maximum number of data points the pricing subroutine

should use to evaluate optimality conditions (Case 3). If Lookahead data points have been examined

without �nding a violating one, the subroutine continues until it �nds the �rst one , or until all data

points have been examined. In the latter case, global optimality has been obtained.

� Newlimit: this parameter limits the number of new points to be incorporated into the working set

B.
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(a) (b)

Figure 4: (a) A sub-optimal solution where the non-�lled points have � = 0 but are violating optimality

conditions by being inside the �1 area. (b) The decision surface gets rede�ned. Since no points with � = 0

are inside the �1 area, the solution is optimal. Notice that the size of the margin has decreased, and the

shape of the decision surface has changed.

The computational results that we present in this section have been obtained using real data from our Face

Detection System, which is described in Section 4.

Figure 5 shows the training time and the number of support vectors obtained when training the system

with 5,000, 10,000, 20,000, 30,000, 40,000, 49,000, and 50,000 data points. We must emphasize that the

last 1,000 data points were collected in the last phase of bootstrapping of the Face Detection System, and

therefore make the training process harder, since they correspond to errors obtained with a system that

was already very accurate. Figure 6 shows the relationship between the training time and the number

of support vectors, as well as the number of global iterations (the number of times the decomposition

algorithm calls the solver). Notice the smooth relation between the number of support vectors and the

training time, and the jump from 11 to 15 global iterations as we go from 49,000 to 50,000 samples. This

increase is responsible for the increase in the training time. The system, using a working set of 1200

variables was able to solve the 50,000 data points problem using only 25Mb of RAM.

Figure 7 shows the e�ect on the training time due to the parameter Newlimit and the size of the working

set, using 20,000 data points. Notice the clear improvement as Newlimit is increased. This improvement

suggests that in some way, the faster new violating data points are brought into the working set, the faster

the decision surface is de�ned, and optimality is reached. Notice also that, if the working set is too small or

too big compared to the number of support vectors (746 in the case of 20,000 samples), the training time

increases. In the �rst case, this happens because the algorithm can only incorporate new points slowly,

and in the second case, this happens because the solver takes longer to solve the subproblem as the size of

the working set increases.

3.3 Improving the Training of SVM: Future Directions

The algorithm described in Section 3.2.3 suggests two main areas where improvements can be made through

future research. These two areas are:
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Figure 5: (a) Training Time on a SPARCstation-20. (b) Number of Support Vectors obtained after Training

1. The Solver: The second-order variant of the reduced gradient method implemented by MINOS 5.4

has given very good results so far in terms of accuracy, robustness and performance. However, this

method is a general nonlinear optimization method that is not designed in particular for quadratic

programs, and in the case of SVM's, is not designed in particular for the special characteristics of the

problem. Having as a reference the experience obtained with MINOS 5.4, new approaches to a tailored

solver through, for example, projected Newton [2] or interior point methods [7], should be attempted.

At this point it is not clear whether the same type of algorithm is appropriate for all stages of the

solution process. To be more speci�c, it could happen that an algorithm performs well with few

non-zero variables at early stages, and then is outperformed by others when the number of non-zero

variables reaches some threshold. In particular, we learned that the number of non-zero variables that

satisfy 0 < �i < C has an important e�ect on the performance of the solver.

2. The Pivoting Strategy: This area o�ers great potential for improvements through some ideas we

plan to implement. The improvements are based on some qualitative characteristics of the training

process that have been observed:

� During the execution of the algorithm, as much as 40% of the computational e�ort is dedicated

to the evaluation of the optimality conditions. At �nal stages, it is common to have all the data

points evaluated, yet only to collect very few of them to incorporate them to the working set.

� Only a small portion of the input data is ever brought into the working set (about 16% in the

case of the face detection application).

� Out of the samples that ever go into the working set, about 30% of them enter and exit this set

at least once. These vectors are responsible for the �rst characteristic mentioned above.

Possible future strategies that exploit these characteristics are:

� Keep a list or �le with all or part of the input vectors that have exited the working set. At

the pricing stage, when the algorithm computes the optimality conditions, evaluate these data
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Figure 6: (a) Number of Support Vectors versus Training Time on a SPARCstation-20. Notice how the

Number of support vectors is a better indicator of the increase in training time than the number of samples

alone. (b) Number of global iterations performed by the algorithm. Notice the increase experimented when

going from 49000 to 50000 samples. This increase in the number of iterations is responsible for the increase

in the training time

poits before other data points to determine the entering vectors. This strategy is analogous

to one sometimes used in the revised simplex method where the algorithm keeps track of the

basic variables that have become non-basic. In the case of training of SVM's, the geometric

interpretation of this heuristic is to think that if a point was a support vector at some iteration,

it was more or less close to the boundary between the classes, and as this boundary is re�ned or

�ne-tuned, it is possible for it to switch from active to non-active several times. This heuristic

could be combined with main memory and cache management policies used in computer systems.

� During the pricing stage, instead of bringing into the working set the �rst k points that violate

optimality conditions, we could try to determine r violating data points, with r > k and choose

from these the k most violating points. This is done under the geometric idea that the most

violating points help in de�ning the decision surface faster and therefore save time in future

iterations.

� These last two approaches can be combined by keeping track not only of the points exiting the

working set, but also of the remaining violating data points as well.

So far in the description and implementation of the decomposition algorithm, we have assumed that enough

memory is available to solve a working set problem that contains all of the support vectors. However,

some applications may require more support vectors than the available memory can manage. One possible

approach that can be taken is to approximate the optimal solution by the best solution that can be obtained

with the current working set size. The present algorithm and implementation can be easily extended to

handle this situation by replacing support vectors with 0 < �i < C with new data points. Other more

complex approaches that can be pursued to obtain an optimal solution should be the subject of future

research.
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Figure 7: (a) Training time for 20,000 samples with di�erent values of Newlimit, using a working set of

size 1000 and Lookahead=10,000. (b) Training time for 20,000 samples with di�erent sizes of the working

set, using Newlimit=size of the working set, and Lookahead=10,000.

4 SVM Application: Face Detection in Images

This section introduces a Support Vector Machine application for detecting vertically oriented and unoc-

cluded frontal views of human faces in grey level images. It handles faces over a wide range of scales and

works under di�erent lighting conditions, even with moderately strong shadows.

The face detection problem can be de�ned as follows: Given as input an arbitrary image, which could be

a digitized video signal or a scanned photograph, determine whether or not there are any human faces in

the image, and if there are, return an encoding of their location. The encoding in this system is to �t each

face in a bounding box de�ned by the image coordinates of the corners.

Face detection as a computer vision task has many applications. It has direct relevance to the face

recognition problem, because the �rst important step of a fully automatic human face recognizer is usually

identifying and locating faces in an unknown image. Face detection also has potential application in

human-computer interfaces, surveillance systems, census systems, etc.

From the standpoint of this paper, face detection is interesting because it is an example of a natural and

challenging problem for demonstrating and testing the potentials of Support Vector Machines. There are

many other object classes and phenomena in the real world that share similar characteristics, for example,

tumor anomalies in MRI scans, structural defects in manufactured parts, etc. A successful and general

methodology for �nding faces using SVM's should generalize well for other spatially well-de�ned pattern

and feature detection problems.

It is important to remark that face detection, like most object detection problems, is a di�cult task due

to the signi�cant pattern variations that are hard to parameterize analytically. Some common sources of

pattern variations are facial appearance, expression, presence or absence of common structural features,

like glasses or a moustache, light source distribution, shadows, etc.

This system works by testing candidate image locations for local patterns that appear like faces using

a classi�cation procedure that determines whether or not a given local image pattern is a face or not.
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Therefore, the face detection problem is approached as a classi�cation problem given by examples of 2

classes: faces and non-faces.

4.1 Previous Systems

The problem of face detection has been approached with di�erent techniques in the last few years. This

techniques include Neural Networks [4] [19], detection of face features and use of geometrical constraints

[27], density estimation of the training data [14], labeled graphs [12] and clustering and distribution-based

modeling [22][21].

Out of all these previous works, the results of Sung and Poggio [22][21], and Rowley et al. [19] reect

systems with very high detection rates and low false positive detection rates.

Sung and Poggio use clustering and distance metrics to model the distribution of the face and non-face

manifold, and a Neural Network to classify a new pattern given the measurements. The key of the quality

of their result is the clustering and use of combined Mahalanobis and Euclidean metrics to measure the

distance from a new pattern and the clusters. Other important features of their approach is the use of

non-face clusters, and the use of a bootstrapping technique to collect important non-face patterns. One

drawback of this technique is that it does not provide a principled way to choose some important free

parameters like the number of clusters it uses.

Similarly, Rowley et al. have used problem information in the design of a retinally connected Neural

Network that is trained to classify faces and non-faces patterns. Their approach relies on training several

NN emphasizing subsets of the training data, in order to obtain di�erent sets of weights. Then, di�erent

schemes of arbitration between them are used in order to reach a �nal answer.

The approach to the face detection system with a SVM uses no prior information in order to obtain the

decision surface, this being an interesting property that can be exploited in using the same approach for

detecting other objects in digital images.

4.2 The SVM Face Detection System

This system, as it was described before, detects faces by exhaustively scanning an image for face-like

patterns at many possible scales, by dividing the original image into overlapping sub-images and classifying

them using a SVM to determine the appropriate class, that is, face or non-face. Multiple scales are handled

by examining windows taken from scaled versions of the original image.

Clearly, the major use of SVM's is in the classi�cation step, and it constitutes the most critical and

important part of this work. Figure 9 gives a geometrical interpretation of the way SVM's work in the

context of face detection.

More speci�cally, this system works as follows:

1. A database of face and non-face 19�19 pixel patterns, assigned to classes +1 and -1 respectively, is

trained on, using the support vector algorithm. A 2nd-degree polynomial kernel function and an upper

bound C = 200 are used in this process obtaining a perfect training error.

2. In order to compensate for certain sources of image variation, some preprocessing of the data is

performed:

� Masking: A binary pixel mask is used to remove some pixels close to the boundary of the window

pattern allowing a reduction in the dimensionality of the input space from 19�19=361 to 283.

This step is important in the reduction of background patterns that introduce unnecessary noise

in the training process.

� Illumination gradient correction: A best-�t brightness plane is subtracted from the unmasked

window pixel values, allowing reduction of light and heavy shadows.

� Histogram equalization: A-histogram equalization is performed over the patterns in order to

compensate for di�erences in illumination brightness, di�erent cameras response curves, etc.
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3. Once a decision surface has been obtained through training, the run-time system is used over images

that do not contain faces, and misclassi�cations are stored so they can be used as negative examples

in subsequent training phases. Images of landscapes, trees, buildings, rocks, etc., are good sources

of false positives due to the many di�erent textured patterns they contain. This bootstrapping step,

which was successfully used by Sung and Poggio [22] is very important in the context of a face detector

that learns from examples because:

� Although negative examples are abundant, negative examples that are useful from a learning

point of view are very di�cult to characterize and de�ne.

� By approaching the problem of object detection, and in this case of face detection, by using the

paradigm of binary pattern classi�cation, the two classes, object and non-object are not equally

complex since the non-object class is broader and richer, and therefore needs more examples in

order to get an accurate de�nition that separates it from the object class. Figure 8 shows an image

used for bootstrapping with some misclassi�cations, that were later used as negative examples.

4. After training the SVM, we incorporate it as the classi�er in a run-time system very similar to the

one used by Sung and Poggio [22][21] that performs the following operations:

� Re-scale the input image several times.

� Cut 19�19 window patterns out of the scaled image.

� Preprocess the window using masking, light correction and histogran equalization.

� Classify the pattern using the SVM.

� If the class corresponds to a face, draw a regtangle aroung the face in the output image.

4.2.1 Experimental Results

To test the run-time system, we used two sets of images. The set A, contained 313 high-quality images

with same number of faces. The set B, contained 23 images of mixed quality, with a total of 155 faces.

Both sets were tested using our system and the one by Sung and Poggio [22][21]. In order to give true

meaning to the number of false positives obtained, it is important to state that set A involved 4,669,960

pattern windows, while set B 5,383,682. Table 5 shows a comparison between the 2 systems.

Test Set A Test Set B

Detection Rate False Detections Detection Rate False Detections

Ideal System 100 % 0 100% 0

SVM 97.12 % 4 74.19% 20

Sung and Poggio 94.57 % 2 74.19% 11

Table 5: Performance of the SVM face detection system

Figures 10, 11, 12, 13, 14 and 15 present some output images of our system. These images were not used

during the training phase of the system.

4.3 Future Directions in Face Detection and SVM Applications

Future research in SVM application can be divided into three main categories or topics:

1. Simpli�cation of the SVM: One drawback for using SVM in some real-life applications is the large

number of arithmetic operations that are necessary to classify a new input vector. Usually, this number

is proportional to the dimension of the input vector and the number of support vectors obtained. In

the case of face detection, for example, this is � 283,000 multiplications per pattern!

The reason behind this overhead is in the roots of the technique, since SVM's de�ne the decision

surface by explicitly using data points. This situation causes a lot of redundancy in most cases, and
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can be solved by relaxing the constraint of using data points to de�ne the decision surface. This is a

topic of current research conducted by Burges [6] at Bell Laboratories, and it is of great interest for us,

because in order to simplify the set of support vectors, one needs to solve highly-nonlinear constrained

optimization problems.

Since a closed form solution exists for the case of kernel functions that are 2nd. degree polynomials,

we are using a simpli�ed SVM [6] in our current experimental face detection system that gains an

acceleration factor of 20, without degrading the quality of the classi�cations.

2. Detection of other objects: We are interested in using SVM's to detect other objects in digital

images, like cars, airplanes, pedestrians, etc. Notice that most of these objects have very di�erent

appearance, depending on the viewpoint. In the context of face detection, an interesting extension

that could lead to better understanding and approach to other problems, is the detection of tilted

and rotated faces. It is not clear at this point, whether these di�erent view of the same object can be

treated with a single classi�er, or if they should be treated separately.

3. Use of multiple classi�ers: The use of multiple classi�ers o�ers possibilities that can be faster

and/or more accurate. Rowley et al. [19] have successfully combined the output from di�erent neural

networks by means of di�erent schemes of arbitration in the face detection problem. Sung and Poggio

[22][21] use a �rst classi�er that is very fast as a way to quickly discard patterns that are clearly

non-faces. These two references are just examples of the combination of di�erent classi�ers to produce

better systems.

Our current experimental face detection system performs an initial quick-discarding step using a SVM

trained to separate clearly non-faces from probable faces using just 14 averages taken from di�erent

areas of the window pattern. This classi�cation can be done about 300 times faster and is currently

discarding more than 99% of input patterns. More work will be done in the near future in this area.

The classi�ers to be combined do not have to be of the same kind. An interesting type of classi�er

that we will consider is Discriminant Adaptative Nearest Neighbor due to Hastie et al. [11][10].

5 Conclusions

In this paper we presented a novel decomposition algorithm to train Support Vector Machines. We have

successfully implemented this algorithm and solved large dataset problems using acceptable amounts of

computer time and memory. Work in this area can be continued, and we are currently studying new

techniques to improve the performance and quality of the training process.

The Support Vector Machine is a very new technique, and, as far as we know, this paper presents the

second problem-solving application to use SVM, after Vapnik et al. [5, 8, 24] used it in the character

recognition problem, in 1995.

Our Face Detection System performs as well as other state-of-the-art systems, and has opened many

interesting questions and possible future extensions. From the object detection point of view, our ultimate

goal is to develop a general methodology that extends the results obtained with faces to handle other

objects. From a broader point of view, we also consider interesting the use of the function approximation

or regression extension that Vapnik [24] has done with SVM, in many di�erent areas where Neural Networks

are currently used.

Finally, another important contribution of this paper is the application of OR-based techniques to domains

like Statistical Learning and Arti�cial Intelligence. We believe that in the future, other tools like duality

theory, interior point methods and other optimization techniques and concepts, will be useful in obtaining

better algorithms and implementations with a solid mathematical background.
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Figure 8: Some false detections obtained with the �rst version of the system. This false positives were

later used as negative examples ( class -1 ) in the training process
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NON-FACES

FACES

Figure 9: Geometrical Interpretation of how the SVM separates the face and non-face classes. The patterns

are real support vectors obtained after training the system. Notice the small number of total support vectors

and the fact that a higher proportion of them correspond to non-faces.
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Figure 10: Faces
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Figure 11: Faces
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Figure 12: Faces

38



Figure 13: Faces
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Figure 14: Faces
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Figure 15: Faces
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