MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY
A.l. Memo No. 1605 March, 1997
C.B.C.L. Memo No. 146

Triangulation by Continuous Embedding

Marina Meila Michael I. Jordan

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

When triangulating a belief network we aim to obtain a junction tree of minimumstate space. According to
[8], searching for the optimal triangulation can be cast as a search over all the permutations of the network’s
variables. Our approach is to embed the discrete set of permutations in a convex continuous domain D.
By suitably extending the cost function over D and solving the continous nonlinear optimization task we
hope to obtain a good triangulation with respect to the aformentioned cost. In this paper we introduce
an upper bound to the total junction tree weight as the cost function. The appropriatedness of this choice
is discussed and explored by simulations. Then we present two ways of embedding the new objective
function into continuous domains and show that they perform well compared to the best known heuristic.

Copyright © Massachusetts Institute of Technology, 1996

This report describes research done at the Dept. of Electrical Engineering and Computer Science, the Dept. of Brain and
Cognitive Sciences, the Center for Biological and Computational Learning and the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the artificial intelligence research is provided in part by the Advanced
Research Projects Agency of the Dept. of Defense and by the Office of Naval Research. Michael 1. Jordan is a NSF Presidential
Young Investigator. The authors can be reached at M.I.T., Center for Biological and Computational Learning, 45 Carleton
St., Cambridge MA 02142, USA. E-mail: mmp®@ai.mit.edu, jordan@psyche. mit.edu

1 Introduction. What is triangulation ?

Belief networks are graphical representations of proba-
bility distributions over a set of variables. For an intro-
ductory, yet rigorous treatment of graphical probability
models, the reader is refered to [5]. In what follows it
will be always assumed that the variables take values in
a finite set and that they correspond to the vertices of
a graph. The graph’s arcs represent the dependencies
among variables. There are two kinds of representations
that have gained wide use: one is the directed acyclic
graph model, also called a Bayes net, which represents
the joint distribution as a product of the probabilities
of each vertex conditioned on the values of its parents;
the other is the undirected graph model, also called a
Markov field, where the joint distribution is factorized
over the cligues' of an undirected graph. This factor-
ization is called a junction tree and optimizing it is the
subject of the present paper. The power of both mod-
els lies in their ability to display and exploit existent
marginal and conditional independencies among subsets
of variables. Emphasizing independencies is useful from
both a qualitative point of view (it reveals something
about the domain under study) and a quantitative one
(it makes computations tractable). The two models dif-
fer in the kinds of independencies they are able to repre-
sent and often times in their naturalness in particular
tasks. Directed graphs are more convenient for learning
a model from data; on the other hand, the clique struc-
ture of undirected graphs organizes the information in
a way that makes it immediately available to inference
algorithms. Therefore it is a standard procedure to con-
struct the model of a domain as a Bayes net and then to
convert it to a Markov field for the purpose of querying
it.

This process is known as decomposition and it con-
sists of the following stages: first, the directed graph is
transformed into an undirected graph by an operation
called moralization. Second, the moralized graph 1s tri-
angulated. A graph is called triangulated if any cycle
of length > 3 has a chord (i.e. an edge connecting two
nonconsecutive vertices). If a graph is not triangulated
it is always possible to add new edges so that the result-
ing graph is triangulated. We shall call this procedure
triangulation and the added edges the fill-in. In the final
stage, the junction tree [7] is constructed from the ma-
ximal cliques of the triangulated graph. We define the
state space of a clique to be the cartesian product of the
state spaces of the variables associated to the vertices in
the clique and we call weight of the clique the size of this
state space. The weight of the junction tree is the sum
of the weights of its component cliques. All further ex-
act inference in the net takes place in the junction tree
representation. The number of computations required
by an inference operation is proportional to the weight
of the tree.

For each graph there are several and usually a large
number of possible triangulations, with widely varying
state space sizes. Moreover, triangulation is the only

LA cliqueis a fully connected set of vertices and a maximal
clique is a clique that is not contained in any other clique.

1

stage where the cost of inference can be influenced. It is
therefore critical that the triangulation procedure pro-
duces a graph that is optimal or at least “good” in this
respect.

Unfortunately, this is a hard problem. No optimal tri-
angulation algorithm is known to date. However, a non-
optimal triangulation is readily obtained; a simple algo-
rithm is Rose’s elimination procedure [8] which chooses
a node v of the graph, connects all its neighbors to form
a clique, then eliminates v and the edges incident to it
and proceeds recursively. The resulting filled-in graph is
triangulated.

It can be proven that the optimal triangulation can
always be obtained by applying Rose’s elimination pro-
cedure with an appropriate ordering of the nodes. It
follows then that searching for an optimal triangulation
can be cast as a search in the space of all node permu-
tations. The idea of the present work is the following:
embed the discrete search space of permutations of n
objects (where n is the number of vertices) into a suit-
ably chosen continuous space. Then extend the cost to
a smooth function over the continuous domain and thus
transform the discrete optimization problem into a con-
tinuous nonlinear optimization task. This allows one to
take advantage of the thesaurus of optimization methods
that exist for continuous cost functions.

This i1dea is developed in section 3. Section 2 intro-
duces the cost function that we used, which is an upper
bound on the junction tree weight that is easier to com-
pute over our domain. The same section also discusses
the relationship to other objective functions for triangu-
lation. Section 4 evaluates both the cost function and
our methods by simulations. Section b contains final re-
marks.

2 The objective

In this section we introduce the objective function that
we used and we discuss its relationship to the junction
tree weight. We also review other possible choices of cost
functions and the previous work that is based on them.
First we introduce some notation. Let G = (V, E)
be a graph, its vertex set and its edge set respectively.
Denote by n the cardinality of the vertex set V, by r,
the number of values of the (discrete) variable associated
to vertex v € V, by # the elimination ordering of the
nodes, such that #v = ¢ means that node v i1s the i-th
node to be eliminated according to ordering #, by n(v)
the set of neighbors of v € V' in the triangulated graph
and by C, = {v}U{u € n(v) | #u > #v}? (e.g
the clique that formes by the elimination of v). Then, a
result in [4] allows us to express the total weight of the
junction tree obtained with elimination ordering # as

J(*#) = Zismax(C’v) H Tu (1)

veEV ueCy,

where ismax(Cy) is a variable which is 1 when C, is a
maximal clique and 0 otherwise. As stated, this is the
objective of interest for belief net triangulation. Any

“Both n(v) and C, depend on # but we chose not to
emphasize this in the notation for the sake of readability.

reference to optimality henceforth will be made with re-
spect to J*.

This result implies that there are no more than n ma-
ximal cliques in a junction tree and provides a method to
enumerate them. This suggests defining a cost function
that we call the raw weight J as the sum over all the
cliques € (thus possibly including some non-maximal

cliques):
Jay = D I

(2)
veEV ueC,
J is the cost function that will be used throughout this
paper.

Another objective function, used (more or less explic-
itly) by [9] is the size JI" of the fill-in:

T = 1Fg] (3)
where Fy is the set of edges added by the elimination al-
gorithm. There exists a method, the lezicographic search
[9], that finds minimal triangulations with respect to J¥',
but finding the minimum one is NP-hard [10]. Tt can be
proven [8] that for a constant number of values r, per
node, the minimal triangulations with respect to J¥ are
also local minima for J* and J. Even if most of the local
minima found by lexicographic search were good enough
(something that is not supported by practical experience
[6]), the problem with this algorithm is that it takes into
account only topological information, ignoring the values
of r,. As our simulation will show, this 1s an important
drawback.

Kjaerulff introduced the minimum weight (MW)
heuristic [6], a greedy minimization method for J* (thus
taking r, into account) and later a simulated annealing
approach [7] that explicitly optimizes J*.

Becker [3] introduced recently a triangulation algo-
rithm which is not based on node elimination. The algo-
rithm minimizes the cliqguewidth J, which is the largest
clique-weight in the junction tree.

J¢ = maxc H Ty. (4)

JC is coarser than J* in the sense that triangula-
tions with different values of J* can have the same
cliqueweight. But we expect that with the increase of r,
and of the graph density the cost of the largest clique will
tend to dominate J* improving the agreement between
the two criteria. Optimizing J¢ is provably NP-hard [1].

Now back to J. A reason to use it instead of J* in our
algorithm is that the former is easier to compute and to
approximate. But it is natural to ask how well do the
two agree?

Obviously, J is an upper bound for J*. Moreover, it
can be proved that if ¥ = min r, the following inequali-

ties hold:
1

* C *
1l = Jw =

(5)
r 1

Ty = Jw < I (0= 3) (6)

J¢ is always lower bounding J*, with equality in the
case of a fully connected graph. As for J, by (6) it is

2

less than a fraction 1/(r — 1) away from J*. The upper
bound is attained when the triangulated graph is fully
connected and all r, are equal.

In other words, the differece between J and J* is
largest for the highest cost triangulation. We also expect
this difference to be low for the low cost triangulations,
where our search will be concentrated. An intuitive ar-
gument for this is that good triangulations are associated
with a large number of smaller cliques rather than with
a few large ones. Think for example of the tree rep-
resented in figure 1. A tree is an already triangulated
graph, so its best triangulation contains no fill-in edges
and comprises n — 1 maximal cliques of size 2. However,
it’s worst triangulation, the fully connected graph, will
have only 1 maximal clique of size n. But the former sit-
uation - many small maximal cliques - means that there
will be only a few non-maximal cliques of small size to
contribute to the difference J—J*, and therefore that the
agreement with J* is usually closer than (6) implies. The
simulations in section 4 will further support our choice.

Note also that the reverse argument holds for J¢: the
maximuim clique size is an inaccurate approximation of
J(*#) for low cost triangulations but it is close to the true

cost function for the worse ones, that produce a small
number of large cliques.

3 The continuous optimization problem

This section shows two ways of defining J over contin-
uous domains. Both rely on a formulation of J that
eliminates explicit reference to the cliques C, and that
will be deduced now.

Let us first define new variables pi,, and ey, u,v =
1,..,n. For any permutation #

. 1 af #u < F#v
Puw = 0 otherwise

. 1
eU’U - 0

In other words, p represent precedence relationships
and e represent the edges between the n vertices after
the elimination. Therefore, they will be called prece-
dence variables and edge variables respectively. With
these variables, J can be expressed as

T = Z H phvuevs

vEV uev

if the edge (u,v) € EU Fu
otherwise

(7)

The product gty ey acts as an indicator variable being 1
iff “u € C,” is true. For any given permutation, finding
the p variables is straightforward. It remains to show
how to compute the e variables, or, in other words, how
to find in advance, based on the precedence variables
only, if a certain edge not in £ will appear after elimina-
ting the vertices in a given order. Thisis possible, thanks
to aresult in [9]. Tt states that an edge (u, v) is contained
in Iy iff there is a path in GG between u and v containing
only nodes w for which #w < min(#u, #v). Formally,
€uy = €yy = 1 iff there exists a path P = (u, wy, wa, ...v)

$—€o—9

c d e
b

a graph a good triangulation a bad triangulation

Ty =7 J¢ = p2 JC¢ =

n = J* = (n—1)r? J* = "

J = (n=1r*+r J =4+ 4 4
< anil
a b c

Figure 1: Example illustrating inequalities (5) and (6). (b) and (c¢) are two triangulations of the graph represented
in (a). For the triangulation in (b), J* is at its optimum, J is only slightly larger and J¢ is much smaller (by a
factor of 1/(n — 1)) than J*; for the fully connected triangulation represented by (c), J* is at its maximum and J¢,
also at its maximum, is equal to it, whereas J is at the maximum possible distance (but less than a factor of 2 away)

from J*.

such that

H Hw;uMw;v = 1

wiEP

So far, we have succeeded to define the cost J asso-
ciated with any permutation in terms of the variables y
and e. In the following, the set of permutations will be
embedded in a continuous domain. As a consequence, pu
and e will take values in the interval [0, 1] but the form
of J in (7) will stay the same.

The first method, called p-continuous embedding (-
CE) assumes that the variables jiy, € [0,1] represent
independent probabilities that #u < #v. To make an
assignment of the u variables represent a permutation,
we need to ensure that it is antisymmetric and transitive.
Antisymmetry means that #v < #w and #w < #v
cannot be true in the same time and it is guaranteed
by definition. Transitivity means that if #u < #v and
#v < F#w, then #u < #w, or, that for any triple
(Jtuv s Povw, fwu) the assignments (0,0,0) and (1,1, 1) are
forbidden. We will penalize the possible violations of
transitivity using the probabilistic interpretation of p.
According to it, we introduce a penalty term that upper
bounds the probability of a nontransitive triplet:

R(p) = ZP[(U, v, w) nontransitive] (8)
ulv<w

= Z [Hww fvw pwu + (1 - ﬂuv)(l - va)(l - F‘wU)]
ulv<w

> Plassignment non transitive]

Recovering the permutation from a p assignment is easily
done noting that

0<#v—-1=> pu <n—1 9)
ut

The formula can be used for non-integer p values as well.
In the second approach, called #-continuous embed-

into the set of doubly stochastic matrices. A doubly
stochastic matriz 6 1s a matrix for which the elements
in a row or column sum to one.

0= 0; =1 0;>0 forij=1,.n (10)
i J

When 6;; are either 0 or 1, implying that there is exactly
one nonzero element in each row or column, the matrix
is called a permutation matriz. 0;; = 1 and #i = j
both mean that the position of object ¢ is j in the given
permutation. The set of doubly stochastic matrices © is
a convex polytope of dimension (n — 1)? whose extreme
points are the permutation matrices [2]. Thus, every
doubly stochastic matrix can be represented as a convex
combination of permutation matrices. To constrain the
optimum to be a an extreme point, we add the penalty

term
R(6) = Y 6:(1—06i)) (11)

The precedence variables are defined over © as

Hyy = 1 L
Huyv = 1 — Moy = m23<2 guygvz

u,v,4,j=1,.n and v # u

In both embeddings, the edge variables are computed

from p as follows
, for (u,v) € Foru=uw

1
Cuv = Cyy = max HwEP Hawuflwy, Otherwise
Pe{paths u—v}
(12)

The above assignments give the correct values for pu
and e for any set of § values representing a permuta-
tion. Over the interior of the domain, e 1s a continuous,
piecewise differentiable function. FEach ey, (u,v) ¢E
can be computed by a shortest path algorithm between
u and v, with the length of (wy,ws) € E defined as

ding (0-CE), the permutations are directly embedded 5 (= og ptw, uttwyw)-

density

n

.05

1

2

10
20
30
40

1.033 < 1.113 < 1.212
1.037 < 1.188 < 1.447
1.023 < 1.234 <1.662
1.020 < 1.244 <1.825

1.011 < 1.180 < 1.621
1.018 < 1.221< 1.695
1.018 < 1.236 < 1.838
1.017 < 1.249< 1.869

1.016 < 1.184 < 1.502
1.012 < 1.228 < 1.829
1.014 < 1.243 < 1.874
1.014 < 1.244 < 1.861

Table 1: Median values of the minimum, median and maximum values of J/J* obtained for 50,000 triangulations
x 100 random DAGs. r, was random in the range 2-6, giving an upper bound of 2. The mean values for each graph

were very close to the median values.

Ty log J ¥ log J¢ log J J/J*
3
10 25 25 4000
- 20 . 20
) P il
10 / / 2000
15 15 -
1
10 10 10 0
I 10 15 20 25 10 15 20 25 10 15 20 25 1 15 2
10° 35 35 3000
/rﬁ' //
) BT 30 -~ 30 P 2000
10 ““ Prad P
25 e 25 S 1000 H { l
10t 20 20 0 ”H I Hﬂ
5 5 20 25 30 35 20 25 30 35 1 1.021.041.06 1.08
20 2 30 3
3
10 B 4000
40 o 40 -
2 'g;x??‘!*#"'"r ,M //
10 ’ 35 - 35 - 2000
- s H
30 30| -
10" oIl
111 30 35 40 30 35 40 30 35 40 1 101 102 1.03
a b C d

Figure 2: Size of the fill-in J¥' (a), maximum clique J¢ (b) and raw weight J (c) versus J*; histogram of J/J* (d) for
10,000 triangulations of a 30 node, 87 edges DAG. The r, values are uniform in the ranges 2-10 (I), 12-20 (IT), 32-40
(ITT). For the histograms in (d) the right limit of the plot is placed at the theoretical upper bound ruyin/(rmin —
For (a), (b), (¢), “line” thinner means better agreement with .J*.

f-CE is an interior point method whereas in y-CE the
current point, although inside [0, 1]*(*~1)/? isn’t neces-
sarily in the convex hull of the hypercube’s corners that
represent permutations. The number of operation re-
quired for one evaluation of J and its gradient is as fol-
lows: O(n*) operations to compute g from ¢, O(n®logn)

to compute e, O(n?) for % and O(n?) for % and %
afterwards. Since computing g is the most computa-
tionally intensive step, u-CE is a clear win in terms of
computation cost. In addition, by operating directly in
the g domain, one level of approximation is eliminated,
which makes us expect it to perform better than 6-CE.
This expectation will be confirmed by the results in the

next section.

4 Experimental results

Simulations were performed to explore the usefulness of
J as a cost function and to assess the performance of our
algorithms.

For the first goal, we generated random directed

4

acyclic graphs (DAGs) of different sizes and densities®
on which we computed the values of J* and J for 50,000
random triangulations. For each of them, table 1 synte-
sizes the results in terms of J/J*. Tt can be seen that the
typical values are much lower than the theoretical bound
141/(rmin—1). The large values tend to spread towards
the upper bound with the increase of the number of ver-
tices n, but the median and lowest values increase much
slower if at all, suggesting that the agreement between .J
and J* is better than theoretically predicted over a wide
range of graph sizes, densities and structures.

In figure 2 we present the relationship between
JE JC J and J* for a 30 node graph and various ranges
for r,. The plots confirm that J is a poor substitute
for J*. It can also be seen that .J has the best agreement
with J* in all cases with J¢ as a second. As predicted
by (6) the agreement improves when r, becomes larger.
Regarding J©, its increase in “coarseness” with increas-
ing 7, 1s reflected by the “step-like” appearance aspect

We defined the density to be the ratio between |E| and
the maximum possible number of edges n(n — 1)/2.

graph ho hi12 d1o m20 a20 d20
n=[V] 9 12 10 20 20 20
density .33 .25 .6 .25 45 .6
Fimin [Tmax/ Tave || 2/2/2] | 3/3/3 || 6/15/10 | 2/8/5 | 6/15/10 | 6/15/10
Tog1o Jirw 243 | 271 7.44 547 | 1275 13.94

Table 2: Characteristics of the graphs used in the experiments.

100 —
20
30 10
5
10
2
3] = l l
5
' L]
0.3
h9 hi2 d10 m20 a20 d20 ho9 hi2 d10 m20 a20 d20
a b
Figure 3: Minimum, maximum (solid line) and median (dashed line) values of J*—* obtained by 0-CE (a) and p-CE
MW

(b).

of J¢, whereas the expected improvement in the agree-
ment with J* for large r, is not evident in the present
simulations.

For the second goal we compared the results of our al-
gorithms with the results of the minimum weight heuris-
tic (MW), the heuristic that scored best in empirical
tests [6]. The lowest junction tree weight obtained in
200 runs of MW was retained and denoted by Jyy .
Tests were run on 6 graphs of different sizes and densi-
ties shown in table 2.

We ran 11 or more trials of each of our two algorithms
on each graph. To enforce the variables to converge to a
permutation, we minimized the objective J + AR, where
A > 0 i1s a parameter that was progressively increased
following a deterministic annealing schedule and R is one
of the aforementioned penalty terms. The algorithms
were run for 50-150 optimization cycles, usually enough
to reach convergence. However, for the p-embedding on
graph d20, there were several cases where many p values
did not converge to 0 or 1. In those cases we picked the
most plausible permutation to be the answer.

The results are shown in figure 3 in terms of the ratio
of the true cost obtained by the continuous embedding
algorithm (denoted by J*) and J3},, . For the first two
graphs, h9 and h12, J3;y is the optimal cost; the em-
bedding algorithms reach it most trials. On the remain-
ing graphs, pu-CE clearly outperforms 6-CE, which also
performs poorer than MW on average. On d10, a20
and m20 it also outperforms the MW heuristic, attain-
ing junction tree weights that are 1.6 to 5 times lower on
average than those obtained by MW. On d20, a denser
graph, the results are similar for MW and p-CE in half of
the cases and worse for p-CE otherwise. The plots also
show that the variability of the results 1s much larger

5

for CE than for MW. This behaviour is not surprising,
given that the search space for CE, although continuous,
comprises a large number of local minima. This induces
dependence on the initial point and, as a consequence,
nondeterministic behaviour of the algorithm. Moreover,
while the number of choices that MW has is much lower
than the upper limit of n!, the “choices” that CE al-
gorithms consider, although soft, span the space of all
possible permutations.

5 Discussion

The 1dea of continuous embedding is not new in the field
of applied mathematics. The large body of literature
dealing with smooth (sygmoidal) functions instead of
hard nonlinearities (step functions) is only one example.
The present paper shows a nontrivial way of applying a
similar treatment to a new problem in a new field. The
results obtained by p-embedding are on average better
than the standard MW heuristic. Although not directly
comparable, the best results reported on triangulation
[7, 3] are only by little better than ours. Therefore the
significance of our results goes beyond the scope of the
present problem. They are obtained on a hard problem,
whose cost function has no feature to ease its minimiza-
tion (J is neither linear, nor quadratic, nor is it additive
w.r.t. the vertices or the edges) and thus they demon-
strate the potential of continuous embedding as a general
tool.

The cost function that we have introduced, J, has the
twofold advantage of being more accurate than all the
other alternative cost functions used in the literature
and of being directly amenable to continuous approxi-
mations. Since minimizing J may not be NP-hard, this

opens a way for investigating new triangulation methods.

Acknowledgements

The authors are grateful to Tommi Jaakkola for many
stimulating discussions and to David Maze for partici-
pating in the implementation of the algorithms.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski.
Complexity of finding embeddings in a k-tree. STAM
J. Alg. Disc. Meth., 8:277-284, 1987.

[2] M.L. Balinski and R. Russakoff. On the assignment
polytope. SIAM Rev., 1974.

[3] Ann Becker and Dan Geiger. A sufficiently fast al-
gorithm for finding close to optimal junction trees.

In UAT 96 Proceedings, 1996.

[4] M.C. Golumbic. Algorithmic Graph Theory and
Perfect Graphs. Academic Press, New York, 1980.

[5] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen.
Bayesian updating in causal probabilistic networks
by local computations. Computational Statistical

Quarterly, 1990.

[6] U. Kjeerulff. Triangulation of graphs—algorithms
giving small total state space. Technical Report R
90-09, Department of Mathematics and Computer
Science, Aalborg University, Denmark, 1990.

[7] U. Kjaerulff. Optimal decomposition of probabilis-
tic networks by simulated annealing. Statistics and
Computing, 1992.

[8] D. J. Rose. Triangulated graphs and the elimina-

tion process. Journal of Mathematical Analysis and
Applications, 1970.

[9] D.J. Rose, R. E. Tarjan, and E.S. Lueker. Algorith-
mic aspects of vertex elimination on graphs. STAM

J. Comput., 1976.

[10] M. Yannakakis. Computing the minimum fill-in is
NP-complete. SIAM J. Alg. Disc. Math., 1981.

