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Abstract

Support Vector Machines (SVMs) perform pattern recognition between two point

classes by �nding a decision surface determined by certain points of the training set,

termed Support Vectors (SV). This surface, which in some feature space of possibly

in�nite dimension can be regarded as a hyperplane, is obtained from the solution of

a problem of quadratic programming that depends on a regularization parameter.

In this paper we study some mathematical properties of support vectors and show

that the decision surface can be written as the sum of two orthogonal terms, the �rst

depending only on themargin vectors (which are SVs lying on the margin), the second

proportional to the regularization parameter. For almost all values of the parameter,

this enables us to predict how the decision surface varies for small parameter changes.

In the special but important case of feature space of �nite dimensionm, we also show

that there are at most m+ 1 margin vectors and observe that m+1 SVs are usually

su�cient to fully determine the decision surface. For relatively small m this latter

result leads to a consistent reduction of the SV number.

Copyright c
 Massachusetts Institute of Technology, 1997

This report describes research done within the Department of Physics, University of Genoa and in collaboration

with the Center for Biological and Computational Learning at MIT.



1 Introduction

Support Vector Machines (SVMs) have been recently introduced as a new technique for solving

pattern recognition problems [Cortes and Vapnik 1995, Blanz et al. 1996, Scholkopf et al. 1996,
Osuna, Freund and Girosi 1997]. According to the theory od SVMs [Vapnik 1982, Vapnik 1995],

while traditional techniques for pattern recognition are based on the minimization of the empirical
risk { that is, on the attempt to optimize the performance on the training set {, SVMs minimize

the structural risk { that is, the probability of misclassifying yet-to-be-seen patterns for a �xed but

unknown probability distribution of the data. This new induction principle, which is equivalent to

minimize an upper bound on the generalization error, relies on the theory of uniform convergence

in probability [Vapnik 1982]. What makes SVMs attractive is (a) the ability to condense the

information contained in the training set, and (b) the use of families of decision surfaces of

relatively low VC-dimension [Vapnik and Chervonenkis 1971].

In the linear, separable case the key idea of a SVM can be explained in plain words. Given a

training set S which contains points of either of two classes, a SVM separates the classes through

a hyperplane determined by certain points of S, termed support vectors. In the separable case,

this hyperplane maximizes the margin, or twice the minimum distance of either class from the

hyperplane, and all the support vectors lie at the same minimum distance from the hyperplane

(and are thus termed margin vectors). In real cases, the two classes may not be separable and

both the hyperplane and the support vectors are obtained from the solution of a problem of

constrained optimization. The solution is a trade-o� between the largest margin and the lowest

number of errors, trade-o� controlled by a regularization parameter.

The aim of this paper is to gain a better understanding of the nature of support vectors, and how

the regularization parameter determines the decision surface, in both the linear and nonlinear

case. We thus investigate some mathematical properties of support vectors and characterize the

dependence of the decision surface on the changes of the regularization parameter. The analysis

is �rst carried out in the simpler linear case and then extended to include nonlinear decision

surfaces.

The paper is organized as follows. We �rst review the theory of SVMs in section 2 and then

present our analysis in section 3. Finally, we summarize the conclusions of our work in section 4.

2 Theoretical overview

In this section we recall the basics of the theory of SVM [Vapnik 1995, Cortes and Vapnik 1995]

in both the linear and nonlinear case. We start with the simple case of linearly separable sets.

2.1 Optimal separating hyperplane

In what follows we assume we are given a set S of points xi 2 IR
n
with i = 1; 2; : : : ; N . Each

point xi belongs to either of two classes and thus is given a label yi 2 f�1; 1g. The goal is to

establish the equation of a hyperplane that divides S leaving all the points of the same class on

the same side while maximizing the minimum distance between either of the two classes and the

hyperplane. To this purpose we need some preliminary de�nitions.
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De�nition 1. The set S is linearly separable if there exist w 2 IRn and b 2 IR such that

w � xi + b � 1 if yi = 1;

w � xi + b � �1 if yi = �1: (1)

In more compact notation, the two inequalities (1) can be rewritten

yi(w � xi + b) � 1; (2)

for i = 1; 2; : : : ; N . The pair (w; b) de�nes a hyperplane of equation

w � x+ b = 0

named separating hyperplane (see �gure 1(a)). If we denote with w the norm of w, the signed

distance di of a point xi from the separating hyperplane (w; b) is given by

di =
w � xi + b

w
: (3)

Combining inequality (2) and equation (3), for all xi 2 S we have

yidi �
1

w
: (4)

Therefore, 1=w is the lower bound on the distance between the points xi and the separating

hyperplane (w; b).

(a) (b)

Figure 1: Separating hyperplane and optimal separating hyperplane. Both solid lines in (a) and

(b) separate the two identical sets of open circles and triangles, but the solid line in (b) leaves

the closest points (the �lled circles and triangle) at the maximum distance. The dashed lines in

(b) identify the margin.

One might ask why not simply rewrite inequality (2) as

yi(w � xi + b) � 0:
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The purpose of the \1" in the right hand side of inequality (2) is to establish a one-to-one

correspondence between separating hyperplanes and their parametric representation. This is

done through the notion of canonical representation of a separating hyperplane1.

De�nition 2. Given a separating hyperplane (w; b) for the linearly separable set S, the canonical

representation of the separating hyperplane is obtained by rescaling the pair (w; b) into the pair

(w0
; b

0) in such a way that the distance of the closest point equals 1=w0.

Through this de�nition we have that

minxi2S fyi(w0 � xi + b
0)g = 1:

Consequently, for a separating hyperplane in the canonical representation, the bound in inequal-

ity (4) is tight. In what follows we will assume that a separating hyperplane is always given the

canonical representation and thus write (w; b) instead of (w0
; b

0). We are now in a position to

de�ne the notion of optimal separating hyperplane.

De�nition 3. Given a linearly separable set S, the optimal separating hyperplane (OSH) is the

separating hyperplane which maximizes the distance of the closest point of S.

Since the distance of the closest point equals 1=w, the OSH can be regarded as the solution of

the problem of maximizing 1=w subject to the constraint (2), or

Problem P1

Minimize 1

2
w �w

subject to yi(w � xi + b) � 1, i = 1; 2; : : : ; N

Two comments are in order. First, if the pair (w; b) solves P1, then for at least one xi 2 S we

have yi(w � xi+ b) = 1. In particular, this implies that the solution of P1 is always a separating

hyperplane in the canonical representation. Second, the parameter b enters in the constraints

but not in the function to be minimized.

The quantity 2=w, which measures the distance between the two classes in the direction of w, is

named margin. Hence, the OSH can also be seen as a separating hyperplane which maximizes

the margin (see �gure 1(b)). We now study the properties of the solution of the problem P1.

2.2 Support vectors

ProblemP1 can be solved by means of the classical method of Lagrange multipliers [Bazaraa and Shetty 19

If we denote with � = (�1; �2; : : : ; �N) the N nonnegative Lagrange multipliers associated with

the constraints (2), the solution to problem P1 is equivalent to determining the saddle point of
the function

L =
1

2
w �w �

NX
i=1

�i fyi(w � xi + b)� 1g : (5)

with L = L(w, b, �). At the saddle point, L has a minimum for w = �w and b = �b and a

maximum for � = ��, and thus we can write

@L

@b
=

NX
i=1

yi�i = 0; (6)

1This intermediate step toward the derivation of optimal separating hyperplanes is slightly di�erent from the

derivation originally developed in [Cortes and Vapnik 1995].
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@L

@w
= w �

NX
i=1

�iyixi = 0 (7)

with
@L

@w
= (

@L

@w1

;
@L

@w2

; : : : ;
@L

@wN

):

Substituting equations (6) and (7) into the right hand side of (5), we see that problemP1 reduces

to the maximization of the function

L(�) =
NX
i=1

�i �
1

2

NX
i;j=1

�i�jyiyjxi � xj;

subject to the constraint (6) with � � 02. This new problem is called dual problem and can be

formulated as

Problem P2

Maximize �1

2
� �D� +

P
�i

subject to
P
yi�i = 0

� � 0,

where both sums are for i = 1; 2; : : : ; N , and D is an N �N matrix such that

Dij = yiyjxi � xj: (8)

As for the pair ( �w;�b), from equation (7) it follows that

�w =

NX
i=1

��iyixi; (9)

while �b can be determined from the Kuhn-Tucker conditions

��i

�
yi( �w � xi + �b)� 1

�
= 0; i = 1; 2; : : : ; N: (10)

Note that the only ��i that can be nonzero in equation (10) are those for which the constraints (2)

are satis�ed with the equality sign. The corresponding points xi, termed support vectors, are the

points of S closest to the OSH (see �gure 1(b)).

Given a support vector xj, the parameter �b can be obtained from the corresponding Kuhn-Tucker

condition as
�b = yj � �w � xj:

The problem of classifying a new data point x is now simply solved by computing

sign
�
�w � x+�b

�
: (11)

In conclusion, the support vectors condense all the information contained in the training set S

which is needed to classify new data points.

2In what follows � � 0 means �i � 0 for every component �i of any vector �.
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2.3 Linearly nonseparable case

If the set S is not linearly separable or one simply ignores whether or not the set S is linearly

separable, the problem of searching for an OSH is meaningless (there may be no separating

hyperplane to start with). Fortunately, the previous analysis can be generalized by introducing

N nonnegative variables � = (�1; �2; : : : ; �N) such that

yi(w � xi + b) � 1 � �i; i = 1; 2; : : : ; N: (12)

If the point xi satis�es inequality (2), then �i is null and (12) reduces to (2). Instead, if the point

xi does not satisfy inequality (2), the term ��i is added to the right hand side of (2) to obtain

inequality (12). The generalized OSH is then regarded as the solution to

Problem P3

Minimize 1

2
w �w + C

P
�i

subject to yi(w � xi + b) � 1� �i i = 1; 2; : : : ; N

� � 0.

The term C
P
�i, where the sum is for i = 1; 2; : : : ; N , can be thought of as some measure of the

amount of misclassi�cation. Note that this term leads to a more robust solution, in the statistical

sense, than the intuitively more appealing term C
P
�
2
i . In other words, the term C

P
�i makes

the OSH less sensitive to the presence of outliers in the training set. The parameter C can be

regarded as a regularization parameter. The OSH tends to maximize the minimum distance 1=w

for small C, and minimize the number of misclassi�ed points for large C. For intermediate values

of C the solution of problem P3 trades errors for a larger margin. The behavior of the OSH as

a function of C will be studied in detail in the next section.

In analogy with what was done for the separable case, problem P3 can be transformed into the

dual

Problem P4

Maximize �1

2
� �D� +

P
�i

subject to
P
yi�i = 0

0 � �i � C, i = 1; 2; : : : ; N

with D the same N �N matrix of the separable case. Note that the dimension of P4 is given by

the size of the training set, while the dimension of the input space gives the rank of D. From the

constraints of problem P4 it follows that if C is su�ciently large and the set S linearly separable,

problem P4 reduces to P2.

As for the pair ( �w;�b), it is easy to �nd that

�w =

NX
i=1

��iyixi;

while �b can again be determined from ��, solution of the dual problem P4, and from the new

Kuhn-Tucker conditions

��i

�
yi( �w � xi + �b)� 1 + ��i

�
= 0 (13)

(C � ��i)
��i = 0 (14)

where the ��i are the values of the �i at the saddle point. Similarly to the separable case, the

points xi for which ��i > 0 are termed support vectors. The main di�erence is that here we have
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to distinguish between the support vectors for which ��i < C and those for which ��i = C. In the

�rst case, from condition (14) it follows that ��i = 0, and hence, from condition (13), that the

support vectors lie at a distance 1= �w from the OSH. These support vectors are termed margin

vectors. The support vectors for which ��i = C, instead, are misclassi�ed points (if �i > 1), points

correctly classi�ed but closer than 1= �w from the OSH (if 0 < � � 1), or, in some degenerate

cases, even points lying on the margin (if �i = 0). In any event, we refer to all the support

vectors for which �i = C as errors. An example of generalized OSH with the relative margin

vectors and errors is shown in �gure 2. All the points that are not support vectors are correctly

classi�ed and lie outside the margin strip.

Figure 2: Generalized optimal separating hyperplane. The two sets of circles and triangles are

not linearly separable. The solid line is the optimal separating hyperplane, the �lled circles and

triangles the support vectors (the margin vectors are shown in black, the errors in gray).

We now conclude this section by discussing the extension of the theory to the nonlinear case.

2.4 Nonlinear kernels

In most cases,, linear separation in input space is a too restrictive hypothesis to be of practical

use. Fortunately, the theory can be extended to nonlinear separating surfaces by mapping the

input points into feature points and looking for the OSH in the corresponding feature space

[Cortes and Vapnik 1995].

If x 2 IRn is an input point, we let '(x) be the corresponding feature point with ' a mapping

from IRn to a certain space Z (typically a Hilbert space of �nite or in�nite dimension). In both

cases we denote with 'i the components of '. Clearly, to an OSH in Z corresponds a nonlinear

separating surface in input space.

At �rst sight it might seem that this nonlinear surface cannot be determined unless the mapping

' is completely known. However, from the formulation of problem P4 and the classi�cation

stage of equation (11), it follows that ' enters only in the dot product between feature points,

since

Dij = yiyj'(xi) �'(xj);
and

�w �'(x) + �b =
X

��iyi'(xi) �'(x) + �b:

Consequently, if we �nd an expression for the dot product in feature space which uses the points

in input space only, that is

'(xi) �'(xj) = K(xi;xj); (15)

6



full knowledge of ' is not necessary. The symmetric function K in equation (15) is called

kernel. The nonlinear separating surface can be found as the solution of problem P4 with

Dij = yiyjK(xi;xj), while the classi�cation stage reduces to computing

sign
�X

��iyiK(xi;x) + �b
�
:

Therefore, the extension of the theory to the nonlinear case is reduced to �nding kernels which

identify certain families of decision surfaces and can be written as in equation (15). A useful

criterion for deciding whether a kernel can be written as in equation (15) is given by Mercer's

theorem [Courant and Hilbert 1981, Cortes and Vapnik 1995]: a kernel K(x, y), with x;y 2 IRn,

is a dot product in some feature space, or K(x;y) = '(x) �'(y), if and only if

K(x;y) = K(y;x) and

Z Z
K(x;y)f(x)f(y)dxdy � 0; 8f 2 L

2
:

Given such a kernel K, a possible set of functions ' = ('1; '2; : : :) satisfying equation (15) can

be determined from the eigenfunctions '̂i solution of the eigenvalue problem

Z
K(x;y)'̂i(x)dx = �i'̂i(y); (16)

with 'i =
p
�i'̂i. If the set of eigenfunctions '̂ is �nite, the kernel K is said to be �nite and can

be rewritten as

K(x;y) =
X

�i'̂i(x)'̂i(y); (17)

where the sum ranges over the set of eigenfunctions. In the general case, the set ' is in�nite,

the kernel is said to be in�nite, and the sum in equation (17) becomes a series or an integral.

We now give two simple examples of kernels. The �rst is the polynomial kernel

K(x;y) = (1 + x � y)d; x;y 2 [�a; a]d:

It can easily be veri�ed that the polynomial kernel satis�es Mercer's theorem and is �nite. The

separating surface in input space is a polynomial surface of degree d. In this case a mapping '

can be determined directly from the de�nition of K. In the particular case n = 2 and d = 2, for

example, if x = (x1; x2) we can write

'(x) =
�
1;
p
2x1;

p
2x2; x

2

1; x
2

2;

p
2x1x2

�
:

The second example is the Gaussian kernel

K(x;y) = exp

 
�kx� yk2

2�2

!
;

for some � 2 IR. The Gaussian kernel clearly satis�es Mercer's theorem, but is in�nite because

equation (16) has a continuum of eigenvalues. It is easy to verify that in this case the eigenvalues

are given by the normalized Fourier Transform of the Gaussian,
p
2�� exp(�ksk2�2=2), with

exp(ix � s) as corresponding eigenfunctions. The separating surface in input space is a weighted

sum of Gaussians centered on the support vectors.

We are now fully equipped to discuss some mathematical properties of the solution of problem

P4.
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3 Mathematical properties

The goal is to study the dependence of the OSH on the parameter C. We �rst deal with the

linear case and then extend the analysis to nonlinear kernels.

3.1 Lagrange multiplier of a margin vector

We start by establishing a simple but important result on the Lagrange multipliers of the margin

vectors. We want to show that the Lagrange multiplier associated with a margin vector is a step-
wise linear function of the regularization parameter C. To prove it, we need a few preliminary

de�nitions. Since there is no risk of confusion, we now write �, b, and w instead of ��, �b, and �w.

We introduce the sets of support vector indexes

I = fi : 0 < �i < Cg and J = fi : �i = Cg;

and let M + 1 and E be the number of indexes in I and J respectively. The set I identi�es the

M + 1 margin vectors, while J the E errors. While E can also be equal to 0, we suppose that

there are at least two margin vectors (that is, M > 0). This last hypothesis may not be satis�ed

for highly degenerate con�gurations of points and small values of C, but does not appear to be

restrictive in cases of interest. Finally, and with no further loss of generality, we assume that all

the points are support vectors3 and, hence, that M + 1 + E = N .

We start by sorting the support vectors so that

I = I
�
[
fNg and J = fM + 1;M + 2; : : : ; N � 1g;

with I
� = f1; 2; : : : ;Mg, and labeling the points so that yN = �1. The Kuhn-Tucker condi-

tions (13) for i 2 I tell us that

yi(w � xi + b) = 1: (18)

Equation (18), by means of (8) and (9), can be rewritten as

NX
j=1

�jDji + yib = 1: (19)

From the equality constraint
P
yi�i = 0, instead, and since yN = �1 we have

�N =

N�1X
i=1

�iyi: (20)

At the same time, from equation (19) with i = N we get

b =

NX
j=1

�jDjN � 1: (21)

Plugging equations (20) and (21) into (19) we obtain

N�1X
j=1

�jHji = 1 + yi; i 2 I
�
: (22)

3This follows from the fact that if the points with �i = 0 are discarded, problem P4 has still the same solution.

8



where H is the (N � 1) � (N � 1) matrix

Hij = yiyj(xi � xN) � (xj � xN): (23)

Notice that H can be written as

H =

 
HM HME

H
>

ME
HE

!
;

HM being the M �M submatrix between margin vectors, HE the E � E submatrix between

errors, and HME the M � E submatrix between margin vectors and errors. Separating the sum

on margin vectors and errors in equation (22), we �nd:

X
j2I

�jHji + C

X
j2J

Hji = 1 + yi; i 2 I
�
: (24)

In vector notation equation (24) rewrites

HM�M + CHME1E = 1M + yM;

with �M = (�1; �2; : : : ; �M), yM = (y1; y2; : : : ; yM), and 1M and 1E the M - and E-vectors with

all the components equal to unit.

Assuming that the matrix HM is invertible (see the Appendix for a proof of this fact) we have

�M = H
�1

M
(1M + yM)�CH

�1

M
HME1E: (25)

From equation (25) we infer that the Lagrange multiplier associated with a margin vector can
always be written as the sum of two terms. As made clear by the subscript M , the �rst term

depends only on the margin vectors, while the second is proportional to C and depends on both

the margin vectors and errors.

An important consequence of the existence of H�1
M

is that the vectors xi�xN, = 1; 2; : : : ;M are

linearly independent. As a corollary, the number of margin vectors cannot exceed n + 1, that is

M � n. Notice that this does not mean that the number of points lying on the margin cannot

exceed n+ 1. In degenerate cases, there may be points lying on the margin with � = 0, or even

support vectors lying on the margin with � = C.

3.2 Dependence on the regularization parameter

We are now in a position to study the dependence of the OSH on the parameter C. We �rst

show that the normal to the OSH can be written as the sum of two orthogonal vectors.

3.2.1 Orthogonal decomposition

In components equation (25) can be rewritten

�i = ri + giC i 2 I
�
; (26)

with

rM = H
�1

M
(1M + yM) (27)
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and

gM = �H�1

M
HME1E: (28)

Notice that the ri and gi are not necessarily positive (although they cannot be both negative).

If we de�ne

rN =
X
i2I�

riyi (29)

gN =
X
i2I�

giyi +
X
i2J

yi; (30)

then equation (26) is also true for the margin vector of index N as

rN + gNC =
X
i2I�

riyi +
X
i2I�

giyiC +
X
i2J

yiC =
X
i2I�

yi�i + C
X
i2J

yi = �N ;

where the last equality is due to the constraint (6) and the fact that �i = C for all i 2 J .

Plugging equation (26) into (9) and separating the constant and linear term we obtain

w = w1 + Cw2; (31)

with

w1 =
X
i2I

riyixi; (32)

w2 =
X
i2J

yixi +
X
i2I

giyixi: (33)

It can easily be seen that w1 and w2 are orthogonal. Substituting equations (29) and (30) into

(32) and (33) respectively, one obtains

w1 =
X
i2I�

riyi(xi � xN);

w2 =
X
i2J

yi(xi � xN) +
X
i2I�

giyi(xi � xN):

Then, through the de�nition of HM and HME we have

w1 �w2 = rMHME1E + rMHMgM : (34)

Plugging equation (28) in (34) it follows immediately that w1 �w2 = 0.

3.2.2 Changing the regularization parameter

We now study the e�ect of small changes of the regularization parameter C on the OSH. Since C

is the only free parameter of SVMs, this study is relevant from both the theoretical and practical

viewpoint. In what follows we let C take on values over the positive real axis IR+. First, we

notice that the possible choices of support vectors for all possible values of C (distinguishing

between margin vectors and errors) are �nite. If we neglect degenerate con�gurations of support

vectors, this implies that IR+ can be partitioned in a �nite number of disjoint interval, each

characterized by a �xed set of support vectors. Notice that the rightmost interval is necessarily

unbounded.
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After this preliminary observation we can already conclude that, with the exception of the C

values corresponding to the interval ends, the set of support vectors does not vary for small

changes of C. But through the previous analysis we can also study the dependence of the normal

vector w on the parameter C. From equation (31) it follows that if C changes by �C and the

margin vectors and errors remain the same, the normal vector w changes by �Cw2 along the

direction of w2. We can make this statement more precise distinguishing between two cases.

In the �rst case we let M reach the maximum value n. Since HM has always maximum rank, we

have n + 1 independent Kuhn-Tucker conditions like equation (18) and the OSH is completely

determined by the n+ 1 margin vectors. Consequently, since for almost all C the set of support

vectors remains the same for small changes of C, w2 must vanish and we have

w =
X
i2I

riyixi: (35)

Equation (35) tells us that if M = n the OSH is �xed and unambiguously identi�ed by the n+1

margin vectors. The fact that the OSH is �xed makes it possible to determine the maximum

interval around C, say (C1; C2], in which the OSH is given by equation (35). To this purpose it

is su�cient to compute the ri and gi from equations (27) and (28) and �nd C1 and C2 as the

minimum and maximum C for which the �i associated with the margin vector xi satisfy the

constraint 0 < �i � C.

In the second case, we have M < n. The OSH is now given by equation (31) with w2 6= 0. Thus

for a small change �C the new OSH w
0 can be written as

w
0 = w + �Cw2: (36)

Equation (36) tells us that ifM < n the OSH changes of an amount �Cw2. Here again there exists

a maximum interval (C1; C2] around C in which the OSH is given by equation (36). Similarly to

the previous case, one could determine the minimumand maximumC for which the �i associated

with the margin vectors satisfy the constraint 0 < �i � C. However, since to a changing OSH

might correspond a new set of support vectors, these minimum and maximum values are only a

lower and upper bound for C1 and C2 respectively.

Finally, we observe that even if M < n, the OSH can always be written as a linear combination

of n+ 1 support vectors, for example by adding n+ 1�M errors.

3.2.3 A numerical example

We now illustrate both cases by means of the numerical example with n = 2 shown in �gure

3. �gure 3(a) shows the OSH found for the displayed training set with C = 4:0. The support

vectors are denoted by the �lled circles and triangles (the margin vectors in black, the errors

in grey). In accordance with equation (35), since there are 3 margin vectors the OSH is �xed.

Straightforward computations predict that the OSH must remain the same for 2:7 < C � 4:5.

This prediction has been veri�ed numerically.

Figure 3(b) shows the new OSH obtained for C just outside the interval (2:7; 4:5] (C = 4:8).

Notice that the errors are the same of �gure 3(a), while there are only two margin vectors. As

we have just discussed, the OSH should now change for small variations of C as predicted by

equation (36). This has been veri�ed numerically and �gure 3(c) displays the OSHs obtained

from equation (36) and from direct solution of the problem P4 for C = 6:7. The two OSH

coincide within numerical precision.
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(a) (b)

(c) (d)

Figure 3: Optimal separating hyperplane for C = 4:0 (a), C = 4:8 (b), C = 6:7 (c), and C = 7:5

(d) respectively. Legend as in �gure 2.

For a larger variation of C (C > 7:0, see �gure 3(d)) the number of margin vectors goes back to

3 and the solution is again �xed. Notice that in this last transition one of the errors became a

margin vector (the error in the upper part of the margin strip of �gure 3(c) is a margin vector

in �gure 3(d)).

As mentioned in the previous section, it is worthwhile noticing that the solutions with smaller C

(see �gure 3(a) and (b)) have a larger margin, while the solutions with larger C (see �gure 3(c)

and (d)) have a smaller number of errors.

3.3 Extension to nonlinear kernels

We now extend the presented analysis to the case of nonlinear kernels.

Lagrange multiplier of a margin vector We start by observing that the same decomposition

of the Lagrange multiplier of a margin vector derived in the linear case holds true for nonlinear

kernels. Note that the matrix H of equation (23) rewrites

Hij = yiyj (K(xi;xj)�K(xj;xN)�K(xi;xN) +K(xN ;xN)) ; (37)

while equations (25) to (30) remain unchanged.
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Orthogonal decomposition More care is needed for the extension of the orthogonal decom-

position of w and the study of the behavior of the separating surface as a function of C. This

is because, in the nonlinear case, it may not be possible to recover an explicit expression for

w. However, this does not pose major problems because all the expressions involving w are

e�ectively dot products between feature points and can be computed by means of the kernel K.

Indeed, if we take the dot product between w and '(x), we obtain

w �'(x) =
NX
i=1

�iyiK(xi;x);

that can be written as

NX
i=1

�iyiK(xi;x) =
X
i2I

riyiK(xi;x)

+ C

 X
j2J

yjK(xj;x) +
X
i2I

giyiK(xi;x)

!
: (38)

The two terms in the r.h.s. of equation (38) are the counterparts of equations (32) and (33)

de�ning w1 and w2 respectively. Note that even if the explicit expression for w1 and w2 cannot

be given, the orthogonality relation (34) remains true. This can be seen from the fact that the

r.h.s. of equation (34) depends on the matrix H which, in the nonlinear case, is rewritten as in

equation (37). In this respect, the two terms in the r.h.s. of equation (38) can be regarded as

orthogonal.

Changing the regularization parameter So far, all the results derived in the linear case

carried through the case of nonlinear kernels. For the dependence of the separating surface on

the parameter C, instead, it is convenient to distinguish between �nite and in�nite kernels.

For �nite kernels, all the results obtained in the linear case are still valid and can be rederived

simply replacing n, dimension of input space, with m, dimension of feature space. For example,

ifM = m, the OSH in feature space does not change for small changes of C and the second term

in the r.h.s of equation (38) vanishes for all x. Furthermore, the interval (C1; C2], within which

the OSH is �xed, can be determined exactly as in the linear case.

For kernels of in�nite dimension, instead, a �nite number of margin vectors is not su�cient to

fully determine the OSH. Consequently and di�erently from the �nite case, the OSH is never

�xed and the second term of equation (38) does not vanish. For a small change �C, the dot

product w �'(x) changes of the amount

�C

 X
j2J

yjK(xj;x) +
X
i2I

giyiK(xi;x)

!
:

In summary, all the results derived in the linear case can be extended without major changes

to the nonlinear case, with the exception of the properties depending on the �niteness of the

dimension of the linear case, like the upper bound on the number of margin vectors, properties

that are still true for �nite kernels only.

4 Conclusions

In the case of pattern recognition, SVMs depend only one free parameter, the regularization

parameter C. In this paper we have discussed some mathematical properties of support vectors
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useful to characterize the behavior of the decision surface with respect to C. We have identi�ed

a special subset of support vectors, the margin vectors, whose Lagrange multiplier are strictly

smaller than the regularization parameter C. We have shown that the margin vectors are always

linearly independent and that the decision surface can be written as the sum of two orthogonal

terms, the �rst depending only on the margin vectors, the second proportional to the regular-

ization parameter. For almost all values of the parameter, this enabled us to predict how the

decision surface varies for small parameter changes. In general we found that the solution is

usually stable with respect to small changes of C.

The obtained results can be more conveniently summarized distinguishing between �nite and

in�nte kernels. For kernels of �nite dimension m, it turned out that m + 1 is the least upper

bound for the number of margin vectors (M + 1) and the behavior of the OSH as a function of

C depends on whether M = m or M < m. If M = m, the M + 1 margin vectors are su�cient

to fully determine the equation of the OSH in feature space and for almost all values of C the

OSH does not vary for small changes of C. If M < m, instead, the OSH varies of an amount

proportional to the change �C in a direction identi�ed by both the margin vectors and errors.

In both cases it is worthwhile observing that the number of support vectors e�ectively needed

to identify the decision surface is never greater than m + 1. This latter result may be useful to

reduce the number of support vectors e�ectively needed to perform recognition.

For in�nite kernels, the margin vectors are still linearly independent but there is no upper bound

on their number. For small changes of C the OSH is not �xed and varies as in the case M < m

of �nite kernels.
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Appendix

In this appendix we sketch the proof of the existence of H�1
M
. First, we need to (a) transform

the original dual problem P4 into a Linear Complementary Problem (LCP), and (b) derive the

explicit expression for the matrix G which de�nes the polyhedral set on which the solution of

the LCP lies.

Let us de�ne � = (�1; �2; : : : ; �N�1) and remind that �N =
P
yi�i where the sum ranges over

i = 1; 2; : : : ; N � 1. We let N1 and N2 be the number of points with positive and negative labels

respectively. We start by rewriting problem P4 without the equality constraint as

Problem P5

Minimize
1

2
� �H�� 2

X
i2I+

�i

subject to �
N�1X
i=1

yi�i � 0,

N�1X
i=1

yi�i � C

�i � C, i = 1; 2; : : : ; N � 1

�i � 0, i = 1; 2; : : : ; N � 1

with I
+ the set of indexes corresponding to the �i for which yi = 1. Then, we let u+, u�,

u = (u1; u2; : : : ; uN�1), and v = (v1; v2; : : : ; vN�1) be the 2N Lagrange multipliers associated with
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the constraints of problem P5 respectively.

The LCP associated with problem P5 is obtained by

1. setting equal to 0 the gradient of the Lagrangian associated with problem P5, or

N�1X
j=1

�jHji � 1 + yi(u+ � u�)� yi + ui � vi = 0;

and

2. introducing the N + 1 slack variables4 s+, s�, and s = (s1; s2; : : : ; sN�1), satisfying

s+ +

N�1X
i=1

�iyi = 0;

s� �
N�1X
i=1

�iyi = C;

and

si + �i = C;

along with the associated complementary conditions

s�u� = s+u+ = 0;

siui = 0;

and

�ivi = 0;

for each i = 1; 2; : : : ; N � 1.

The solution of problem P5 can be obtained as the solution of the LCP

Problem P6

Solve t�Mz = q

subject to t; z � 0

tizi = 0, i = 1; 2; : : : ; 2N ,

with t = (s�; s+; s;v), z = (u�; u+;u;�),

M =

 
0 �A
A
>

H

!
;

A =

0
BBBBBBBBBBB@

�y1 � � � �yN�1
y1 � � � yN�1

IN�1

1
CCCCCCCCCCCA
;

4In the constrained optimization jargon, a slack variable is a nonnegative variable that turns an inequality

into an equality constraint.

15



q = (b;k),

b = (0;

N+1z }| {
C; : : : ; C); and k = (

N1z }| {
�2; : : : ;�2;

N2�1z }| {
0; : : : ; 0):

Similarly to the case of linear programming, a solution to Problem P6 is a vertex of a poly-

hedral set. In addition, the solution must also satisfy the complementarity conditions. In

the case of problem P6, a solution vector p = (t; z) is a vertex of the polyhedral set S =

fp : Gp = q;p � 0g, with G = [I
2N;�M ], p = (pB;pN); pB = B

�1
q, pN = 0, and B is the

2N � 2N matrix de�ned by the columns of G corresponding to the 2N active variables.

Through simple but lengthy calculations, it can be seen that the matrix HM is a submatrix of B

and H
�1
M

a submatrix of B�1. The existence of H�1
M

is thus ensured by the existence of B�1.
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