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Abstract

Stimuli outside classical receptive �elds signi�cantly in
uence the neurons' activities in

primary visual cortex [1, 2, 3, 4, 5]. We propose that such contextual in
uences are used

to segment regions by detecting the breakdown of homogeneity or translation invariance

in the input, thus computing global region boundaries using local interactions. This is

implemented in a biologically based model of V1, and demonstrated in examples of texture

segmentation and �gure-ground segregation. By contrast with traditional approaches,

segmentation occurs without classi�cation or comparison of features within or between

regions and is performed by exactly the same neural circuit responsible for the dual problem

of the grouping and enhancement of contours.
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Recent experiments have pointed to the com-

plexity of processing that occurs in V1[6, 7,

8, 9, 3]. Not only can this processing deter-

mine the gains and the classical tuning func-

tions of cells,[6, 9, 10] but it also arranges for

contextual in
uences on their activities from

stimuli beyond their classical receptive �elds

(RFs)[1, 2, 3, 11, 4, 12, 13, 5]. The responses

of cells depend on whether stimuli within and

beyond the RFs share the same orientations[2,

4, 11, 5], and whether the stimuli within the

RFs are part of di�erent regions, such as �gure

or ground [12, 13]. Horizontal intra-cortical con-

nections are suggested to mediate the contextual

in
uences[7, 3]. While there have been substan-

tial experimental interest and some modeling in-

terest (e.g., [14]) in these contextual in
uences,

computational understanding of their roles in vi-

sual processing is lagging far behind [1, 3].

We propose that the contextual in
uences in

the primary visual cortex can serve the goal of

visual grouping, i.e., inferring global visual ob-

jects such as contours and regions from the lo-

cal features captured by the RFs. Local fea-

tures can group into regions, as in texture seg-

mentation; or into contours which may repre-

sent boundaries of underlying objects. We show

how one form of global grouping, namely re-

gion segmentation, can emerge from a simple

but biologically-based model of V1 which only

involves �nite-range cortical interactions.

It has always been assumed, implicitly or ex-

plicitly, that to segment one region from an-

other, feature extraction and/or classi�cation

within a region and feature comparison between

regions are required [15, 16, 17]. On the other

hand, feature extraction or classi�cation often

require segmentation, thus creating a dilemma.

In these traditional approaches, not only is fea-

ture classi�cation problematic near the bound-

aries between regions, but also segmentation us-

ing feature comparison is tricky in cases such

as �gure (3D), where the two regions have the

same texture feature value but are segmentable

in natural vision. Therefore, feature extraction

or classi�cation is not always necessary nor su�-

cient for segmentation. In fact, even with distin-

guishable classi�cation 
ags for all image areas

in any two regions, segmentation is not com-

pleted until another processing step locates the

boundary, perhaps by searching for where the

classi�cation 
ags change. Therefore, we pro-

pose that segmentation in its pre-attentive stage

is segmentation without classi�cation, i.e., seg-

mentation without explicitly knowing the con-

tents of the regions. This simpli�es the segmen-

tation process conceptually, making it feasible

by low level processing in V1. This paper fo-

cuses on this pre-attentive segmentation. Addi-

tional processing is likely needed to improve the

outcome based on pre-attentive segmentation,

e.g., by �lling in the contents of the regions.

The model focuses on simple texture segmen-

tation, i.e., region grouping without color, mo-

tion, luminance, or stereo cues. A single texture

region is de�ned by the homogeneity or trans-

lation invariance of the statistics of the input

features that de�ne it, no matter what features

are involved or, for instance, whether or not

they are textons[18]. If cortical interactions are

translation invariant and do not induce sponta-

neous pattern formation (such as zebra stripes

[19]) through the spontaneous breakdown of

translation symmetry, then the cortical response

to a homogenous region will itself be homoge-

neous. However, homogeneity is disrupted at

the boundary of a region. Consequently, a neu-

ron near the boundary and another far from the

boundary experience di�erent contextual in
u-

ences, and thus exhibit di�erent response lev-

els. The location of the boundary can therefore

be pinpointed by assessing where the contex-

tual in
uences or neural response levels change.

In the model, this breakdown in homogeneity

gives relatively higher neural activities near the

boundaries than away from them. This makes

the boundaries relatively more salient, allowing

them to pop out perceptually. Physiological ex-

periments in V1 indeed show that activity levels

are higher near texture boundaries[20].

Figure (1) shows the elements of the model

and their interactions. Based on experimental
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observations[8, 9], a cortical column is modelled

by recurrently connected excitatory cells and in-

hibitory interneurons tuned to bars or edges.

Quantities xi� and yi� are the membrane poten-

tials of the excitatory and inhibitory cells having

the RF center (or hypercolumn) location i and

perferred orientation �. The excitatory cell re-

ceives external visual input Ii� to the cortical

cell, which is the retinal image �ltered through

the RF. These edge or bar inputs to the model

are merely image primitives, which are in prin-

ciple like the image pixel primitives and are re-

versibly convertible from them. They are not

to denote the texture feature values, e.g., the

`+' or `x' patterns and their spatial arrange-

ments in the example of �gure (3)C. Again, this

model does not extract texture features in or-

der to segment. The output from V1 is pro-

vided by the excitatory cells. Based on observa-

tions by Gilbert, Lund and their colleagues[7, 3],

horizontal connections Ji�;j�0 and Wi�;j�0 link

cells with di�erent RF centers and similar ori-

entation preferences to mediate contextual in-


uences. The membrane potentials follow the

equations:

_xi� = ��xxi� �

X

��

 (��)gy(yi;�+��)

+Jogx(xi�) +
X

j 6=i;�0

Ji�;j�0gx(xj�0)

+Ii� + Io

_yi� = ��yyi� + gx(xi�) +
X

j 6=i;�0

Wi�;j�0gx(xj�0)

+Ic

where �xxi� and �yyi� model the decay to rest-

ing potentials, gx(x) and gy(y) are sigmoid-like

functions modeling cells' �ring rates gx(x) and

gy(y) given membrane potentials x and y, re-

spectively,  (��) the inhibition spread within

a hypercolumn, Jogx(xi�) the self excitation, Ic
and Io are background inputs or inputs modeling

the general and local activity normalization[21],

and Ji�;j�0gx(xj�0) and Wi�;j�0gx(xj�0) model the

contextual in
uences (see [22, 23]) for more de-

tails).

The activity levels of the neurons gx(xi�) are

initially set by just the visual input Ii�. This

input persists after its onset. The activities

are then modi�ed e�ectively within one mem-

brane time constant by the cortical interaction

that mediate the contextual in
uences. Mean

�eld techniques and dynamic stability analysis

are used to design the horizontal connections J

and W to ensure that: (1) the system does not

generate patterns spontaneously, i.e., the model

gives spatially homogenous output for homoge-

nous input images, (2) the region boundaries

are relatively highlighted by modeling the phys-

iologically observed iso-orientation suppression

via the contextual in
uences (thereby making

areas inside a region less salient), and (3) the

same neural circuit performs contour enhance-

ment (see [24] for more details).

The model was applied to a variety of tex-

tured inputs. Figure (2)A shows a sample in-

put consisting of two regions, in which all the

visible inputs Ii� have the same strength. Fig-

ure (2)B,C shows the output of the model, indi-

cating that the activities of the neurons at the

boundary are signi�cantly higher than others.

Figure (2)D con�rms that the boundary can be

identi�ed by thresholding the �nal activities.

Figure (3) shows other examples of input pat-

terns and the thresholded outputs of the model.

Note particularly in �gures (3)A;B;C that the

model copes well with textures de�ned by com-

plex or stochastic patterns; from �gure (3)D

that it segments regions by detecting the break-

down of homogeneity even though the two re-

gions have the same texture feature, a feat dif-

�cult in traditional approaches; in �gure (3)E

that both humans and the model have di�culty

segmenting regions when the translation invari-

ance is only broken very weakly; and in �g-

ure (3)H that when a region is very small, all

parts of it belong to the boundary and it pops

out from the background. Figure (3)F;G show

other examples where regions di�er by the ori-

entations of the texture elements. Finally, �g-

ure (3)I con�rms that exactly the same model,

with the same elements and parameters, can also

highlight contours against a noisy background.

This can be seen as another example of a break-
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down of translation invariance. Additional sim-

ulations con�rm that the model also performs

reasonably well on many other examples.

Our model to detect region boundaries is be-

yond and di�erent from the early visual process-

ing using center-surround �lters or the like[25].

There, the �lters are tuned to detect contrast in

luminance, they can detect the edge primitives

in a textured region, and their outputs can be

used as inputs to our model. However, these

�lters can not detect feature changes from one

region to another, e.g., �gure (2)A, that are not

apparent in average luminance changes. If one

were to design a one stage �lter to detect the fea-

ture changes between regions, the �lter would be

feature speci�c and many di�erent kinds would

be required to cover many possible region dif-

ferences. The mechanism using cortical interac-

tions in our model highlights conspicuous im-

age locations or general feature changes from

one region to another without speci�c tuning

to any region features. While the early stage

�lters code image primitives[25], the mechanism

in our model is aimed towards coding object sur-

face primitives.

It has recently been argued that texture

analysis is performed at a low level of vi-

sual processing[15], and indeed �lter based

models[16] and their non-linear extensions (e.g.,

[17]) capture well much of the phenomenology of

psychophysical performance. However, all the

previous models are based on the traditional

approach of segmentation by feature classi�ca-

tion/comparison, and thus share the problems

associated with that approach. By performing

segmentation without classi�cation, our model

di�ers from these in principle. Consequently,

while our model employs only those low level

visual operations that are consistent with ex-

perimental observations[7, 8, 9, 3], the model by

Malik and Perona[17], for instance, uses com-

plicated forms of cortical interactions such as

winner-take-all operations and spatial deriva-

tives for which there exists little experimental

evidence. In addition, our model is the �rst

to perform region segmentation and contour en-

hancement using exactly the same neural cir-

cuit. This is desirable since regions and their

boundary contours are complementary to each

other. Furthermore, in our framework, small re-

gions naturally pop out, as in �gure (3H), �lling-

in in a non-homogeneous region would be the

perceptual consequence of the model's failing

to highlight the non-homogeneity, and feature

statistics in a region[26] are automatically ac-

counted for for region segmentation.

The components of the model and its behav-

ior are consistent with experimental evidence[7,

8, 9, 3, 20]. However, the model is obviously

only an approximation to the true complexities

of V1. For instance, all its elements are tuned

to one scale, and exhibit none of the 
exible

adaptation that is pervasive in the real system.

Therefore, the model sometimes �nds it easier

or more di�cult to segment some regions than

natural vision, for instance, not coping well with

gradual changes in images caused by the tilt of

a textured surface. Any given neural interac-

tion will be more sensitive to some region di�er-

ences than others. Hence, a more detailed model

of the neural elements and the connection pat-

tern would be required to capture exactly the

psychophysical data on segmentation in natu-

ral pre-attentive vision. However, independent

of such details, our results show the feasibility

of the underlying ideas, that region segmenta-

tion can occur without region classi�cation, that

breakdown of translation invariance can be used

to segment regions, that region segmentation

and contour detection can be addressed by the

same mechanism, and that low-level processing

in V1 together with local contextual interactions

can contribute signi�cantly to visual computa-

tions at global scales.
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A their interactions

Visual space, edge detectors, and

A sampling location One of the edge  

detectors

B Neural connection pattern.

Solid: J , Dashed: W

C Model Neural Elements

Edge outputs to higher visual areas
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neurons

inhibitory
neurons

-

++

-

inhibitory cells
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Inputs Ic to

θ

edge segment i
neuron pair for 

Figure 1: A: Visual inputs are sampled in a

discrete grid by edge/bar detectors, referred to

as edge or edge segments, modeling RFs in V1.

Each grid point has K neuron pairs (see C),

one per edge segment. All cells at a grid point

share the same RF center, but are tuned to dif-

ferent orientations spanning 180o, thus model-

ing a hypercolumn. An edge segment in one

hypercolumn can interact with another in a dif-

ferent hypercolumn via monosynaptic excitation

J (the solid arrow from one thick bar to an-

other), or disynaptic inhibition W (the dashed

arrow to a thick dashed bar). See also C. B:

A schematic of the neural connection pattern

from the center (thick solid) edge to neighbor-

ing edges within a �nite distance. J 's contacts

are shown by thin solid edges. W 's are shown

by thin dashed edges. All edges have the same

connection pattern, suitably translated and ro-

tated from this one. C: An input edge seg-

ment is associated with an interconnected pair

of excitatory and inhibitory cells, each model

cell models abstractly a local group of cells of

the same type. The excitatory cell receives vi-

sual input and sends output gx(xi�) to higher

centers. The inhibitory cell is an interneuron.

Activity levels gx(xi�) often oscillate over time

[27, 28], which is an intrinsic property of a pop-

ulation of recurrently connected excitatory and

inhibitory cells. Temporal averages over multi-

ple time constants after input onset are taken

as the model output. The region dependence of

the phases of the oscillations in this model could

be exploited for segmentation[22], although it is

beyond this paper. The visual space has toroidal

(wrap-around) boundary conditions.
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A: Input image to model

B: Model output

C:Neural response levels for one of the rows

D: Thresholded model output

Figure 2: A: Input Ii� of two regions; each

visible edge has the same input strength. B:

Model output for A, showing non-uniform out-

put strengths (temporal averages of gx(xi�)) for

the edges. The input and output edge strengths

are proportional to the edge thicknesses shown.

C: Output strengths (saliencies) vs. lateral lo-

cations of the edges for a row like the bottom

row in B, with the bar lengths proportional to

the corresponding edge output strengthes. D:

The thresholded output from B for illustration.

Each plotted region shown here is actually a

small part of, and extends continuously to, a

larger image. The same format is used in other

�gures in this paper.
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Figure 3: Additional examples A, B, C, D, E,

F, G, H, and I of model input images, each

followed by the corresponding output highlights

immediately below it.
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