
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

and

CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING

DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES

A.I. Memo No. 1616 November, 1997
C.B.C.L. Paper No. 155

Belief Propagation and Revision in Networks
with Loops

Yair Weiss
Dept. of Brain and Cognitive Sciences

MIT E10-120, Cambridge, MA 02139, USA
yweiss@psyche.mit.edu

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

Local belief propagation rules of the sort proposed by Pearl (1988) are guaranteed to converge to the opti-
mal beliefs for singly connected networks. Recently, a number of researchers have empirically demonstrated
good performance of these same algorithms on networks with loops, but a theoretical understanding of this
performance has yet to be achieved. Here we lay a foundation for an understanding of belief propagation
in networks with loops. For networks with a single loop, we derive an analytical relationship between the
steady state beliefs in the loopy network and the true posterior probability. Using this relationship we
show a category of networks for which the MAP estimate obtained by belief update and by belief revision
can be proven to be optimal (although the beliefs will be incorrect). We show how nodes can use local
information in the messages they receive in order to correct the steady state beliefs. Furthermore we prove
that for all networks with a single loop, the MAP estimate obtained by belief revision at convergence is
guaranteed to give the globally optimal sequence of states. The result is independent of the length of the
cycle and the size of the state space. For networks with multiple loops, we introduce the concept of a
\balanced network" and show simulation results comparing belief revision and update in such networks.
We show that the Turbo code structure is balanced and present simulations on a toy Turbo code problem
indicating the decoding obtained by belief revision at convergence is signi�cantly more likely to be correct.

Copyright c
 Massachusetts Institute of Technology, 1997

This report describes research done at the Center for Biological and Computational Learning and the Department of Brain
and Cognitive Sciences of the Massachusetts Institute of Technology. Support for the Center is provided in part by a grant
from the National Science Foundation under contract ASC{9217041. YW was also supported by NEI R01 EY11005 to E. H.
Adelson

CBA CB

A

a b

Figure 1: a. An example of the types of problems typ-
ically solved using belief propagation. Observed nodes
are denoted by �lled circles. A link between any two
nodes implies a probabilistic compatability constraint.
b. A simple network with a loop. Although belief prop-
agation rules can be generalized to this network, a theo-
retical understanding of the algorithms behavior in such
a network has yet to be achieved.

1 Introduction

Problems involving probabilistic belief propagation arise
in a wide variety of applications including error correct-
ing codes, speech recognition and medical diagnosis. The
basic problem we are interested in is perhaps best illus-
trated by a simple example. Consider �gure 1. The
task is to infer the states of three hidden nodes (labeled
A;B;C) having observed the states of the three evidence
nodes (labeled Ea; Eb; Ec). We assume a probability dis-
tribution on the variables given by:

P (A;B;CjEa; Eb; Ec) =
1

Z
e�J(A;B;C;Ea;Eb;Ec) (1)

where Z is a normalization function and:

J = J1(A;B)+J2(B;C)+J3(A;Ea)+J4(B;Eb)+J5(C;Ec)
(2)

Intuitively, there is a cost associated with every link
which speci�es the \compatibility" of the two nodes con-
nected by that link1. The total cost is decomposed into
�ve additive costs. Alternatively, the probability func-
tion P can be thought of as factoring into �ve multi-
plicative factors:

P = 	(A;B)	(B;C)	(A;Ea)	(B;Eb)	(C;Ec) (3)

The task of \inferring the states of the hidden nodes"
can have at least two meanings. In one task, the goal is
to calculate the probability that a hidden node is in a
particular state given all the evidence e.g. P (A = ajE).
In the AI literature, this is referred to as calculating the
belief function for node A. The other task is to �nd
the most likely sequence of states for the hidden nodes
i.e. the triplet (a�; b�; c�) that maximizes P (A = a;B =
b; C = cjE).

Both tasks can be done by exhaustive enumeration.
Obviously, the most likely sequence can be found by try-

1We assume only pairwise compatibilities between nodes.
This is slightly more restrictive than the general MRF
formulation

ing all possibilities and the belief function can be calcu-
lated by marginalization:

P (A = ajE) =
X
b;c

P (A = a;B = b; C = cjE) (4)

A naive exhaustive enumeration is, of course, exponen-
tial in the number of hidden nodes. Furthermore, it
does not exploit the decomposition of the probability
function. The decomposition suggests that the problem
should lend itself to parallel distributed processing at the
nodes of the network.

In 1986 J. Pearl [10] described local message passing
schemes for inferring the states of the hidden nodes in
these types of networks. The algorithm consists of sim-
ple local updates that can be executed in parallel and are
guaranteed to converge to the correct answers. Further-
more, on a serial computer the complexity is linear in
the number of hidden units. Pearl used the terms belief
update to describe the scheme for computing the belief
function and the term belief revision for the analogous
scheme for �nding the most likely sequence. Pearl's algo-
rithm is equivalent to schemes proposed independently
in a wide range of �elds including information theory,
signal processing, operations research and optimal esti-
mation.

Pearl proved that his algorithm would work for singly
connected networks, i.e. ones in which there is a single
path going between any two nodes. In many applica-
tions, however, the network is multiply connected. Con-
sider for example, the network shown in �gure 1b, where
we have a compatibility link between the �rst and last
hidden nodes.

P (A;B;CjE) = 	(A;B)	(B;C)	(C;A) (5)

	(A;Ea)	(B;Eb)	(C;Ec) (6)

Pearl showed that his algorithm is not guaranteed to
work for such a network and suggested various other
ways to cope with loops [10]. Despite this fact, several
groups [5, 8, 14] have recently reported excellent exper-
imental results in inference in networks with loops by
using Pearl's algorithm. Perhaps the most dramatic in-
stance of this performance is in an error correcting code
scheme known as \Turbo Codes" [2]. These codes have
been described as \the most exciting and potentially im-
portant development in coding theory in many years" [9]
and have recently been shown [4, 7] to utilize an algo-
rithm equivalent to belief propagation in a network with
loops. Although there is widespread agreement in the
coding community that these codes \represent a genuine,
and perhaps historic, breakthrough" [9] a theoretical un-
derstanding of their performance has yet to be achieved.

Here we lay a foundation for an understanding of be-
lief propagation in networks with loops. For networks
with a single loop we derive a relationship between the
steady state beliefs in the loopy network and the true
posterior probability. Using this relationship we show a
category of networks for which the MAP estimate ob-
tained by belief update and by belief revision can be
proven to be optimal (although the beliefs will be incor-
rect). Furthermore we prove that for all networks with

1

a single loop, the MAP estimate obtained by belief revi-
sion is guaranteed to give the globally optimal sequence
of states. For networks with multiple loops, we introduce
the concept of a \balanced network" and derive a nec-
essary condition for the MAP estimate at convergence
to be optimal. We show simulations on such networks
including a toy Turbo decoding problem, and show that
belief revision is signi�cantly more likely to give a correct
decoding.

The organization of this paper is as follows. Section 2
introduces a variant of Pearl's algorithms for belief prop-
agation in singly connected networks. Section 3 gives an
intuitive explanation of why these algorithms may work
in a loopy network as well. Section 4 deals with belief
update and derives the analytical relationship between
the steady state beliefs and the true posteriors. Section
5 deals with belief revision and proves the optimality of
the MAP estimate. Finally section 6 presents simulation
results on structures containing multiple loops including
Turbo codes.

2 Belief Propagation and Revision in

Singly connected Networks

We describe here the update rules for belief propagation
and revision in singly connected networks. Since the
publication of Pearl's algorithm, a number of variants
of it have been published (see [12] for a review). The
updates we describe here are functionally equivalent to
those proposed by Pearl, but are easier to generalize to
loopy networks.

Informally, the message passing scheme proceeds as
follows. Every node sends a probability vector to each
of its neighbors. Suppose Y has two neighbors X and
Z. Roughly speaking, the message that X sends to Y is
the probability that Y is in a particular state, given the
information that X knows but Y does not. Node Y then
takes that vector, adds its local information, and trans-
mits a message to Z indicating the probability that Z is
in a particular state given the information at X and Y .
Similarly, Y takes the message from Z and after adding
its information, sends a message to X. This procedure
is repeated for all nodes in the network in parallel. The
belief function at Y is obtained by combining the steady
state values of the messages from X and Z and the local
evidence at Y .

More formally, assume the probability distribution is
factorized into a product form:

P (H) =
1

Z
�	(Hk;Hk+1) (7)

There is a 	 associated with each connection in the net-
work, i.e. any two neighboring nodes in the network.
The ordering of the nodes and links is somewhat arbi-
trary: for a Markov network such a representation can
always be found but is not unique (e.g. [10]). If Hk and
Hk+1 are two nodes in the network, each of which can be
in a discrete number of states, we can associate a matrix
M with each link:

Mji = 	(Hk = i;Hk+1 = j) (8)

Note that the matrix going in one direction on a link is
equal by de�nition to the transpose of the matrix going
in the other direction. Given this matrix we can de�ne
the following belief update procedure:

The message that node X sends to node Y is calcu-
lated as follows:

� Combine all messages coming into X except for
that coming from Y into a vector v. The combina-
tion is done by multiplying all the message vectors
element by element.

� Multiply v by the matrix M corresponding to the
link from X to Y .

� Normalize the product Mv so it sums to 1. The
normalized vector is sent to Y .

The procedure is initialized with all message vectors
set to (1; 1; � � �1). Evidence nodes do not receive mes-
sages and they always transmit the same vector, i.e.
	(i; e) for all i. The belief vector for a node X is ob-
tained by combining all incoming messages to X (again
by multiplying the message vectors element by element)
and normalizing. For a singly connected unit, these be-
lief vectors are guaranteed to converge to the posterior
probability of the node X given all the evidence.

It is easy to show that these updates are functionally
equivalent to Pearl's propagation rules. Note, however,
that Pearl's rules were for Bayesian networks, while here
we are interested in Markov networks. The distinction
is discussed at length in Pearl (1988). Roughly speak-
ing, Bayesian networks have arrows on the links, and of
any two neighboring nodes, one is considered to be the
cause and the other is the e�ect. Markov networks re-
place the notion of causal link, with a weaker notion of
\compatibility" which is symmetric in the two neighbor-
ing nodes. For singly connected nets, The probability
distributions represented by Markov networks are a sub-
set of those that can be represented by Bayesian nets.
The reason we are focusing here on Markov nets, is that
when the network has loops, assuming causal relation-
ships between neighboring nodes may lead to logical con-
tradictions (e.g. consider the simple loop in �gure 1b).
Another di�erence between the algorithm presented here
and Pearl's original algorithm is in the normalization.
In Pearl's algorithm messages going in one direction are
normalized while those in the other direction are not.
As pointed out by Pearl, the normalization step does
not in
uence the �nal beliefs but ensures the stability of
the message passing scheme. Special cases of these up-
date rules are also functionally equivalent to the Baum
Welch reestimation procedure in HMMs [11] and optimal
smoothing [6].

Belief update will give the probability of every node
being in a particular state given all the evidence. If, how-
ever, we set each node equal to the state that maximizes
its belief function, the global sequence obtained will not
necessarily maximize the posterior probability. In order
to obtain the most likely sequence, we need to calculate a
revised belief function. This can be done with the belief
revision procedure.

The belief revision is identical to that described earlier
for belief update. The only di�erence is the matrix mul-

2

tiplication Mv in step 3 above. We de�ne the operator
M
1
v as follows:

(M
1
v)i = max

j
Mijvj (9)

Note that M
1
v is similar to regular matrix multiplica-

tion, with the sum replaced with the maximumoperator.
It can be shown that when the belief revision procedure
is run on a singly connected network, the belief function
will converge to:

BX (i) = � max
~Ss:t:X=i

P (~SjE) (10)

where � is a normalizing constant independent of i and
~S denotes the a sequence of values for all hidden nodes.
By choosing at each node the value i� that maximizes
the revised belief, we are guaranteed to obtain the most
likely sequence.

The belief revision rules described here are equivalent
to those described by Pearl (1988) except for the nor-
malization. In Hidden Markov Models, belief revision
is equivalent to the Viterbi update rules [11], and is a
special case of concurrent dynamic programming [3].

As can be seen from the previous discussion, update
procedures of the type described by Pearl have been an-
alyzed in many areas of optimization and applied math-
ematics. However, to the best of our knowledge, in all
these contexts the network is assumed to be singly con-
nected. Note, however, that these procedures are per-
fectly well de�ned for any Markov network { all they
require is a decomposition of the posterior probability
into pairwise compatibilities. Analyzing what happens
when the update procedures are applied to networks with
loops is the goal of this paper.

3 Intuition - why does loopy

propagation work?

Before launching into the details of the analysis, it is
worthwhile to consider the examples in �gures 1 and ob-
tain some intuition.

As Pearl has pointed out, in order for a message pass-
ing scheme to be successful, it needs to avoid \double
counting" { a situation in which the same evidence is
passed around the network multiple times and mistaken
for new evidence. In a singly connected network (e.g. �g-
ure 1a) this is accomplished by Pearl's algorithm. Thus
in �gure 1a, node B will receive from A a message that
involves the local evidence at A and send that informa-
tion to C.While the message it sends to A will involve the
information at C but not the information at A. Thus A
never receives its own information back again, and dou-
ble counting is avoided.

In a loopy graph (e.g. 1b) double counting can not be
avoided. Thus B will send A's information to C, but in
the next iteration, C will send that information back to
A. Thus it seems that belief propagation in such a net
will invariably give the wrong answer. How then, can we
explain the good performance reported experimentally?

Intuitively, the explanation is that although the evi-
dence is \double counted", all evidence is double counted

CBA

CBA A’C’’

CBA A’C’’ B’B’’

Figure 2: Unwrapped networks corresponding to the
simple loop �gure shown in �gure 1. The messages re-
ceived by node B after t iterations in the loopy network
are equivalent to those that would be received by B in
the unwrapped network. The unwrapped networks for
the �rst three iterations are shown.

in equal amounts. Therefore, as we prove below, for net-
works such as these, the MAP estimates will be correct
although the beliefs will be numerically wrong. Fur-
thermore, we will show that the convergence rate of
each node's messages tells the node something about the
amount of double counting. Thus each node can correct
for the double counting and get the exact beliefs from
the propagated messages.

An intuitive way of understanding belief propagation
in networks with loops is to examine what we call the
\unwrapped network" corresponding to a loopy network.
The unwrapped network is a singly connected network
constructed such that performing belief update in the
unwrapped network is equivalent to performing belief
update in the loopy network. The exact construction
method of the unwrapped network is given in the ap-
pendix, but the basic idea is to replicate the evidence
nodes as shown in the examples in �gure 2. As we show
in the appendix (see also [14, 8]), for any number of iter-
ations of belief propagation in the loopy network, there
exists an unwrapped network such that the messages re-
ceived by a node in the unwrapped network are equiva-
lent to those that would be received by a corresponding
node in the loopy network. This concept is illustrated
in �gure 2. The messages received by node B after 1; 2
and 3 iteration of propagation in the loopy network, are
identical to those received by node B after convergence
in the unwrapped networks shown in �gure 2.

It seems that all we have done is convert a �nite, loopy
problem into an in�nite network without loops. What
have we gained? The importance of the unwrapped net-
work, is that since it is a polytree, belief propagation on

3

it is guaranteed to give the correct beliefs. Thus assum-
ing the loopy propagation converges after N iterations,
the steady state beliefs in the loopy network are guar-
anteed to be the correct posterior probabilities for the
unwrapped problem of size N . The usefulness of this es-
timate now depends on the similarity between the prob-
ability distribution induced by the unwrapped problem
and the original loopy problem.

In subsequent sections we formally compare the prob-
ability distribution induced by the loopy network to that
induced by the original problem. Roughly speaking, if
we denote the original probability induced on the hidden
nodes in �gure 1b by:

P (a; b; c) = �e�J(a;b;c) (11)

The most likely sequence for the unwrapped problem
maximizes:

~P (a; b; c) = �e�kJ(a;b;c) (12)

for some positive constant k. That is, if we are con-
sidering the probability of a sequence of states the un-
wrapped problem induces a probability which is a mono-
tonic transformation of the true probability. In statisti-
cal physics terms, the unwrapped network has the same
energy function but at di�erent temperature. This is the
intuitive reason that belief revision which �nds the most
likely sequence in the unwrapped network, is guaranteed
to �nd the most likely sequence in loopy networks. How-
ever, belief update which �nds marginal distributions of
particular nodes may give an incorrect decoding { the

marginals of ~P are not necessarily a monotonic transfor-
mation of the marginals of P .

Since every iteration of loopy propagation gives the
correct beliefs for a di�erent problem, it is not immedi-
ately clear why this scheme should ever converge. Note,
however, that the unwrapped network of iteration n+ 1
is simply the unwrapped network of size n with an ad-
ditional �nite number of nodes added at the boundary.
Thus loopy belief propagation will converge when the
addition of these additional nodes at the boundary will
not alter the posterior probability of the node in the
center. In other words, convergence is equivalent to the
independence of center nodes and boundary nodes in the
unwrapped network.

There is a large body of research on the conditions
under which the probability of center nodes in a Markov
Random Fields are independent of the boundary nodes.
Unfortunately, the situation is rather complex - small
changes in the parameters of the network may cause a
phase transition from convergent to nonconvergent. For
the unwrapped networks of networks with a single cycle,
the situation is simpler. A trivial example of convergence
is if one of the hidden nodes is observed. Then its repli-
cas in the unwrapped network form a Markov blanket
around the center nodes, and they are trivially indepen-
dent of the boundary nodes. A less trivial example is
when none of the nodes are observed, but a large num-
ber of their replicas essentially form a Markov blanket.
In other words, as the number of iterations increases, and
the boundary nodes are separated by a large number of
hidden nodes, the in
uence of the boundary nodes goes
to zero. In the subsequent sections, we formalize this
intuition.

4 Belief update in networks with a

single loop

4.1 The case of a loop network

We start with the simplest loopy network - a simple loop
(as in �gure 1b). The main result is that for binary
hidden state variables, the probabilities will be wrong
but the MAP estimate is guaranteed to be correct. In
the general case, we derive an expression that relates
the correct belief function and that calculated by loopy
belief update.

We label the hidden nodes with numbers H1 � � �HN

and the evidence nodes Ei. At each node we have a diag-
onal matrix Di whose diagonal elements are 	(Hi; Ei).
There are also N transition matrices Mn such that
Mn(i; j) = 	(Hn = i;Hn+1 = j) (where the term n+ 1
is evaluated cyclically such that N + 1 = 1). We focus
on node H1 in the network and de�ne p the correct pos-
terior probability vector for a that node and ~p the one
estimated at convergence by the loopy belief propagation
algorithm.

The essence of the proof is as follows. The two mes-
sages node H1 receives after the system reaches steady
state are shown to be principal eigenvectors of two ma-
trices determined by the potentials 	. The true prob-
abilities are then shown to be the diagonal elements of
these same matrices. Basic linear algebra then gives the
connection between the two estimates.

Claim:
De�ne the matrix C = M t

1D2 � � �M t
n�1DnM

t
nD1 then

the message that node H2 sends to node H1 at conver-
gence is in the direction of the principal eigenvector of
C.

Proof: Denote by v(t) the message that node H2 sends
to node H1 at time t then from the update rules it is easy
to show:

v(t) = �Cv(t �N) (13)

Thus v(kN) = �Ckv(0) which means that the stationary
vector is in the direction of the principal eigenvector of
C.

Similarly if we de�ne:

C2 = MnDnMn�1Dn�1 � � �M1D1 (14)

Then the message that node HN sends to node H1 at
convergence is in the direction of the principal eigenvec-
tor of C2.

The convergence properties of equations similar to 13
are well understood. Roughly speaking, if the principal
eigenvector has positive eigenvalue and there is no other
eigenvector with that eigenvalue, the iterations will con-
verge to the direction of the principal eigenvalue. The
ratio between the magnitude of the largest eigenvalue
and the second largest determines the rate of conver-
gence - convergence will be geometric in this ratio. Note
that C and C2 have identical eigenvalues, since:

C2 = D�1
1 CtD1 (15)

We now show that the correct probabilities can be
obtained by the diagonal elements of the matrix C. We
denote by pi the probability that node H1 is in state i

4

given the evidence and ei the vector that is zero every-
where except for a 1 at the ith component then:

pi = k
X

H2���Hn

P (H1 = i;H2; � � �Hn) (16)

= k
X

H2���Hn

	(i;H2)	(i; E1)	(H2;H3) (17)

	(H2; E2) � � �	(Hn; i)	(Hn; En) (18)

= k
X
H2

	(i;H2)	(H2; E2)
X
H3

	(H2;H3) (19)

� � �
X
Hn

	(Hn; En)	(Hn; i)	(i; E1) (20)

= ketiM
t
1D2M

t
2D3 � � �M

t
nD1ei (21)

= ketiCei (22)

Note that we can also calculate the normalizing factor k
in terms of the matrix C, thus:

pi =
etiCei

trace(C)
(23)

Now, recall that the belief function estimated by the
loopy network is given by:

~pi = �uiD1(i; i)vi (24)

where u is the message sent from node H2 to node H1

and v is the message sent from node HN to node H1.
We now express this message in terms of the matrix C.
First we write C = P�P�1 where the columns of P
contain the eigenvectors of C. We order P such that the
principal eigenvector is in the �rst column, thus Pi1 =
�ui. Surprisingly, the �rst row of P�1 is related to the
product D1v:

C = P�P�1 (25)

C2 = D�1
1 CtD1 = D�1

1 (P�1)t�P tD1 (26)

Thus the �rst row of P�1D�1
1 gives the principal eigen-

vector of C2 or:

D1(i; i)vi =
P�1
1i (27)

where the constant
 is independent of of i. Substituting
into equation 24 gives:

~pi = �Pi1P
�1
1i (28)

where � is again a normalizing constant. In fact, this
constant is equal to unity since for any invertible matrix
P : X

i

Pi1P
�1
1i = 1 (29)

Finally, we can express the relationship between p and
~p:

pi =
etiCei

trace(C)
(30)

=
etiP�P

�1eiP
j �j

(31)

=

P
j Pij�jP

�1
jiP

j �j
(32)

=
�1~pi +

P
j=2Pij�jP

�1
jiP

j �j
(33)

Thus pi can be written as a weighted average of ~pi
and a second term, which we will denote by qi:

pi =
�1P
j �j

~pi + (1 �
�1P
j �j

)qi (34)

with:

qi =

P
j=2Pij�jP

�1
jiP

j=2 �j
(35)

The weight given to ~pi is the maximum eigenvalue
�1. Thus the error in loopy belief propagation is small
when the maximumeigenvalue dominates the eigenvalue
spectrum:

pi � ~pi = (1�
�1P
j �j

)(qi + pi) (36)

Note again the importance of the ratio between the
subdominant eigenvalue and the dominant one. When
this ratio is small loopy belief propagation converges
rapidly, and furthermore the approximation error is
small.

In the case of n = 2, e.g. binary valued hidden nodes,
we can show that even if ~p is wrong, the state that max-
imizes ~p is guaranteed to be the state that maximizes p.
In other words, ~p is ordinally correct.

To show that, note that in this case:

pi =
�1Pi1P

�1
1i + �2Pi2P

�1
2i

�1 + �2
(37)

=
�1~pi + �2(1� ~pi)

�1 + �2
(38)

Thus:

pi � pj =
�1 � �2

�1 + �2
(~pi � ~pj) (39)

Thus pi�pj will be positive if and only if ~pi�~pj > 0 since
the multiplicative factor on the left side of equation is
always positive (�1 > �2, �1 > 0 and trace(C) > 0). In
other words the estimated probabilities may be wrong,
but are guaranteed to be on the correct side of 0:5.

Even more importantly, equation 39 allows us to write
the correction term that needs to be added to the es-
timated probabilities ~pi in order to obtain the correct
probabilities:

pi = ~pi +
�2

�1 + �2
(2~pi � 1) (40)

In order to correct the beliefs, each node must have ac-
cess to the number �1

�1+�2
. However, recall that the con-

vergence rate of the messages is related to the ratio of
the eigenvectors. In fact, it is easy to show that:

ku(t)� u(t�N)k

ku(t� N)� u(t� 2N)k
!

j�2j

j�1j
(41)

Thus every node, can correct it's belief function by moni-
toring the convergence rate of its two messages (the ratio
only gives the absolute value of �2=�1, the sign can be
obtained by comparing the components of the di�erence
vectors). After correction, the beliefs will be exact.

To illustrate this analysis, �gure 3a shows a network
of four nodes, connected in a single loop. Figure 3b

5

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

site

lo
ca

l p
ro

ba
bi

lit
y

state 1
state 2

a b

0 5 10 15
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

iteration

to
ta

l c
ha

ng
e

in
 m

es
sa

ge

0 2 4 6 8 10 12 14
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

iteration

lo
g(

to
ta

l c
ha

ng
e

in
 m

es
sa

ge
)

c d

Figure 3: a. A simple loop structure. b. The local
evidence probabilities used in the simulations. c. The
ratio of di�erences between messages at successive itera-
tions. Note the geometric convergence. d. A log plot of
the ratio between messages at successive iterations. The
slope of this line gives the ratio of the second and �rst
eigenvalues.

shows the local probabilities, i.e. the probability of a
node being in state 0 or 1 given only its local evidence.
The transition matrices, were set to:

M =

�
0:9 0:1
0:1 0:9

�
(42)

Figure 3c shows the convergence rate of one of the
messages as a function of iteration. The error decreases
geometrically, as can be seen in the log plot. The slope of
the error decrease, gives the ratio of the two eigenvectors.

Figure 4a shows the correct beliefs (calculated by ex-
haustive enumeration) and the ones estimated at conver-
gence by the belief propagation algorithm. Note that the
estimated beliefs are on the correct side of 0.5 as guaran-
teed by the theory, but are numerically wrong. In par-
ticular, the estimated beliefs are overly con�dent (closer
to 1 and 0, and further from 0:5). Intuitively, this is due
to the fact that the loopy network involves counting each
evidence multiple times, rather than a single time, thus
leading to an overly con�dent estimate. More formally,
this is a result of �2 being positive (equation 39). Fig-
ure 4c shows the estimated beliefs after the correction of
equation 40 has been added. The beliefs are identical to
the correct beliefs up to machine precision.

The guarantee of correct decoding and the possibil-
ity of correction are only true for binary nodes. For
state spaces greater than two, correct MAP estimates
are not guaranteed but the relationship between the esti-
mated beliefs and the correct ones (equation 33) predicts
that the error will be small when the principal eigenvalue
dominates the eigenspectrum, i.e. when convergence is
rapid. Figure 5 illustrates this relationship in the simple

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

site

tr
ue

 p
os

te
rio

r
pr

ob
ab

ili
ty

state 1
state 2

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

site

es
tim

at
ed

 p
os

te
rio

r
pr

ob
ab

ili
ty

state 1
state 2

a b

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

site

co
rr

ec
te

d
po

st
er

io
r

pr
ob

ab
ili

ty
state 1
state 2

c

Figure 4: a. The correct beliefs (calculated by exhaus-
tive enumeration) for the data in 3. b. The beliefs es-
timated at convergence by the loopy belief propagation
algorithm. Note that the estimated beliefs are on the
correct side of 0.5 as guaranteed by the theory, but are
numerically wrong. In particular, the estimated beliefs
are overly con�dent (closer to 1 and 0, and further from
0:5). c. The estimated beliefs after correction based on
the convergence rates of the messages (equation 40). The
beliefs are identical to the correct beliefs up to machine
precision.

6

−25 −20 −15 −10 −5 0
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

convergence ratio (log units)

m
ax

im
al

 e
rr

or
 (

lo
g

un
its

)

Figure 5: The maximal error between the beliefs esti-
mated using loopy belief update and the true beliefs,
plotted as a function of the convergence ratio (equa-
tion 41). Equation 36 predicts that the error will be
proportional to the convergence ratio. This is illustrated
by the simulations.

loop structure when the nodes are allowed to take on
three values. We performed belief update on this struc-
ture with multiple randomly selected connections and
local evidences. We compared the estimated beliefs to
the correct ones (estimated using exhaustive enumera-
tion). The error in the estimated beliefs is plotted as
a function of the convergence rate (ratio of di�erences
between messages at successive iterations {equation 41).
As predicted by this relationship, the error is small when
convergence is rapid and large when convergence is slow.

4.2 Networks including a single loop

We now extend the analysis to networks that are singly
connected except for a single loop. An example is shown
in �gure 6a. These networks include arbitrary combina-
tions of chains and trees, except for a single loop. The
nodes in these networks can be divided into two cate-
gories: those in the loop and those that are not. For
example in �gure 6 nodes 1{4 are part of the loop while
nodes 5{7 are not.

Let us focus �rst on nodes inside the loop. If all we
are interested in is obtaining the correct beliefs for these
nodes, then the situation is equivalent to a graph that
only has the loop and evidence nodes. That is, after a
�nite number of iterations, the messages coming into the
loop nodes from the non loop nodes will converge to a
steady state value. These messages can be thought of as
local evidence messages, and the analysis of the messages
passed between loop nodes is equivalent to that of a sim-
ple loop structure. Again, referring to �gure 6, after 2
iterations, the message that node 5 sends to node 4 will
not change. This message can be merged with the local
evidence at 4, and the message passing between nodes

1{4 is equivalent to a simple loop structure. In other
words, the messages will converge to principal eigenvec-
tors of matrices analogous to C and C2 de�ned in the
previous section, and the rate of convergence will be de-
termined by the ratio of eigenvalues. Using the analysis
methods of the previous section, we can again express the
relationship between the the beliefs estimated in these
nodes and the true posterior probabilities. For binary
units, the beliefs estimated can be guaranteed to lie on
the correct side of 0:5.

What about nodes outside the loop? Here the beliefs
are not guaranteed to be on the correct side of 0:5. Con-
sider node 5 in the �gure. Its posterior probability can
be factored into three independent sources. The prob-
ability given the evidence at 6, at 7 and the evidence
in the loop. The messages node 5 receives from 5 and
6 in the belief update algorithm will correctly give the
probability given the evidence at these nodes. However,
the message it receives from node 4 will be based on
the messages passed around the loop multiple times, i.e.
evidence in the loop will be counted more times than ev-
idence outside the loop. Again, the extent of the double
counting depends on the ratio of the dominant eigenvalue
of the matrix C.

If the nodes are binary valued, then the messages can
be corrected using a similar scheme to that described for
the simple loop structure. By monitoring the conver-
gence rate, all nodes in the loop can update their beliefs
according to equation 40. In addition, the message that
nodes in the loop send out to nodes not on the loop is
also modi�ed in a similar fashion. Using these local up-
date rules, the network is guaranteed to converge to the
correct beliefs.

To illustrate these ideas, consider �gures 6{7. Fig-
ure 6b shows the local probabilities for each of the seven
nodes. The transition matrix was identical to that used
in the previous example. Figure 7a shows the correct
posterior probabilities calculated using exhaustive enu-
meration. Figure 7b shows the beliefs estimated using
regular belief update on the loopy network. Note that
the beliefs for the nodes inside the loop are on the correct
side of 0:5 but overly con�dent. Note however that the
belief of node 6 is not on the correct side of 0:5. Finally,
�gure 6c shows the results of the corrected belief propa-
gation algorithm, by using equation 40 for nodes in the
loop. The results are identical to the correct posteriors
up to machine precision.

5 Belief Revision in Networks with a

single loop

For belief revision the situation is simpler than belief
update. The result is: if belief revision converges in
a network with a single loop, the state sequence that
maximizes the steady state beliefs is guaranteed to be
the most likely state sequence. The result is independent
of the dimensionality of the state space, the length of the
loop etc.

The proof uses the notion of the \unwrapped" net-
work introduced in section 3. Here, we will need the
notion of an unwrapped network of length n which is

7

a

1
2

3 4 5

 6

 7

b
1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

site

lo
ca

l p
ro

ba
bi

lit
y

Figure 6: a. A network including a tree and a loop.
b. The probability of each node given its local evidence
used in the simulations.

de�ned as follows. We start with an arbitrary node in
the loop X and create a chain that goes around the loop
n times until it comes back to X. We then add the evi-
dence nodes and the trees that were adjoined to the loop
at the corresponding nodes. (see �gure 8).

Using induction, it is easy to show that the unwrapped
network of size n includes all nodes in the loopy network
n times, except for node X which appears n + 1 times.
Furthermore, all connections between neighboring nodes
in the loopy network appear n times in the unwrapped
network. Finally, all nodes in the unwrapped network
have the same neighbors as in the loopy network, except
for the �rst and last copy of nodeX. For these two copies
of X there is one missing neighbor. We denote by Hi the

hidden nodes of the original network and by H
j
i the jth

replica of this node in the unwrapped network. We refer
to the �rst and last copies of X as the \endpoints" of
the unwrapped network.

The essence of the proof is to relate the steady state
beliefs in the loopy network to the steady state beliefs
in the unwrapped network. Let us consider a concrete
example. Table 1a shows the steady state beliefs for the
loopy network in �gure 8a with arbitrarily chosen local
evidence probabilities. Table 1b shows the steady state
beliefs in the corresponding unwrapped network which
includes 9 replicas of the nodes in the loopy network.
Note that except at the endpoints of the unwrapped net-
work, all beliefs are identical to the corresponding ones
in the loopy network. Below, we will prove that this is

a
1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

site

tr
ue

 p
os

te
rio

r
pr

ob
ab

ili
ty

b
1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

site

es
tim

at
ed

 p
os

te
rio

r
pr

ob
ab

ili
ty

c
1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

site

co
rr

ec
te

d
po

st
er

io
r

pr
ob

ab
ili

ty

Figure 7: a. The correct posterior probabilities calcu-
lated using exhaustive enumeration. b. The beliefs esti-
mated using regular belief update on the loopy network.
Note that the beliefs for the nodes inside the loop are on
the correct side of 0:5 but overly con�dent. Note how-
ever that the belief of node 6 is not on the correct side
of 0:5.c. The results of the corrected belief propagation
algorithm by using equation 40 for nodes in the loop.
The results are identical to the correct posteriors up to
machine precision.

8

a

1

2

3

4

b

32 1 32 11

4 4

... ...

Figure 8: a. A simple structure with a loop (evidence
nodes not shown for clarity). b. The unwrapped net-
work corresponding to it. Note that the unwrapped net-
work includes equal numbers of replicas of all the nodes
and connections in the loopy network except for node 1
that appears once too many times.

a
node 1 node 2 node 3 node 4
0.6420 0.5575 0.0407 0.7943

b

replica node 1 node 2 node 3 node 4
1 0.6811 0.5575 0.0407 0.7943
2 0.6420 0.5575 0.0407 0.7943
3 0.6420 0.5575 0.0407 0.7943
4 0.6420 0.5575 0.0407 0.7943
5 0.6420 0.5575 0.0407 0.7943
6 0.6420 0.5575 0.0407 0.7943
7 0.7290

Table 1: a. The steady state beliefs for the loopy net-
work in �gure 8a with arbitrarily chosen local evidence
probabilities. The belief of a given node being in state
0 is shown. b. The steady state beliefs in the corre-
sponding unwrapped network of length 6 which includes
6 replicas of all nodes in the loopy network, except node
1 that appears once too many. Note that except at the
endpoints of the unwrapped network, all beliefs are iden-
tical to the corresponding ones in the loopy network. In
the text we prove that if belief revision converges, a sub-
sequence of arbitrary length with this property can be
found.

inward

32 1 32 11

4 4

leftward

32 1 32 11

4 4

rightward

32 1 32 11

4 4

outward

32 1 32 11

4 4

Figure 9: The four categories of messages in the un-
wrapped network. In the text we prove that if loopy
propagation converges then all but a small number of
messages in the unwrapped network are equal to the
steady state messages in the loopy network.

the case for all networks with a single loop { all but a
small number of beliefs in the unwrapped network are
identical to those in the loopy network. Since the un-
wrapped network is a tree, the steady state beliefs are
guaranteed to give rise to the most likely sequence for
the unwrapped tree. We then show that the most likely
sequence for the unwrapped network consists of replicas
of the most likely sequence for the loopy network.

Claim: If the loopy propagation messages converge in
k iterations, then all messages in the unwrapped network
received by nodes whose distance from the endpoints is
greater than k are identical to the steady state messages
of the loopy propagation scheme.

Proof: The proof follows directly from the fact that all
interior nodes in the unwrapped network have the same
neighbors as those in the loopy network. In this way,
it is similar to the proof given in the appendix which
relates the messages received by the center node in the
unwrapped network of size n to the messages received by
the corresponding node in the loopy network after n it-
erations. However, when the message passing converges
in the loopy network, we can actually relate almost all
messages in the unwrapped network to a corresponding
message in the loopy network { not just the messages at
the center node.

9

To show this, we divide the nodes in the unwrapped
network into two categories - \chain nodes" form part of
the in�nite chain (corresponding to nodes in the loop in
the loopy network) and \nonchain" nodes (correspond-
ing to nodes outside the loop in the loopy network). This
gives four types of messages in the unwrapped network
(see �gure 9). \leftward" and \rightward" messages are
the two directions of propagation inside the chain, \out-
ward" are propagated in the nonchain nodes away from
the chain nodes and \inward" messages go toward the
chain nodes. We now show that for each category of
messages, they are identical to the steady state messages
in the loopy network provided the nodes are far enough
from the endpoints.

The \inward" messages depend only on other inward
messages and the evidence at the nonchain nodes. Thus
they are identical at all replicas of the nonchain nodes.
Similarly, in the loopy network, the corresponding mes-
sages do not depend on the iteration, since they are in-
dependent of messages passed inside the loop. Since the
connectivity of nonchain nodes in the unwrapped net-
work is the same as that of the nonloop nodes in the
loopy network, the messages are identical.

The leftward messages depend only on leftward mes-
sages to the right, and the inward messages. Since the in-
ward messages are identical to the corresponding steady
state message, it is su�cient to show that one leftward
message is identical for all leftward messages to the left
of that node to be identical. Consider the leftward mes-
sage transmitted by node Xn�k. It is easy to see that it
is identical to the message transmitted after k iterations
in the loopy network by node X to its neighbor. Thus all
leftward messages to the left of node Xn�k are identical
to the steady state messages in the loopy network.

The proof for the rightward message is analogous, and
gives that all rightward messages to the right of Xk are
identical to the steady state messages in the loopy net-
work. Finally, the outward messages depend only the
leftward and rightward messages, and hence are identi-
cal to the steady state messages for all nodes to the right
of Xk and to the left of Xn�k.

The equivalence of the messages immediately gives
an equivalence between the optimal sequence for the un-
wrapped network and the decoding obtained by maxi-
mizing the loopy beliefs.

Claim: Let a� be the decoding obtained by choosing
at an arbitrary node A in the loopy network the state
that maximizes the steady state loopy beliefs. The op-
timal sequence for the unwrapped problem has a� at all
corresponding nodes whose distance from the endpoints
is greater than k.

Proof: Since the steady state messages are identical,
the beliefs at all unwrapped network nodes whose dis-
tance from the endpoints is greater than k are identical
to the steady state beliefs in the loopy network. Since
the unwrapped network is a polytree, choosing the sate
that maximizes the beliefs is guaranteed to give the op-
timal sequence.

We can now prove the main result. Denoting by h�i
the states that maximize the steady state beliefs in the
loopy network, we show that these are the optimal states.

First, the preceding discussion means that the optimal
sequence for the unwrapped problem has a periodic sub-
sequence consisting of n�k replicas of h�i . We now have
to show that being optimal in the unwrapped network
means being optimal in the loopy network.

It is more convenient here to work with costs than
probabilities. We denote by J the negative log proba-
bility of the hidden states given the data in the loopy
network. J factorizes into a sum of terms corresponding
to every link in the loopy network:

J(fhig) =
X
kl

Jkl(hk; hl) +
X
i

Ji(hi; Ei) (43)

where the �rst sum is taken over all pairs of connected
nodes.

Likewise for the unwrapped network, a sequence fhjig
that is optimal for the unwrapped problem minimizes:

J(fhjig) =
X
ikl

J ikl(h
i
k; h

i
l) +
X
ij

J
j
i (h

j
i ; E

j
i) (44)

The preceding equation is for a general sequence of

states. For a periodic sequence, h
j
i = hi, the log proba-

bility of the long sequence is a function of the periodically
repeated pattern. Furthermore, we can show that the
log probability of a periodic sequence in the unwrapped
network is closely related to the log probability in the
original loopy network. Consider the subsequence of the
unwrapped network starting from Xk and ending with
Xn�k. Recall that a subnetwork of length n has n repli-
cas of the data of all nodes and n connections between
neighboring nodes. Thus if fhjig is an optimal periodic

subsequence of states h
j
i = hi, it must minimize:

Jn(fh
j
ig) = (n� 2k)

X
kl

Jkl(hk; hl) (45)

+(n� 2k)
X
i

Ji(hi; Ei) + ~J(h0)(46)

The last term captures the fact that the node X in the
subsequence is neighbored by two additional nodes that
constrain it, and and that node X appears one time too
many as compared to the other nodes. If we assume
that all states have positive probability, this last term is
�nite.

This leads to:

Jn(fh
j
ig) = (n � 2k)J(fhig) + ~J(h0) (47)

Thus the function minimized by a periodic sequence
in the unwrapped network is dominated, for large n, by
a multiple of the function to be minimized in the loopy
network. This implies that the periodically repeated pat-
tern in the subsequence, must be an optimal sequence in
the original loopy network. Formally, denoting again by
h�i the decoding obtained by maximizing the steady state
beliefs in the loopy network. Suppose this decoding was
not optimal, i.e. there existed a sequence fhig such that
J(fhig)�J(fh�i g) = d < 0. Create the periodic sequence
of length n�2k that replicates the sequence fhig n�2k
times. Then:

Jn(fhig)� Jn(fh
�

i g) = (n� 2k)d+ ~J(h0)� ~J(h�0) (48)
10

CB

A
1

2
3 4 5

 6

 7

a b

0.5 1 1.5 2 2.5
90

91

92

93

94

95

96

97

98

99

100

%
 c

or
re

ct

belief update belief revision

0.5 1 1.5 2 2.5
90

91

92

93

94

95

96

97

98

99

100

%
 c

or
re

ct

belief update belief revision

c d

Figure 10: a-b. Two structures for which belief up-
date need not give the optimal decoding. A simple loop
structure with state spaces are of size n = 3, and a loop
adjoined to a tree. In both these structures belief revi-
sion when it converges is guaranteed to give the correct
decoding. c-d. The number of correct decodings us-
ing belief update and belief revision in 5000 networks of
these structure with randomly generated local evidence
probabilities. Consistent with the analysis, belief update
may give an incorrect decoding, but an incorrect decod-
ing based on belief revision is never observed.

Since this is true for all n and ~J(h0) is �nite, this im-
plies there exists an n such that Jn(fhig) < Jn(fh�ig in
contradiction to the fact that fh�ig is the optimal subse-
quence for the unwrapped network. Therefore, h�i is the
optimal decoding for the loopy network.

To illustrate this analysis, �gure 10 shows two network
structures for which there is no guarantee that belief up-
date will give the right answer (the loop structure has
state space of length three), but according to our proof,
belief revision should always give the correct answer. We
selected 5000 random connections and local evidences for
each of the two structures, and calculated the correct
beliefs using exhaustive enumeration. We then counted
the number of correct decodings using belief update and
belief revision (a decoding based on belief update was
judged correct if the state at each node maximized the
true posterior probability, and a decoding based on belief
revision was judged correct if it gave the most likely se-
quence). If belief revision did not converge (i.e. entered
a limit cycle) its decoding was not used in the results. A
limit cycle was observed about 5% of the simulations.

The results are shown in �gure 10. In both of these
structure, belief update is not guaranteed to give the
correct decoding and indeed the wrong decoding is ob-
tained in a small number of cases. On the other hand,
belief revision when it converges is guaranteed to give
the optimal sequence and indeed a wrong decoding was
never observed.

5.1 Discussion - single loop

To summarize, the analysis enables us to categorize a
given network with a loop into one of two categories -
(1) structures for which both belief update and belief
revision are guaranteed to give a correct decoding, or
(2) those for which only belief revision is guaranteed to
give the correct decoding.

The crucial element determining the performance of
belief update is the eigenspectrum of the matrixC. Note
that this matrix depends both on the transition matrices
and the observed data. Thus belief update may give very
exact estimates for certain observed data even in struc-
tures for which it is not guaranteed to give the correct
decoding.

We have primarily dealt here with discrete state
spaces, but the analysis can also be carried out for con-
tinuous spaces. For the case of Gaussian posterior prob-
abilities, it is easy to show that belief update will give
the correct MAP estimate for all structures with a sin-
gle loop (this is simply due to the fact that belief update
and revision are identical for a Gaussian).

6 Loopy networks with multiple loops

The basic intuition that explains why belief propagation
works in networks with a single loop is the notion of
\equal double counting". Essentially, while evidence is
double counted, all evidence is double counted equally as
can be seen in the unwrapped network and hence belief
revision is guaranteed to give the correct answer. Fur-
thermore, by using recursion expressions for the mes-
sages we could quantify the \amount" of double count-
ing, and derive a relationship between the estimated be-
liefs and the true ones.

In networks containing multiple loops, quantifying the
amount of double counting is far less simple. However,
using the unwrapped network we can prove for some
structures that they lead to \equal double counting".
Thus we would expect belief revision to give the opti-
mal decoding in these structures. Again, the situation
is more complex then in the single loop case | even in
those structures belief revision may converge to an incor-
rect decoding. However, as we show in the simulations
this happens far less frequently as compared to errors
using belief update.

We de�ne a loopy network as balanced if one can gen-
erate an unwrapped network of arbitrarily large size that
will contain an equal number of replicas of all nodes and
connections (excluding boundary nodes). For example,
consider the network with multiple loops shown in �g-
ure 11a. The unwrapped network corresponding to it
is shown in �gure 11b. Using induction, we can show
that there exist arbitrarily large unwrapped networks
where all nodes and connections appear the same num-
ber of times, except for the boundary nodes that occur
too many times.

Thus using a similar analysis to that used in the pre-
vious section, it can be shown that if fh�i g are the states
obtained by maximizing the steady state beliefs, they
must maximize:

11

B C D

A

E

B C D

A

E’ E’’E

D’ C’ B’ D’ C’’ B’’

A’ A’’ A’’’ A‘‘ A‘‘‘A‘

Figure 11: Top: A structure with multiple loops. Belief
propagation in this structure is equivalent to the turbo
decoding algorithm for a message of length 3. In a coding
application nodes B;C;D are the unknown three bits,
nodes A and B are the transmitted codewords. The com-
patibility constraints are nonprobabilistic. . Bottom:

The unwrapped network corresponding to this structure.
Note that all nodes and connections in the loopy struc-
ture appear equal numbers of time in the unwrapped
network, except the boundary nodes A. Thus the Turbo
code structure is balanced.

Jn(fhig) = nJ(fhig) + ~Jn(h0) (49)

for arbitrarily large n. Here ~Jn(h0) is a boundary cost
re
ecting the constraints imposed on the endpoints of
the unwrapped subnetwork. Note that unlike the single
loop case, the boundary cost here may increase with in-
creasing n. In other words the unwrapped network for a
network with a single loop is essentially an in�nite chain,
and hence there are only two endpoint nodes for any �-
nite n. For networks with multiple loops, the unwrapped
network is an in�nite tree, and the number of endpoints
(i.e. leaf nodes) can grow exponentially with n.

Because the boundary cost may grow with n, we can
not automatically assume that if a sequence maximizes
Jn it also maximizes J , i.e. the sequence may be op-
timal only because of the boundary cost. We have not
been able to analytically determine the conditions un-
der which the steady state sequence is due to bound-
ary e�ects as opposed to the cost functional J . Note
that if belief propagation converges, one can choose un-
wrapped subnetworks with di�erent boundary condi-
tions that give the same optimal sequences. Thus a nec-
essary (but not su�cient) condition for the state to be
optimal is that loopy belief propagation converges to a
steady state from multiple initial conditions.

To illustrate this calculation, we performed loopy be-
lief revision on the structure shown in the �gure using
randomly selected transition matrices and local evidence
probabilities. We repeated the experiment 10000 times
and counted the number of correct decodings. As in the
previous section, when belief revision yielded a limit cy-
cle, we did not use its decoding. We never observed a
convergence of belief revision to an incorrect decoding
for this structure, while belief update gave 247 incorrect
decodings (error rate 2:47%). Since these rates are based
on 10; 000 trials, the di�erence is highly signi�cant.

6.1 Turbo codes

As mentioned in the introduction. The Turbo decoding
algorithmhas been shown to be equivalent to loopy belief
propagation. Indeed, for a message of length 3 the Turbo
code decoding algorithmreduces to belief propagation on
the structure discussed in the previous section (�gure 11)
with the following properties:

� the states in the middle row are the hidden mes-
sage bits. They are binary valued. They have local
evidence corresponding to the uncoded transmitted
message.

� the states in the top and bottom are the two coded
message states. They have state space 2n and each
has local observations which imposes a local prob-
ability for any message of length n.

� the compatibility constraints between the hidden
nodes of the network are nonprobabilistic. Given
a state for one of the message nodes, the bitwise
nodes are completely determined such that the kth
bit node has the same value as the kth bit in the
state of the message node.

McEliece et al. (1995) showed several examples where
the turbo decoding algorithm converges to an incorrect

12

0.5 1 1.5 2 2.5
70

75

80

85

90

95

100

%
 c

or
re

ct

belief update belief revision

Figure 12: The results of belief revision and update on
the turbo code problem.

decoding on this structure. Since the Turbo decoding
algorithm is equivalent to belief update, we wanted to
see how well a decoding algorithm equivalent to belief
revision will perform. Since the Turbo code structure
is balanced, we would expect such an algorithm to very
rarely converge to an incorrect answer.

A variant of the Turbo decoding algorithm that is
equivalent to belief revision was used by Benedetto et
al. (1996). They implemented the decoding algorithm
in circuits and this favors belief revision (the maximum
operation is easier to implement than the sum opera-
tion). Benedetto et al. found that the bitwise error rate
using belief revision was slightly worse than using be-
lief update. This is however a slightly unfair comparison
| even in singly connected networks belief revision will
not minimize the bit error rate but rather the block er-
ror rate. Which of the two error rates should be used
is, of course, application dependent. Traditionally block
error rates are used for block codes and bit error rates
are used for convolutional codes [13].

Here we are mostly interested in evaluating the error
introduced by the suboptimal decoding algorithm. Thus
we compare belief revision and belief update based on
how often they agree with their corresponding optimal
algorithms. We calculated the number of incorrect de-
codings for 10; 000 randomly selected probability distri-
butions on the two received messages. The belief update
decoding was judged as correct if it agreed with the op-
timal bitwise decoding, and the belief revision decoding
was correct if it agreed with the maximum likelihood de-
coding. We only considered decodings where loopy belief
propagation converged.

Results are shown in �gure 12. As observed by
McEliece et al. turbo decoding is quite likely to con-
verge to an incorrect decoding (16% of the time). In
contrast, belief revision converges to an incorrect answer
less than 0:1% of the runs. Note that this di�erence is

based on 10; 000 trials and is highly signi�cant.
In the few incorrect answers obtained in belief revi-

sion, the incorrect answer depended on the initial condi-
tions. Di�erent initial conditions gave convergence to the
correct decoding. This is consistent with equation 49 |
nonoptimal decodings will arise only if the �nal answer
depends on the boundary conditions.

Given the relatively high likelihood of an incorrect
decoding with the standard Turbo decoding algorithm,
why do Turbo codes work? Part of the answer may lie in
the regime in which they are used in most coding applica-
tions. Typically, the probability distribution induced by
the two coded messages is highly peaked around the cor-
rect message. In such a regime, belief update is closely
related to belief revision, much more so than in the ran-
domly selected probability distributions used in these
simulations. Analyzing the behavior of belief update and
revision in this regime is a topic of current research.

7 Conclusion

As Pearl has observed, in order for belief propagation to
be exact, it must �nd a way to avoid double counting.
Since double counting is unavoidable in networks with
loops, belief propagation in such networks was widely
believed to be a bad idea. The excellent performance
of Turbo codes motivates a closer look at belief propa-
gation in loopy networks. Here we have shown a class
of networks for which, even though the evidence is dou-
ble counted, all evidence is equally double counted. For
networks with a single loop we have obtained an ana-
lytical expression relating the beliefs estimated by loopy
belief propagation and the correct beliefs. This allows
us to �nd structures in which belief update may give
the wrong answer but is guaranteed to give the correct
MAP estimate. We have also shown that for networks
with a single loop belief revision is guaranteed to give
the maximum likelihood decoding. For networks with
multiple loops we have introduced the notion of a bal-
anced network and given a necessary condition for the
decoding using belief revision to be optimal. We have
also shown that Turbo codes induce a balanced network
and presented simulation results indicating belief revi-
sion is signi�cantly more likely to give a correct decod-
ing. These results are an encouraging �rst step towards
understanding belief propagation in networks with loops.

Acknowledgments

I thank E. Adelson, M. Jordan, P. Dayan, M. Meila,
Q. Morris and J. Tenenbaum for helpful discussions and
comments.

References

[1] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pol-
lara. Soft-output decoding algorithms in iterative
decoding of turbo codes. Technical Report 42{124,
JPL TDA, 1996.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima.
Near shannon limit error-correcting coding and de-
coding: Turbo codes. In Proc. IEEE International
Communications Conference '93, 1993.

13

[3] D. P. Bertsekas. Dynamic Programming: Determin-
istic and Stochastic Models. Prentice Hall, 1987.

[4] B.J. Frey and F.R. Kschischang. Probability prop-
agation and iterative decoding. In Proc. 34th Aller-
ton Conference on Communications, Control and
Computing, 1996.

[5] Brendan J. Frey. Bayesian Networks for Pattern
Classi�cation, Data Compression and Channel Cod-
ing. MIT Press, 1997.

[6] Arthur Gelb, editor. Applied Optimal Estimation.
MIT Press, 1974.

[7] D. J. C. MacKay, R.J. McEliece, and J.F. Cheng.
Turbo decoding as as an instance of pearl's `belief
propagation' algorithm. IEEE Journal on Selected
Areas in Communication, page in press, 1997.

[8] D.J.C. Mackay and Radford M. Neal. Good error-
correcting codes based on very sparse matrices. In
Cryptography and Coding - LNCS 1025. 1995.

[9] R.J. McEliece, E. Rodemich, and J.F. Cheng. The
turbo decision algorithm. In Proc. 33rd Allerton
Conference on Communications, Control and Com-
puting, 1995.

[10] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

[11] L.R. Rabiner. A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proc. IEEE, 77(2):257{286, 1989.

[12] P. Smyth, D. Heckerman, and M. I. Jordan. Prob-
abilistic independence networks for hidden markov
probability models. Neural Computation, 1997.

[13] A.J. Viterbi, A.M. Viterbi, and N.T. Sinhushayana.
Interleaved concatenated codes: new perspectives
on approaching the Shannon limit. Proc. Natl Acad.
Sci. USA, 94:9525{9531, 1997.

[14] Y. Weiss. Interpreting images by propagating
bayesian beliefs. In M. Mozer, M. Jordan, and
T. Petsche, editors, Advances in Neural Informa-
tion Processing Systems 9, 1996.

Generating the unwrapped network

The formal algorithm for generating the unwrapped net-
work is to generate an in�nite tree. With each node in
the tree we associate a pointer to the original loopy net-
work to which it is identical. We pick an arbitrary node
in the loopy network as the root of the tree. We then
iterate the following procedure:

� �nd all leafs of the tree (nodes that have no chil-
dren).

� For each leaf, �nd all k nodes in the loopy graph
that neighbor the node corresponding to this leaf.

� Add k � 1 nodes as children to each leaf, corre-
sponding to all neighbors except the parent node.

We will refer to the unwrapped tree generated after
n iterations with root node corresponding to node X as
the nth unwrapped tree with root X. Note that if Z and

Y are the neighbors of X the nth unwrapped tree with
root X consists of connecting two subtrees of the n � 1
unwrapped trees with root nodes Z and Y . The subtrees
are obtained from the n� 1 unwrapped tree by deleting
node X and its children from the top.

Claim: The messages that a node X receives after n
parallel updates of belief revision in the loopy network
are the exact same messages that the root node receives
at steady state in the nth unwrapped tree with root X.

Proof: The proof for the case n = 1 is trivial. Node
X will received a vector of ones from all non evidence
neighbors, and the local evidence message from its evi-
dence neighbor. The unwrapped tree will consist of the
immediate neighbors ofX and the steady state messages
are identical. We proceed by induction. The messages
that node Y sends to node X at time n is given by com-
bining all the messages Y received at time n � 1 from
all of its neighbors excluding X. The message root X
receives from a node corresponding to Y in the nth order
unwrapped tree, is obtained by combining all messages
arriving at Y in the n � 1 unwrapped tree whose root
is Y . These messages, by the induction assumption, will
be identical to the messages received by node Y in the
loopy network at time n� 1.

14

