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1 Introduction

1.1 Background

Implementing geometric algorithms can be a di�cult task. It has been found out and repeatedly

rediscovered that there is a huge gap between geometric algorithms as they are described in most

theoretical papers and their implementation in software. Two issues that are often ignored in the

theoretical approach turn out to be critical in practice: Degeneracies and numerical precision. These

issues are collectively referred to as \robustness" and they have been the topic of extensive research.

Surveys on the topic can be found in [24],[27],[36], also several brief state-of-the-art summaries on

the topic are collected in [25].

In theory degeneracies are often handled by assuming general position, namely assuming that

degeneracies do not occur. The general position assumption had contributed signi�cantly to the

advancement of geometric algorithms by letting the researchers focus on the key (theoretical) prob-

lems while ignoring many technical issues. When implementing a geometric algorithm however,

degeneracies must be taken into consideration.

The numerical precision problem was solved in the theory of geometric algorithms by assuming

in�nite precision real arithmetic [28]. For certain algorithms and geometric objects this assumption

is realizable in practice by using exact arithmetic [1],[3],[4],[6],[15],[31],[37]. Computing with exact

arithmetic is in general more costly than using 
oating point arithmetic, and in certain cases not

realizable because of the geometric primitives that need to be manipulated. Here again there is

a gap between what could in theory be handled by exact arithmetic and what current technology

o�ers [14].

The software package that we describe in this paper computes the boundary of a union of spheres,

the surface area of the boundary, and the intersection pattern of any sphere with all the other spheres

in a given set. We therefore have to compute the intersection of pairs and triples of spheres, various

tangency points of great circles and little circles
1 on a sphere, and so on. Such computations are

not straightforward to carry out using exact arithmetic (all these operations require the solution of

polynomial equations, so theoretically symbolic schemes could possibly be used here). Also 
oating

point arithmetic has the obvious advantages of availability and e�ciency. Our goal here is to devise

robust algorithms that deal with intersecting spheres in IR3 while using 
oating point arithmetic.

Some examples of previous and related work on robust 
oating point geometric algorithms can be

found in [17],[18],[22],[27],[32], and [33].

Our motivating application is geometric modeling of molecules. Our software package is part of

a toolbox aimed to support the chemist in the drug design process [12],[13]. The basic geometric

model of a molecule that we use is the so-called hard sphere model where every atom is represented

by a sphere at some �xed position relative to the other atom spheres in the molecule. Since the hard

sphere model is an approximate model to begin with, we have the freedom to perturb the spheres

slightly without much e�ect on the relevance of the model.

When computing with 
oating point arithmetic we cannot precisely determine degeneracies; we

can only know that we are in a potentially degenerate situation. For example, we may not be able

to determine for sure that four spheres in our collection meet at a single point, but we could detect

that the point of intersection of three out of the four spheres is less than some " > 0 away from a

point of intersection of a di�erent triple of these spheres. For a small parameter " > 0 which we call

the resolution parameter, we regard such a pair of intersection points as a degeneracy. (A \potential

degeneracy" may be a more appropriate term, but for brevity we will refer to such a situation as

degeneracy.) Our new scheme guarantees that for a given parameter " > 0, all the features of

the spherical arrangement are at least " apart (a formal de�nition of the "-separation is given in

1Throughout the paper we use the term little circle to mean any circle on a sphere S that is the intersection of S

with another sphere.
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Figure 1: The sphere model of a molecule. The arrow points to the sphere whose spherical arrange-

ment is drawn in Figure 2 (a).

Section 4). The resolution parameter " depends on the 
oating point precision and on the type

of operations (e.g., computing the intersection points of three spheres). We assume here that " is

given. There are numerical analysis methods to compute useful bounds on "; see [23, Chapter 4] for

examples concerning linear objects. We point out that in our algorithms the `depth of operations',

namely how many times in a row the result of one operation is the operand in another operation, is

bounded by a small constant. Therefore one can obtain a bound on the resolution parameter that

does not depend on the input size n|the number of spheres, in our case.

1.2 Summary of Results

We present an e�cient perturbation scheme for a collectionM of n spheres in IR3 that makes our

geometric algorithms robust. We call the decomposition of IR3 induced by the spheres the arrange-

ment of the spheres; the subdivision of each sphere by the circles of intersection with other spheres

we call a spherical arrangement. We denote the maximum number of spheres in M intersecting

any single sphere in M by k (as was shown in [21], k is a constant for the hard sphere model of

molecules; see also Section 2.2). For any given resolution value " > 0, we determine a parameter

� that depends on ", on k, and on the maximum radius R of a sphere in M . We then present a

scheme that perturbs each sphere by at most �, resolves all the degeneracies in the arrangement of

the spheres, and runs in O(n) time.

We also take care of degeneracies that result from a further decomposition (or re�nement) of

the spherical arrangements known as the trapezoidal decomposition (see Section 2.1). Since in the

trapezoidal decomposition we are free to choose a direction for the `poles' (two antipodal points on

a sphere, such that all the arcs added in the re�nement are portions of great circles through these

poles), we choose the poles so that the angular separation of the added arcs will be above a certain

threshold !. Here also, we choose ! such that determining the poles could be done fast.

2



We have implemented this perturbation scheme and we report experimental results below. For

example, letting " = 10�11, � = 10�9, and ! = arccos(1 � 10�11), loading a molecule with 2034

atoms (namely computing the boundary surface and all the individual spherical arrangements) takes

146:8 seconds, including the perturbation time, on an SGI Indigo 250Mhz RS4400. Our experimental

results show that in most cases the time taken up by the perturbation scheme is negligible (Section 6).

Our software is part of a toolbox of data structures and algorithms aimed to support the chemist

in the rational drug design process [2], and it is currently being used by chemists in a pharmaceutical

company. Further details on the larger software (the toolbox) can be found in [12].

1.3 Comparison with Related Work

As mentioned above our approach to robustness can be categorized as �xed precision approxi-

mation. The approximation is achieved by a controlled perturbation that removes all degeneracies.

Our approach requires a detailed analysis of all degenerate cases that can arise in the arrangement

and its re�nement. In that sense it shares a feature with the work of Burnikel et al.[5] that solicits

the direct handling of degeneracies. Of course the big di�erence between our approach and theirs is

that they use exact arithmetic. To explain the advantages and disadvantages of both approaches,

let's take a look at what most algorithms that compute arrangements do.

A typical algorithm for computing arrangements consists of two intertwined parts: (i) computing

features, usually vertices of the arrangements and special points such as points of vertical tangency,

and (ii) computing adjacencies between features to create a `map' of the subdivision that can

be traversed, cell by adjacent cell. The �rst step is usually ignored in the computational geometry

literature (unless some sophisticated data structures are necessary to identify the features) and when

it is non-trivial, the di�culty lies in the algebra. The second step is more challenging, especially

when degeneracies need to be taken into account. Burnikel et al. [5] handle degeneracies also at the

second stage. Indeed they achieve a clean solution for a 2D problem. We work with degeneracies

only at the �rst stage, which is much simpler since we only work with features rather than with

adjacencies. When our algorithm gets to the second stage it is guaranteed that all degeneracies have

been removed and this makes programming far simpler. We believe that extending their approach

to three and higher dimensions will be a di�cult task, because of the large number of special cases

that needs to be handled; this has motivated the body of research on perturbations schemes for a

long time [10],[11],[30],[35]. It would be interesting to compare the methods for three-dimensional

arrangements|the setting of our work.

The obvious disadvantage of our approach relative to theirs and to any scheme that uses exact

arithmetic is that we approximate the input, which may be unacceptable in certain applications.

However, for many applications a slight approximation is permissible. A large number of engineering

and physical world models are approximate to start with, and a controlled perturbation of the

type proposed here is within the error bounds of the measurement/model. Moreover, there are

application domains where workers prefer approximations of geometric objects to precise objects,

because running time, for example, is more important than precision. In such cases, our scheme, if

applied, can be viewed as part of the approximation.

Another approach in the framework of �xed precision approximation is snap rounding [22]. This

approach has been recently revisited [17] and has been successfully implemented for two-dimensional

arrangements of segments. The disadvantage of this approach relative to ours is that not only

snap-rounding does not resolve degeneracies, it in fact creates degeneracies. In two-dimensional

arrangements this hardly has any e�ect on the di�culty of programming, but we believe that in

three-dimensional space (e.g., arrangements of triangles in 3-space), again because of the variety of

degenerate cases, it would be much more di�cult to de�ne and implement.

A common approach to �xed precision robustness, in the folklore of practitioners of geometric

computing, is as follows: apply a small random perturbation to all the input objects, then run the
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algorithm, and if a problem2 occurs, start again by applying a random perturbation to the objects.

Our scheme is di�erent in several ways. Our scheme is guaranteed to succeed (provided that the

right parameters are chosen) and it is guaranteed to work e�ciently. The e�ciency comes in part

from the fact that we work incrementally, and once we have �nished inserting an object to the

arrangement (possibly after several attempts of inserting it in di�erent places) we will not move this

object again. The price that we pay is in the detailed analysis of degeneracies, and programming

the tests to check if they arise.

If degeneracies are not removed, either exact arithmetic must be used to determine precisely

when an exact degeneracy occurs and the geometric algorithm must take such cases into account, or

the algorithm will fail. The nature of the failure depends on the algorithm. In the case considered

here, during the construction of the surface patches the connectivity of the patches will be self

con
icting (i.e., the graph of patch connectivity will no longer correspond to a valid topology). This

results either in the algorithm entering an in�nite loop (since the assumptions on which it was based

have been violated) or in surface area calculations which make no physical sense (e.g., some spheres

are attributed with negative surface areas or with a contribution to the surface greater than the

total surface area of the sphere).

Ours is de�nitely not the �rst implementation of an algorithm for computing molecular surfaces;

see, e.g., [7],[9],[29],[34] and the recent survey by Connolly [8]. We believe that our approach stands

out in its e�cient treatment of robustness issues, and in the ease and 
exibility of computing

substructures of the collection of the spheres, such as the union of a subset of the spheres of one

molecule consumed by another molecule.

1.4 Paper Outline

The rest of the paper is organized as follows. In the next section we give more background

details on spherical arrangements and on the hard sphere model of a molecule. In Section 3 we

review our software package. The key ideas underlying our new perturbation scheme are presented

in Section 4. Algorithmic details of the scheme and running time analysis are given in Section 5. In

Section 6 we report experimental results. More practical issues concerning our implementation are

discussed in Section 7. A brief summary and suggestions for future research on the topic are given

in Section 8. In the Appendix we complete technical details concerning shapes and volumes that

arise in the perturbation scheme.

2 Preliminaries: Spheres and Molecules

2.1 Little Circles on a Sphere

A collection of circles on a sphere S induces a partitioning of the sphere into vertices, edges and

faces. We call such a partitioning a spherical arrangement; see Figure 2(a). If all the circles are great

circles, then one can transform the spherical arrangement into a planar arrangement of lines [20],

which is a simpler object to handle [16]. However, in our application the circles are not necessarily

great circles. Each of the circles is the result of the intersection of S with another sphere. We refer

to these more general circles as little circles.

The faces in the spherical arrangement need not be simply connected, and each face may have

a large number of edges on its boundary. We can apply a standard re�nement procedure, called a

trapezoidal decomposition that will make each face homeomorphic to a disc and have at most four

edges on its boundary, as illustrated in Figure 2(b); see, e.g., [20, Section 21.3] for more details on

trapezoidal decompositions. In this context, we �x a pair of antipodal points as poles. We call the

2What a problem is depends on the algorithm and the implementation and refers to any unexpected or undesired

outcome of the program.
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(a) (b) (c)

Figure 2: A spherical arrangement (a), its full trapezoidal decomposition (b), and partial trapezoidal

decomposition (c).

great circles through the poles polar circles, arcs of polar circles polar arcs, and any point on a little

circle that is tangent to a polar circle we call a polar tangency. For every polar tangency of every

circle in our collection, we extend a polar arc in either direction until it hits another little circle or

reaches a pole. We do the same from every intersection point of a pair of little circles. We call this

re�nement the full trapezoidal decomposition.

If we are only concerned with making each face simply connected and making the graph of all

the edges of the arrangement connected then using a partial trapezoidal decomposition, in which

polar arcs are only extended from polar tangency points and not from intersections, su�ces. See

Figure 2(c).

2.2 The Hard Sphere Model

A common approach to representing the three-dimensional geometric structure of a molecule is

to represent each of its atoms by a \hard" sphere. In certain applications it is also assumed that

the relative displacement of the spheres is �xed. There are recommended values for the radius of

each atom sphere and for the distance between the centers of every pair of spheres. In this model,

the spheres are allowed to interpenetrate one another, therefore it is sometimes referred to as the

\fused spheres" model (see Figure 1). The envelope surface of the fused spheres may be regarded as

a formal molecular surface. It is evident that various properties of molecules are disregarded in this

simple model. However, in spite of its approximate nature, it has proven useful in many practical

applications. For more background material and references, see for example the survey paper by

Mezey [26].

In [21] the hard sphere model is studied from a computational geometry point of view. Several

observations are made in that paper showing that, because of certain special properties, the spheres

in this model can be e�ciently manipulated. We cite below the results that will be needed in later

sections. Theorem 2.1 states the conditions that make the sphere model of a molecule favorable.

Theorem 2.2 summarizes a hash-table based data structure that is constructed exploiting these

conditions.

Theorem 2.1 [21] Let M = fB1; : : : ; Bng be a collection of n balls in 3-space with radii r1; : : : ; rn
and centers at c1; : : : ; cn. Let r = mini ri and let R = maxi ri. Also let S = fS1; : : : ; Sng be the

collection of spheres such that Si is the boundary surface of Bi. If there are positive constants �1; �2

such that Rr < �1 and for each Bi the ball with radius �2 �ri and concentric with Bi does not contain
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Figure 3: Screen shot of interactive application showing the molecule conocurvone. A carbon atom,

the checked one on the lower right of the viewing window, has been selected and the partial vertical

decomposition for it is shown in the upper left window. The viewing window displays the molecule

with each atom colored by element type and shaded by area contributed to the surface.

the center of any other ball in M (besides ci), then: (i) for each Bi 2 M , the maximum number

of balls in M that intersect it is bounded by a constant, and (ii) the maximum combinatorial

complexity of the boundary of the union of the balls in M is O(n).

Theorem 2.2 [21] Given a collection M of n balls as de�ned in Theorem 2.1, one can construct a

data structure using O(n) space, to answer intersection queries for balls whose radii are not greater

than R, the maximum radius of the balls of M , in O(1) time. The expected preprocessing time of

the structure is O(n).

3 Overview of the Software Package

The algorithms described in the paper are embedded in a couple of di�erent applications for

computational chemists. One of these applications is a batch processor to take a single molecule

or pairs of molecules and compute and output surface statistics. The other application is a real-

time viewer with which the user can manipulate a three-dimensional model of the molecule (or pair

of molecules) and display various statistics through either the shading and color of the model at

di�erent atoms, or through other three-dimensional models of individual atoms. A screen shot of

this second application can be seen in Figure 3.

Among the surface calculations interesting to chemists are the surface area, the void areas (the

area of the boundry of hidden \void pockets" in the molecule or between two molecules), and the

interaction of surface areas. All of these statistics are useful on a per atom basis. The last statistic

(surface interaction) is of special interest. For this, the user would like a measure of what portion

of one molecule is \eaten" by (or part of the intersection of) another. A measure of the intersection

of the two molecules, broken down by atom, helps the user to understand which atoms of the drug

and protein are involved in the binding of the drug molecule. It is important to understand which
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features of the drug molecule are necessary and which are changeable during the course of novel

drug design.

There are many di�erent measures of such a consumption. For our program, we chose to report

the di�erence of the surface area of the two molecules together (and intersecting) and the area

of the molecules separately. Since we explicitly decompose each sphere by all the little circles of

intersection, we can be very 
exible in our surface computations.

In order to construct the surface, a seed patch (or a surface region guaranteed to be on the sur-

face) is found and the surface is grown by following the connectivity of the spherical decompositions.

In our search, when crossing an edge created by a little circle, we have the choice of continuing on

the current sphere or jumping to the intersecting sphere. To construct the entire surface, we always

choose to change spheres. However, we can remove any arbitrary set of spheres from an already

constructed decomposition simply by choosing to stay on the current sphere when crossing any edge

made by an intersection with a sphere in the omitted set.

In this manner, the decomposition of spheres can be computed once and then reused for any

surface calculation needed including: omitting certain atoms (like all hydrogens), considering only

certain types of atoms, or omitting whole molecules. In addition, surface calculations can attribute

to each atom its portion of the surface area.

This paper will concentrate on the robust computation of the spherical decompositions. Higher

level data structures for keeping track of atoms within multiple molecules and lower level code for

computing intersections and storing the geometry of points and arc segments will be assumed for

our discussion.

For representing the spherical decompositions, we chose a variant of the quad-edge data structure

[19]. This structure makes updating the subdivision simple. Each arc is stored as a plane and two

points (thus the arc is the intersection of the plane and the sphere between the two points). Four

operations are needed: adding an arc, removing an arc, splitting an arc, and merging two connected

arcs (namely two arcs that belong to and are adjacent along a single circle). The maintenance of

this data structure is fairly standard and we omit the details here.

The data structure representing the spherical arrangement assumes that the graph of arcs is

connected. This means that all of the regions must be simply connected. To ensure this, we break

up the surface with additional arcs in order to create a trapezoidal decomposition, as described in

Section 2.1.

We have presented so far the ingredients that are necessary to understanding the perturbation

scheme. Further details on our software implementation are given below in Section 7.

4 The Perturbation Scheme

We distinguish two types of degeneracies that arise in a collection M of intersecting spheres and

atom maps as we compute them. Recall that we are concerned with 
oating point arithmetic and

that we de�ne a degeneracy using a resolution parameter " > 0. In this section we give a precise

de�nition of the various degeneracies. We describe the two types as they occur on a single sphere.

See Figure 4.

Type I A little circle is too small, two little circles are tangent (or almost tangent), or two intersec-

tion points each being the intersection of three spheres are close together. Had we been using

exact arithmetic these (potential) degeneracies would correspond respectively to the following

exact degeneracies in the three-dimensional arrangement of spheres: Two spheres are tangent

to one another, three spheres intersect in a single point, or four spheres intersect in a point.

Type II The angle between the planes containing two distinct polar arcs is too small (it is below

some threshold !).
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type I type II

Figure 4: Examples of the two types of degeneracies. Type I degeneracies are marked by small

shaded circles.

Type I is inherent to the arrangement of spheres, whereas type II is an artifact of our decomposition

method.

We wish to perturb the spheres slightly so that all the features of the arrangement will be at

least " apart, for a given resolution parameter "; an exact and formal de�nition of \features being

"-apart" is given in the following section. We would like the perturbation procedure to be e�cient

and at the same time that the perturbation magnitude will be as small as possible. For a given

" our procedure will determine a perturbation value � that will guarantee that the procedure will

take O(n) time for n spheres.

We use a two-step perturbation scheme:

Step 1. We remove type I degeneracies by an incremental procedure where we add the spheres

one-by-one and if a degeneracy occurs we only perturb the last sphere that has been added.

Step 2. We choose the orientation of the pole (namely the direction to which all of the planes

containing polar arcs will be parallel) that will eliminate degeneracies of type II.

4.1 Removing Type I Degeneracies

Let S1; S2; : : : ; Sn be an ordering of the spheres in M . For a pair of spheres Si and Sj let �ij
denote the distance between their centers. Let Mt denote the set [

t
i=1fSig. After the completion

of stage t, the incremental procedure will maintain the following invariants:

I1 The center of any sphere in M has been moved by at most � from its original placement (� is a

constant to be determined below).

I2 For every pair of distinct spheres Si and Sj , i; j � t, and rj � ri, we have j�ij � ri � rj j > " and

j�ij + ri � rj j > ".
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I3 For every triple of distinct spheres Si; Sj and Sk, i; j; k � t, the circle Cij := Si \ Sj and the

sphere Sk are not tangent, and are at least " away from being tangent. (The formal de�nition

of this invariant is given in the Appendix.)

I4 Let �i and �j each be an intersection point of three spheres in Mt; then d(�i; �j) > ".

Invariants I2 through I4 correspond to insuring that the degeneracies of type I are avoided by a

margin of at least ". We call a perturbation scheme that satis�es the above invariants at the end of

each stage (and in particular after the nth stage) a valid perturbation scheme.

Suppose that the procedure has been carried out successfully for the �rst t stages. We next

describe how we add the sphere St+1 so that Mt+1 will maintain the invariants above. We denote

the center of sphere Si for i � t after the completion of step t by C
0

i
. Let B(Ct+1; �) be the ball

of radius � around the original placement of the center Ct+1 of St+1. We will place the center of

St+1 inside B(Ct+1; �) and this will guarantee the invariant I1. The invariants I2; I3 and I4 de�ne

forbidden loci F2; F3 and F4 respectively for the center of St+1. We will choose the new placement

C
0

t+1 of the center of St+1 to be in Gt+1 := B(Ct+1; �) n (F2 [ F3 [ F4). If such a placement exists,

we call it a valid placement of the center of St+1. If the original placement of St+1 lies in Gt+1

then we do not move St+1|this will guarantee that if the features of the arrangement of the input

spheres are already "-apart, no perturbation will take place.

The region F2 is the union of spherical shells3 of two types. Each sphere Si 2 Mt induces two

spherical shells according to whether the tangency is external (namely, at the tangency point the

interior of the spheres are disjoint) or internal. One shell has its center in C
0

i
and its radii are

ri + rt � " and ri + rt + ". This spherical shell represents the loci of placement of the center of St
that result in the spheres Si and St being tangent, or almost tangent. The other type of shells is

de�ned similarly.

We postpone a detailed explanation of the shape of the objects contributing to F2; F3; and F4 to

the Appendix. We just mention that F4 is also the union of spherical shells, whereas F3 is the union

of toric shells. In the Appendix we derive upper bounds on the volume taken up by the regions

F2; F3; and F4. Let VF := Volume(F2 [ F3 [ F4) and let VB := Volume(B(Ct+1; �)).

Our goal is to choose � such that VB > 2 � VF . If we do that, we are guaranteed that a point

chosen uniformly at random inside B(Ct+1; �) has probability >
1
2
to be a valid placement for the

center of St+1. Our calculations, which are given in the Appendix, show that we need to choose

� = f(k; "; R) = 2k"1=3R2=3, where k is the maximum number of spheres inM intersecting any single

sphere in M , R is the maximum radius of a sphere in M , and assuming k � 10. Not surprisingly,

our experimental results show that this is a very conservative bound. The theoretical bound is a

crude worst-case bound, and even as such it shows that our approach does not conceal any very

large constant.

4.2 Removing Type II Degeneracies

After we have removed all type I degeneracies, we wish to choose a direction for the poles such

that no type II degeneracy arises, when using the partial vertical decomposition. (The method can

be extended to deal with full vertical decomposition, and we report below experimental results for

the full decomposition as well.) We will handle each sphere separately, namely choose the direction

for the poles independently for each sphere.

The situation here is signi�cantly di�erent from the situation with type I degeneracies: It is

impossible to guarantee an "-separation of the polar arcs. Polar arcs can get arbitrarily close to

one another, and they can coincide in the poles. Therefore our goal is to obtain a good angular

separation, which we call !-separation, and is de�ned as follows: Once the direction of the poles has

3A spherical shell is the region enclosed between two concentric spheres.
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Figure 5: A cross-section of Cit and �.

been determined, for any pair of distinct polar arcs the angle between the planes containing them

is at least !. We wish to determine the biggest ! that will allow us to run Step 2 e�ciently. If

!-separation has been obtained for an ! value which is greater than the 
oating point resolution,

polar arcs can be safely and consistently distinguished during computation.

We next describe this procedure for a single sphere St, after Step 1 has been completed (and

type I degeneracies have been removed). Fix two little circles Cit and Cjt on St, each being the

intersection of St with another sphere in M (Si and Sj respectively), and let � be a great circle on

St that is tangent to Cit and Cjt.

In general, � is one of at most four great circles tangent to these two little circles: There is a

one-to-one mapping from great circles to planes passing through the center of the sphere (a great

circle is the intersection of such a plane with the sphere). Let � be a plane passing through the

center of the sphere which we will parameterize by its normal n� and, by an abuse of notation, we

will also let n� denote the point on the unit sphere such that the normal n� is the di�erence of that

point and the origin. If we restrict � to pass tangent to the circle Cit, then n� must lie on a little

circle on the unit sphere.

This can be shown by constructing the sphere Git whose center, git, lies on the lie between ci

and ct such that for any point p on the circle Cit, (p�git) is parallel to n� (see Figure 5). If we let

r� be the vector from git to p, we note that the set of all possible r� forms a little circle (namely

Cit) on the sphere Git. Thus, since n� is parallel to r� , we know that the normals to � must lie on

one of two little circles on the unit sphere (one corresponding to Cit and one corresponding to the

re
ection of Cit about git since if n is a normal of a plane, �n is also a normal of the same plane).

Thus, if we restrict � to be tangent to two little circles (Cit and Cjt), we are restricting n�
to be at the intersection of two sets of two little circles on the unit sphere. This yields up to 8

solutions provided that the sets of little circles are not identical. However, since each solution will

be produced along with its negative (which will correspond to the same plane and thus the same

great circle), we conclude that unless Cit and Cjt are parallel and of the same radius, there will be

at most four great circles of St which are tangent to both Cit and Cjt.

The circle � is the locus of pole locations that will cause the planes containing the polar arcs

10



St

!

�0 � �00

Figure 6: A cross-section of St.

extending from the tangency points of � with Cit and Cjt to coincide, namely have zero angular

separation. For the moment, assume that there are only 4 possible positions for �. Let �0 and

�00 be two planes parallel to �, each on a di�erent side of �, and such that any plane �0 passing

through the center of St and tangent to the circle �0
\ St (or the circle �

00
\ St) makes an angle

! with �. See Figure 6 for an illustration. We call the portion of St between �0
\ St and �00

\ St

the !-strip of �, and denote it by �(!;�). It is easily veri�ed that if the poles are chosen outside

�(!;�) then the polar arcs that correspond to the tangencies of � with Cit and Cjt are at least !

apart.

Every tangent circle � of every pair of circles on St de�nes an !-strip �(!;�). Assume without

loss of generality that the radius of St is 1. The area of any such strip is 4� sin!. The maximum

number of strips that need to be considered on St is 4
�
k

2

�
. For Step 2 to run in O(n) time we wish

that at least half of the surface area of St will not be covered by !-strips (any constant fraction will

do; the smaller the uncovered fraction the higher the constant factor in the expected running time

bound). Therefore we choose ! such that

2 � 4

�
k

2

�
4� sin! < 2 � 4� =) sin! < 1=(2k(k � 1)) :

We now consider the case where Cit and Cjt are parallel and have equal radii, thus producing

an in�nite set of possible �. In this case, we are guaranteed that Cit and Cjt will lie on opposite

sides of ct (if they did not, it would violate the assumptions of Theorem 2.1). For any �, when we

choose a pair of poles on �, we split � into two equal halves. In this degenerate case, for any choice

of these poles, the two tangency points will be on di�erent halves. Polar arcs can run, at maximum,

from pole to pole (only one half of a great circle) and thus can be distinguished from polar arcs

which run on the \other half" of the same great circle. Each tangency will induce at maximum a

polar arc that will run on one half of �, but both will be on opposite sides of the poles thus can

can be di�erentiated. Hence, we only need to be sure that the pole does not lie on or too close to

the circles Cit or Cjt (which would cause another degeneracy). To do this, we add an additional

constraint that the pole direction may not be within � (the same � as from the removal of type I

degeneracies since we are attempting to distinguish between points) of any little circle.

11



Remarks.

(1) The !-strip is only an inscribing region of the forbidden region corresponding to any �. The

actual forbidden region induced by any tangency is in fact smaller, and it has a more complicated

boundary.

(2) Extending the method to the full vertical decomposition requires handling several more cases

involving up to four circles Cit each. This extension is straightforward and we omit further details

here. We have implemented this extension and we report experimental results for it below.

(3) In practice, it is convenient to impose the same pole direction for all the spheres in the arrange-

ment, for ease of coding, debugging and visualization. To this end we draw all the !-strips on the

unit sphere of pole directions S2, and the constraint on ! becomes sin! < 1=(4nk(k � 1)). The

experimental results described below are for this choice of pole directions.

(4) The construction of the forbidden regions on St is diametrically symmetric, namely a point on

St is free (i.e., represents a pole that will induce an !-separation) if and only if its antipodal point

is free.

5 Algorithmic Details and Complexity Analysis

In this section we describe how the perturbation scheme is carried out e�ciently.

The incremental procedure of Step 1 will move the center of each sphere by at most � from

its original placement. We expand each of the original spheres St into a sphere S00

t
whose radius

is rt + �, and let M 00 be the set of the expanded spheres S00

t . We construct a data structure as

described in Theorem 2.2 to support range queries on the spheres in M
00. This structure enables

us to �nd in O(1) time all the spheres in M
00 that intersect a given query sphere S00

t
. Since we use

expanded spheres, the structure can be used for detecting intersections with original as well as with

perturbed spheres.

When looking for a perturbation of the center of St during Step 1 of the procedure we proceed

as follows. Although constructing the subdivision of B(Ct; �) into free and forbidden regions could

be done in maximum constant time, it would be an extremely di�cult task that may introduce

new precision problems. Instead we do something much simpler. We choose a point p uniformly at

random in the ball B(Ct; �). We next check whether p is a valid perturbation by checking that it lies

outside all the forbidden regions F2; F3 and F4. For example, to check whether p lies outside F2 we

check whether it lies outside each of the at most 2k spherical shells de�ning F2. Each of these tests

is simple and fast and their overall number is bounded by a constant (see below for experimental

results). Recall that � was chosen such that with probability > 1
2
, the point p will represent a valid

perturbation. Thus the expected number of trials before we �nd a valid p is � 2, and the overall

running time of Step 1 is O(n).

Similar arguments apply to Step 2 procedure. For any given sphere St, we choose a point p

uniformly at random on the boundary of S2. We then test all the !-strips relevant to St to check

whether p lies outside all those strips. By the choice of ! the expected number of trials before we

�nd a valid p is � 2, and the overall running time of Step 2 is O(n) as well.

We summarize the performance of the perturbation scheme in the following theorem.

Theorem 5.1 Given a collection M of n spheres as described in Theorem 2.1, and a resolution

parameter " > 0, a valid perturbation of the spheres in M can be computed in expected O(n)

time, by moving each sphere by at most � from its original placement, where � is a parameter that

depends on ", on the maximum number of spheres in M intersecting any single sphere in M , and on

the maximum radius of a sphere in M , and such that all the degeneracies are resolved. In expected

O(n) time we can also �nd a direction for the poles on each sphere so that all the polar arcs in the

trapezoidal decomposition of the spherical arrangements lie on planes the angle between any pair of

12



number �le name size k mean k
0

1 estradiol.mol2 44 17 6.81

2 clofazimine.mol2 55 13 6.67

3 michellamine b.mol2 104 13 6.81

4 288d.pdb 120 9 6.25

5 conocurvone.mol2 127 14 6.67

6 245d.pdb 240 9 6.17

7 1ppt.pdb 301 10 5.92

8 4pti.pdb 454 10 5.79

9 1bzm.pdb 2034 10 5.74

10 2pka.pdb 3598 11 5.79

11 2ace.pdb 4143 12 6.05

12 1sdk.pdb 4384 12 6.00

13 1nok.pdb 6759 11 5.73

14 7at1.pdb 7106 12 5.70

Table 1: Listing of the molecules used for testing. Molecules with �le names ending in pdb can be

found at the Protein Databank at http://www.pdb.bnl.gov/. Molecules with �le names ending in

mol2 can be found at the Center for Molecular Modeling at http://cmm.info.nih.gov/modeling/.

The size column gives the number of atoms in the molecule, k0 and k are explained in the beginning

of Section 6

which is at least !, for ! that depends on the maximum number of spheres in M intersecting any

single sphere in M .

We emphasize again that the theoretical bounds that we obtain on � and ! are crude and in

practice (as shown next) these quantities are much smaller.

6 Experimental Results

In order to ease the explanation of the results, we introduce a new variable. Let k0 be the number

of spheres intersecting a given sphere in a given collection of spheres. Thus, k0 is a function of a

particular collection and a particular sphere and the constant k in the previous sections is then

max k0 over a collection of spheres. These values are listed in Table 1 for the fourteen molecules we

chose for the timing experiments. The molecules from the Protein Databank did not specify the

positions of hydrogen atoms whereas the others did. This accounts for most of the di�erence in k

and k
0 values. All timings were done on an SGI Indigo with a 250Mhz MIPS RS4400 CPU.

For our timings, we ran the program on each of the molecules in our set for varying � and

�: � on [10�6
; 10�10] and � on [10�9

; 10�12] to determine the experimental dependence of � on �.

Figure 7 shows the results of these timings for the portion of the code not involved with computing

perturbations. Figure 8 details the time spent in the perturbation code.

It should be noted that almost all of the perturbation time (90 � 98%) is spent �nding the

pole direction. Table 2 shows the fraction of the �-spheres which are free, (VB � VF )=VB in the

notation of Section 4.1, and Table 3 shows the fraction of the pole directions that are free for a

typical molecule. To obtain the former chart, we modi�ed the program to attempt (and discard)

1000 perturbations each time the center of an atom was positioned. The values shown in the table

are the average over all center placements of the fraction of these positions that were valid. The

latter was obtained with a similar sampling method for pole directions.

The reason for the dramatic di�erence between the time spent on pole perturbation and the
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1e-3 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9

1e-2 0.993 0.999 0.999 0.999 0.999 1.000 1.000

1e-3 0.999 0.999 0.999 1.000 1.000 1.000

1e-4 0.999 0.999 0.999 0.999 1.000

1e-5 1.000 1.000 1.000 1.000

1e-6 1.000 1.000 1.000

1e-7 1.000 1.000

1e-8 1.000

Table 2: Valid fraction of the �-sphere for molecule 10 from Table 1. � varies across the table and

� varies downwards.

1� cos(!)

1e-9 1e-10 1e-11 1e-12 1e-13

0.285 0.675 0.890 0.950 0.975

Table 3: Valid fraction of pole positions for molecule 8 from Table 1.

1e-3 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9

1e-2 0.625 0.937 0.993 0.999 0.999 1.000 1.000

1e-3 0.626 0.937 0.993 0.999 0.999 1.000

1e-4 0.626 0.937 0.993 0.999 0.999

1e-5 0.626 0.937 0.993 0.999

1e-6 0.626 0.937 0.993

1e-7 0.626 0.937

1e-8 0.626

Table 4: Valid fraction of the �-sphere for the degenerate set of spheres described in Section 6. �

varies across the table and � varies downwards.

time spent on center perturbation can be attributed to a few additional constraints we placed on

the poles. In order to simplify certain coding and debugging procedures, we insisted that all spheres

share the same pole direction. In addition, the poles were required to be chosen such that no

intersection point of a polar arc and a little circle would be within � of any other vertex of the

arrangement, and that no polar arc be within ! of the special great circle that is added as part of

our \simpli�ed point location" procedure (which we describe in the next section).

We also performed an experiment similar to that of Table 2 for a purposefully degenerate col-

lection of spheres and it is summarized in Table 4. For this set, we arranged 27 spheres in a cube

on a unit regular grid. Each sphere had a radius of 1:05 thus producing 2 to 12 degeneracies where

3 little circles intersect at one point on each sphere. In this highly degenerate case, most of the

�-sphere was free even when the ratio of � to � was as small as 10.
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7 Additional Issues in Computing Spherical Arrangements

7.1 Simpli�ed Point Location

We construct the spherical arrangement on each sphere by sequentially adding one sphere at

a time to the collection. Each sphere induces a number of little circles on both itself and other

spheres. These are added in corresponding pairs. When a new circle is added to a sphere, we must

locate in the previously constructed arrangement a point on the little circle. For circles which do

not encompass a pole, we choose to locate the polar tangency points. Since polar arcs must be

extended from each tangency to the arc segments \above" and \below" the tangency, �nding these

\upper" and \lower" bounds on the polar arc is su�cient for point location.

In order not to have to search through all of the arcs on a sphere to �nd the two arcs needed, we

use a simple partitioning scheme. Each sphere is divided into sections along the equator. All arcs

on the sphere are projected onto the plane of the equator and then outward to the equator. Each

section on the equator stores references to the arcs whose projections pass through it. Furthermore,

since all little circles are broken at polar tangency points, the equatorial extent of any arc segment

can be found by projecting only its endpoints.

Thus, for point location, the point is similarly projected onto the equator and then onto a section.

Half of a great circle passing from one pole to the other through the point is constructed and this

polar arc is then intersected with the arcs listed in the found section to �nd the arc immediately

\above" and \below" the point. For our implementation, we chose to divide the equator into a �xed

number of equal-size sections.

For little circles which surround one of the poles, such a scheme will not work since there are no

such tangency points. To ensure simple point location in this case, one great circle passing through

the poles is maintained. Thus each little circle without tangencies will intersect this great circle

twice. These two points are then used as starting locations for adding the rest of the little circle

just as the tangency points would otherwise be used.

Figure 9 shows timings of the code involved in point location during a load of molecule 10 from

table 1. The plot is not as conclusive as we might hope (we would like to �nd a minimum in the

graph that corresponds to a good trade-o� between query and maintenance time), but it certainly

shows an initial negative slope for small numbers of sections and hints at a positive slope for larger

values.

7.2 Full vs. Partial Decomposition

To evaluate the experimental advantage of either the partial or full decompositions, we took

molecule 4 and timed the algorithm while successively increasing each radius in the radii table

used to convert element types to radii. The radii were expanded by a constant each time and the

calculations redone. This provided a number of di�erent molecules with di�erent k0 values and a

somewhat \natural" distribution of spheres in space.

The average value of k0 gives a good indication of the complexity of the spherical decompositions

constructed since it is the average number of spheres intersecting any given sphere in the arrange-

ment. Thus (average k0) �m is the total number of little circles computed during the construction

of the spherical decompositions.

Figures 10, 11, and 12 detail the amount of time spent in each of the phases (decomposition

construction, pole perturbation, and center perturbation respectively). The last �gure only has one

graph since the algorithm for �nding centers does not change based on the decomposition method.

The timings were stopped at the point where no further increase could be made in the radii due to

limited computer time (the algorithms were allowed to run up to six hours). The pole perturbation

was found to be the limiting factor.
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8 Conclusion

We have presented a perturbation scheme for a collection of spheres in three-dimensional space.

Our scheme is suitable for computing with �nite precision arithmetic and we have presented ex-

perimental results obtained while using standard 
oating point arithmetic. For a given resolution

parameter " > 0 we perturb the spheres such that features of the three-dimensional arrangement of

the spheres (and hence of the two-dimensional spherical arrangement on each sphere) are at least "

apart. Our scheme balances between the size of the perturbation, which we aim to minimize, and

the expected running time of the scheme: The smaller the magnitude of the perturbation the longer

the expected time it may take to compute a valid perturbation.

The scheme that we have presented is fairly easy to program, it removes degeneracies and in

that makes the other parts of the algorithm easier to program, and as the experimental results show

it runs e�ciently.

Our motivation to develop this scheme is a software package that we have devised aimed to

support geometric queries on molecular models. The new scheme has made our algorithms and data

structures robust with only little e�ect on the running and reaction time of the system. We have

also presented experimental results showing this small e�ect. Our software package is currently used

by chemists working in rational drug design.

The main direction for further research that we propose is to extend the scheme to other types

of arrangements of geometric objects. An obvious limitation of our approach, that may make

it unsuitable for certain applications, is that we actually move the input geometric objects from

their given placement. However, we believe that there are applications where a small bounded

perturbation of the input objects is permissible, since often the precision of the input objects is

limited to start with (due to measurement limitations, for example).
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Appendix: Shells of Degenerate Placements

In this appendix we give more details on the shape and volume of the shells de�ning the regions

F2; F3 and F4 as mentioned in Section 4; we use the notation established there.

The region F2 consists of placements of the center of St+1 that induce tangency or near-tangency of

St+1 and another sphere. There are two types of tangencies: external and internal. We �rst describe

the shell for external tangency. For a sphere Si, an exact tangency is induced by placing the center

Ct+1 of St+1 at distance exactly ri+rt+1 away from the center of Si, namely, �i(t+1)�ri�rt+1 = 0.

We de�ne the potential degeneracy of this type when using 
oating point with resolution parameter

" > 0 as the union of placements of the center of St+1 such that �" � �i(t+1) � ri � rt+1 � ", which

is a spherical shell (i.e., the region sandwiched between two concentric spheres) with center at Ci

and radii ri+rt+1�" and ri+rt+1+". Its volume is 4
3
�[(ri+rt+1+")3� (ri+rt+1�")3]. Similarly

the volume of a shell corresponding to internal tangency (assuming rt+1 > ri) is
4
3
�[(rt+1 � ri +

")3 � (rt+1 � ri � ")3].

The region F3 is the union of toric shells each de�ned for a pair of distinct spheres Si; Sj 2 Mt.

Let Cij denote Si \ Sj where both spheres are in their �nal placement, namely, they have possibly

been perturbed. The toric shell for the pair Si; Sj is the loci of placements of the center of St+1
that will cause St+1 to be tangent, or almost tangent to Cij . Thus it represents the placements of

St+1 that may cause two circles on a spherical arrangement to be tangent or almost tangent.

We denote the center of circle Cij by cij and its radius by rij . At a point p of tangency between

Cij and St+1 there is a plane �(p) that is tangent to St+1, and such that its intersection with the

plane containing Cij is a line L(p) tangent to Cij . If we �x the point p on Cij and hence the line L(p)

there is a pencil of planes through L(p) where each plane de�nes a possible osculation placement of

the sphere St+1 and the circle Cij at p. The induced loci of forbidden placements for the center of
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Figure 13: A cross-section of Cij and St+1 on the plane 
(p).

St+1 are a circle with center at p, lying on a plane 
(p) orthogonal to L(p) and having radius rt+1.

We now extend the de�nition to near-tangency at p and restrict ourselves to the plane 
(p).

We assume that the center of St+1 lies on 
(p) and hence St+1 \ 
(p) is a great circle of St+1.

We expand a circle C(p; ") of radius " around p. The forbidden placements for the center of St+1
are now all the placement where St+1 \ 
(p) \ C(p; ") 6= ;|the shaded annulus in Figure 13.

We repeat this for every point p on Cij and obtain a toric shell. In fact it is only toric-like but for

brevity we call it a toric shell. It would have been a real toric shell (the region sandwiched between

two tori with the same center, axis of rotation, and major radius) were it not self intersecting as

it may possibly be here. To bound the volume of the toric shell, we will �rst look at the solid of

revolution obtained by rotating an external quarter of the annulus around the line through Cij and

orthogonal to the plane containing Cij . The obtained volume, which we denote by V1=4, is clearly

an upper bound on quarter the volume of the toric shell. Let V1=4(r) denote the volume of a quarter

torus with major radius rij and minor radius r. Then V1=4 = V1=4(rt+1 + ")� V1=4(rt+1 � ").

V1=4(r) = 2�

Z r

0

(u+ rij)
p
r2 � u2du

= 2�[
1

3
(r2 � u

2)3=2 + rij
r
2

2
arcsin

u

r
] jr0

=
2

3
�r

3 + �
2
rij

r
2

2

It follows that V1=4 = 2�2rijrt+1"+4�r2t+1"+
4
3
�"

3. Since both rij and rt+1 are bounded by R, we

get that the volume of the toric shell is bounded by 4�(2� + 4)R2
"+ 16

3
�"

3.

The region F4 is the union of spherical shells each centered at a point of intersection of three

distinct spheres in Mt and having radii rt+1 � " and rt+1 + ". The spherical shell here is the loci of

placements of the center of St+1 that will cause St+1 to pass through an intersection point of three

distinct spheres in Mt or very close to this intersection point.

Let p denote such an intersection point. The loci of placements of Ct+1 that will cause St+1 to

go through p constitute the sphere centered at p with radius rt+1. It is easily veri�ed that if we

wish that p will be " away from St+1 then the loci of forbidden placements are the spherical shell

centered at p with radii rt+1 � " an rt+1 + ". Its volume is 4
3
�[(rt+1 + ")3 � (rt+1 � ")3].

Bounding the volume of F2;F3; and F4. Let M be a collection of spheres as de�ned in

Theorem 2.1. Also, as above, let R := maxn
i=1 ri, and let k denote the maximum number of spheres

of M intersecting a single sphere of M . Given a parameter " > 0, we wish to determine the

parameter � = f(k; "; R) such that the volume of the forbidden region inside B(Ct+1; �) is less than

half the volume of B(Ct+1; �). Let VB := Volume(B(Ct+1; �)), and let VF := Volume(F2[F3[F4).
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Note that there are at most k external spherical shells de�ning the region F2 and at most k

internal shells, at most
�
k

2

�
toric shells de�ning the region F3, and at most 2

�
k

3

�
spherical shells

de�ning the region F4. Therefore we obtain the following bounds on the volume of these regions:

Volume(F2) � k
4

3
�[(2R+ ")3 � (2R� ")3] + k

4

3
�[(R + ")3 � (R� ")3]

�

4

3
�k(30R2

"+ 4"3)

Volume(F3) �

�
k

2

�
[4�(2� + 4)R2

"+
16

3
"
3] �

1

2
k
2[4�(2� + 4)R2

"+
16

3
�"

3]

Volume(F4) � 2

�
k

3

�
4

3
�[(R + ")3 � (R� ")3] � 2

�
k

3

�
4

3
�(6R2

"+ 2"3) �
4

9
k
3
�(6R2

"+ 2"3)

VF � �R
2
"[40k + (4� + 8)k2 +

8

3
k
3] + "

3[: : :]

� 5:13�R2
"k

3 (assuming k � 10 and "� k;R) :

Finally, we choose � such that VB = 4
3
��

3
> 2VF . Thus we let � := 2k"1=3R2=3.

23


