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Abstract

We discuss the problem of �nding sparse representations of a class of signals. We

formalize the problem and prove it is NP-complete both in the case of a single signal and

that of multiple ones. Next we develop a simple approximation method to the problem

and we show experimental results using arti�cially generated signals. Furthermore,we

use our approximation method to �nd sparse representations of classes of real signals,

speci�cally of images of pedestrians. We discuss the relation between our formulation

of the sparsity problem and the problem of �nding representations of objects that are

compact and appropriate for detection and classi�cation.
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1 Introduction and Formulation of the Problem

In this note we discuss the problem of �nding representations for reconstruction of a number

of signals using \features" chosen from a large pool of possible ones. Speci�cally, we de�ne

the problem of �nding sparse representations of a class of signals in terms of a small set of

basis signals chosen from an overcomplete set of many basis vectors.

Finding sparse representations of signals has recently been an important topic of research

in the vision community (ie see [4] [1],[3], [7] and references therein). In [1] the problem of

�nding a sparse representation of a single signal is de�ned and an approximation method is

suggested. In [4] a sparsity criterion determines basis vectors to represent images of natural

scenes that are similar to the receptive �elds of neurons in primary visual cortex. In this

case the basis functions \evolved" instead of being chosen from a prede�ned set of possible

vectors.

In this paper we follow a di�erent approach which, in a sense, is a combination of the work

in [1] and [4]. Speci�cally, instead of trying to \evolve" (as in [4]) the basis functions used

to represent signals (ie images), we try to �nd how an existing basis (neurons) can be used

in order to sparsely represent input signals (images). Summarizing, the contributions of

the paper are:

1. We formulate the problem of �nding sparse representations of a family of signals.

2. We prove that both the sparsity problem in [1] as well as the one formulated here are

NP-Complete.

3. We suggest approximation methods for the formulated problem.

4. We show preliminary experimental results using a simple approximation method.

5. We show how to use our formulation to �nd representations of classes of objects (such

as images of pedestrians) that can be used for detection and classi�cation.

2 Formulation of the Sparsity Problem

In the case of one signal the problem is as formulated in [1]: given an N -dimensional signal

S and a set of M >> N vectors Bi (i 2 f1; :::Mg) that constitute an overcomplete basis for

the N -dimensional space that the signal belongs to, choose the fewest possible basis vectors

that reconstruct (or \best" approximate) the given signal S. A number of approximation

methods to this problem are presented in [1]. This paper discusses the extension of the

single-signal case to the many-signals one. The problem now is: Given a set of K N -

dimensional signals Sj, (j 2 f1; :::Kg) and a set of M >> N vectors Bi (i 2 f1; :::Mg) that
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constitute an overcomplete basis of the vector space that the signals lie in, �nd the smallest

number of basis vectors that reconstruct (or best approximate) all the given signals. The

mathematical formulation of this problems is as follows.

min �i;�ij

PM
i=1 �i

subject to:
PM

i=1 �i�ijBi = Sj for every j 2 f1; :::Kg

where �i 2 f0; 1g and �ij 2 R

Here the �i are 0 when basis vector Bi is not used by any signal and 1 when it is used by at

least one signal. Minimizing the sum of �i means minimizing the number of basis vectors

used by all signals.

Notice that this is an integer programming formulation with non-linear constraints, which

is an indication that the sparsity problem is NP-complete. We present a formal proof of

this below.

2.1 Sparsity Problem is NP-Complete

It is known (see [2]) that the following problem is NP-complete:

Minimum Weight Solution for Linear Equations (MWSLE): Given an n�m ma-

trix A with integer entries, an m� 1 vector b with integer entries and an integer K <= m,

�nd whether there exists x with rational entries such that x has at most K non-zero entries

and Ax = b.

It is easy to see that the Sparsity problem is a \general" case of the MWSLE problem.

So: if we assume that the Sparsity problem can be solved in polynomial time, then for

a given instance (A; b;K) of MSWLE we could solve the Sparsity problem with basis A

and signal b, and �nd a solution xsp with the fewest non-zero entries (say L is the minimum

number of non-zero entries, L < m). If xsp has rational entries only, we are done with

the MWSLE problem, since then: if K > L then the answer to the problem is \yes",

otherwise it is \no". So all we have to show now is that if we can �nd a solution with L

non-zero entries for the Sparsity problem, then we can have a rational solution with at most

L non-zero entries to the MWSLE problem.

In the case that the xsp that we found solving the Sparsity problem is not rational, if we

can show that there exists a rational xrat with the same non-zero entries as xsp, we are

done. For this, consider the following problem: Construct n�L matrix A0 which is matrix

A with the columns corresponding to zero-entries of xsp removed. Also, take xnew to be xsp

with all zero entries removed. Then we have a solution xnew to the system of equations:
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A0x = b with some of the entries of xnew being irrational numbers. If we can show that

there exists also a solution xrnew with rational entries such that A0xrnew = b, we are done.

For this we have the following lemma:

Lemma: If there is a solution x for the set of linear equations Ax = b where A and b

have integer entries and A is n�L, then there is a solution xrat to the same set of equations

with all entries of xrat being rational.

Proof: Since there is a solution to the set of equations, there is a solution that is given

directly using determinants of matrices (if r is the rank of A, then there is an r� r square

submatrix A0 of A with rank r for which we get x = A0�1b which is a solution to our original

system and clearly has rational entries since A0 and b have integer entries. If r = 0, then

clearly any x is a solution - since there exists at least one solution).

Therefore the Sparsity problem is also NP-Complete. Furthermore, the many signals prob-

lem can be shown to be NP-Complete trivially: the Sparsity problem can be trivially

\reduced" to the many signals problem (since the �rst is a special case of the second).

3 Approximation Methods

In this section we �rst discuss ideas for how to approximate the many signals sparsity

problem, and then we describe a simple approximation method that we also tested with

arti�cial and real signals. A di�erent approximation method is discussed in [3].

3.1 Iterative Approximation Methods

The layout of this family of approximation methods is as follows:

Given a set S1 of K N -dimensional signals and a set B1 of M >> N basis vectors, the set

G of \selected" basis vectors is initialized to \empty" and:

For i = 1 to N :

1. If all vectors in Si are zero, return current G

2. For each of the non-zero signals Sik in Si �nd its sparsest representation in the sense

of [1] using basis Bi. This is the solution of the LP problem:

min �kj

PM
j=1 j�kj jL1

subject to:
PM

j=1 �kjBij = Sik
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where �kj 2 R and Bij 2 Bi

3. For each basis vector in Bi: compute the sum of the absolute values of the coe�cients

(the �ij found in 2) corresponding to this basis vector that the signals in Si \use" -

found in step (2).

4. Select the basis vector Bij with the largest sum (as found in step (3)). For each

non-zero signal S in Si �nd its projection on the selected basis vector and subtract it

from the signal. Delete this basis vector from the set of basis vectors and add it to

set G. So now:

S = S � S �Bij for every non-zero signal S 2 Si and

Bi+1 = Bi � fBijg

Gi+1 = Gi

S
fBijg

Go back to step (1).

One can get several variations of this basic layout. For example one can change the criterion

for selecting Bij at each iteration. A possible criterion other than the one above is: \select

the basis vector that is \used" (ie gives coe�cients larger than a prede�ned threshold) by

the largest number of signals". Other variations (ie changing step 2) can be developed.

3.2 Mathematical Programming Approximation Method

3.2.1 Two \naive" Approaches

One \naive" approach is to solve the many signals problem as formulated in section 2 after

relaxing the constraints that �i 2 f0; 1g - let �i take any value between 0 and 1. However,

although this relaxation would lead to a linear cost function, the constraints would still be

non-linear. Solving the relaxed problem is still hard.

A simple approximation for the many signals sparsity problem is to solve the single signal

problem for each of the input signals using the approximation method of [1] and de�ne the

�nal solution to be the union of all the basis vectors found. This could be achieved by

solving the following linear programming problem:

min �ij

PM;K
i=1;j=1 j�ij jL1

subject to:
PM

i=1 �ijBi = Sj for every j 2 f1; :::Kg

where �ij 2 R

The �nal solution consists of all basis vectors Bi for which at least one of the j�ij jL1
is

non-zero (or greater than a threshold), j 2 f1; :::Kg (notice that this linear programming

problem can be decomposed to K smaller ones without changing the �nal solution). How-

ever such an approach is likely to give many basis vectors as a �nal solution since it does not
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try to �nd a set of basis vectors that are consistently used by all signals. Moreover, given

that each of the individual signals is expected to have some \signal-speci�c" characteristics

(ie each pedestrian has its own speci�c characteristics), such an approach will not give us

only the \features" - basis vectors - that are consistently important for all signals in the

class. It will also give basis vectors that are signal speci�c but not class speci�c.

3.2.2 A Simple Approximation Method

Alternatively we should search for an approximation method that tries to �nd a set of basis

vectors consistently used by all signals. Furthermore the method should avoid �nding

characteristics that are speci�c to only some of the signals. Given these two goals we

suggest the following method.

Given a set of K N -dimensional signals and a set B of M >> N basis vectors:

1. Compute a small number, say 2, of di�erent linear combinations of the K signals, say

combinations C1 and C2.

2. Solve the following linear programming problem (which is a simple extension of the

formulation in [1] from the one signal case to the two signals one):

Min (x1)L1
+ (x2)L1

Subject to

Bx1 = C1

Bx2 = C2

3. The �nal representation uses all basis vectors Bi for which jx1ijL1
or jx2ijL1

is non-

zero or larger than a threshold. The number of basis vectors used can be restricted

by altering this threshold.

For the second step we can alternatively use an approximation to the problem that also

takes into account noise - it assumes the signals are noisy. In this case the problem is

formulated as (again using the formulation in [1]):

Min (x1)L1
+ (x2)L1

+ �((�1)L2
+ (�2)L2

)

Subject to

Bx1 + �1 = C1

Bx2 + �2 = C2

In our experiments we use the noiseless formulation.

Before describing our experiments we explain the motivation behind this formulation. First,

as mentioned above, we want to �nd a consistent set of basis vectors used by all signals
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and at the same time avoid picking vectors due to noise or due to \characteristics" speci�c

to a signal. The formulation above is expected to satisfy both these requirements. By

taking a linear combination of the signals we expect to eliminate noise and also \smooth

out" the signal speci�c characteristics while enhancing the class speci�c ones. On the other

hand, by taking only 2 (or maybe 3) linear combinations we make the problem tractable

(we could potentially solve the problem using all the signals in our cost function, but

such a formulation would quickly become intractable - as soon as the number of signals

becomes signi�cantly large). Moreover, solving the problem using all the signals instead

of the linear combinations would not �nd a consistent solution among the signals. In a

sense by taking the linear combination of the signals we \glue" them together so that only

the basis vectors used by all of them is found. Finally, the reason we take 2 (or 3) linear

combinations instead of just one is that taking only one linear combination may force some

of the important \features" (basis vectors) to disappear (their coe�cients to become zero).

On the other hand we expect that a very small number of linear combinations (ie 2 or 3)

is enough to avoid such a problem.

4 Experimental Results

4.1 Synthetic Signals

We show the results of two experiments in tables 1 and 2. The signals used were 36 dimen-

sional and were generated using some of the basis functions of an overcomplete dictionary

with Gaussian noise added afterwards. Recovering the basis functions used was not always

successful for each of the individual signals (especially when considerable noise was added

to the signals), but it was possible most of the time for linear combinations of the signals.

In �gure 1 a 4-fold cosine and sine overcomplete basis was used (146 basis vectors in total).

50 36-dimensional signals were generated using basis vectors 17 and 110. We added Gaus-

sian noise to each of the signals, and then we solved the \sparsity" problem for a each of

the individual signals (using the formulation of [1]). We also solved the sparsity problem

using the approximation method described in the previous section. The �rst three lines of

the table show the basis vectors chosen when the sparsity problem was solved for signals

2,3 and 4 respectively. Notice that for all 3 signals we fail to �nd the exact basis vectors

used to construct them - due to noise. When we solved the problem using our simple ap-

proximation method we got the correct results shown in the last line of the table.

In �gure 2 we used an overcomplete Haar wavelets basis (306 basis vectors plus one vector
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Signal Basis Vectors Used

2 1, 17, 110

3 17, 107

4 17, 108, 126

Weighted Averages solution 17, 110

Figure 1: Using a 4-fold cosine and sine overcomplete basis.

Signal Basis Vectors Used

1 1, 35, 38, 40, 90, 93, 105, 140, 150, 151, 209, 220, 237, 277, 300

2 1, 39, 40, 45, 90, 123, 150, 175, 200, 209, 220, 285, 300

4 1, 10, 38, 40, 85, 132, 149, 150, 165, 200, 220, 276, 300

Weighted Averages solution 1, 10, 40, 90, 150, 220, 300

Figure 2: Using an overcomplete Haar wavelets basis (306 basis plus one vector of ones).

of ones - to capture the mean value of the signals). The signals were constructed using

basis vectors 10, 40, 90, 150, 220 and 300. Noise was added as before. Again we show

the solutions found for some individual signals as well well as the one found using our

approximation method.

4.2 Application to the Representation of Pedestrians

An interesting application of the aforementioned ideas is �nding representations of classes

of objects. This idea is motivated from biology. It is well-known (ie see [8]) that the primary

visual cortex has a set (overcomplete basis) of neurons with speci�c receptive �elds (basis

vectors). These \basis vectors" are used for the representation of all images. We expect

that di�erent classes of objects excite di�erent neurons (basis vectors). Therefore, if we

start with an overcomplete basis - similar to the receptive �elds found in V1 - and examine

which of the basis vectors are used by objects of the same class under the assumption that

the representation should always be sparse, then the prediction is that a few basis vectors

are commonly used by all objects of the same class. Each object individually may also use

other basis vectors (due to noise or object-speci�c characteristics) but we expect to �nd a

\small" set of basis functions used by all. Work in this direction can also be found in [5].

Having this in mind we conducted the following experiment. Given a number of aligned
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Figure 3: Two typical images of pedestrians and an \average" pedestrian.

images of pedestrians (data used in [5]) and an overcomplete wavelet basis, we solved the

\many signals" sparsity problem using the images as signals and the wavelet basis as our

overcomplete basis. Following the simple approximation method described in the previous

section, we �rst generated weighted averages of the images of pedestrians (the images were

assumed to be aligned, so no correspondece was computed between them before averaging),

and then we solved the problem for these averages. Figure 3 shows two typical images

of pedestrians as well as a weighted average of 1000 such images. When the average is

taken only the \signi�cant" characteristics of the signals remain (ie the shape of a typical

pedestrian). After solving (in the sense of [1]) the sparsity problem for this signal, we

reconstructed the signal using only some of the found wavelet vectors (thresholding the

computed coe�cients). Figure 4 shows the reconstructed image using di�erent number of

basis vectors (di�erent thresholds). Notice that only a few basis vectors are enough to yield

su�ciently \good representation" of pedestrians (similar to the one found in [5]). Further

tests need to be done to evaluate the quality of the found representation.

5 Conclusion and Future Directions

We proved that the problem of �nding sparse representations starting from an overcomplete

basis is NP-Complete. Given this, �nding approximation methods is the only feasible ap-

proach. In this paper we suggest a simple approximation method to the \sparsity" problem

in the many signals case. Preliminary experimental results using arti�cially generated sig-

nals were promising. Furthermore we applied our formulation of the sparsity problem and

our approximation method to the problem of �nding representations of classes of objects

such as images of pedestrians. The results are promising but further tests need to be done
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Figure 4: Reconstructed \average pedestrian" using 41, 25 and 19 of the basis vectors. In

the �rst two images we used a basis of Haar wavelets with resolutions 4 and 8. For the

third image we used resolutions 2, 4 and 8. The images were 32x64.

to better evaluate the performance of our approximation methods.
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