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Abstract

This paper investigates the linear degeneracies of projective structure estimation from point and line
features across three views. We show that the rank of the linear system of equations for recovering the
trilinear tensor of three views reduces to 23 (instead of 26) in the case when the scene is a Linear Line
Complex (set of lines in space intersecting at a common line) and is 21 when the scene is planar. The
LLC situation is only linearly degenerate, and we show that one can obtain a unique solution when the
admissibility constraints of the tensor are accounted for.

The line con�guration described by an LLC, rather than being some obscure case, is in fact quite typical. It
includes, as a particular example, the case of a camera moving down a hallway in an o�ce environment or
down an urban street. Furthermore, an LLC situation may occur as an artifact such as in direct estimation
from spatio-temporal derivatives of image brightness. Therefore, an investigation into degeneracies and
their remedy is important also in practice.
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1 Introduction

It is known that point and line image features across
three perspective views can generally give rise to a linear
system of equations for a unique solution for 3D struc-
ture and camera motion. The structure and motion pa-
rameters are represented by a 3 � 3� 3 tensor, and the
image measurements of matching points and lines pro-
vide constraints, trilinear in image coordinates, that as
a whole make a linear system of equations for the (un-
known) coe�cients of the tensor. Finally, the tensor
has only 18 degrees of freedom, i.e., the 27 coe�cients
are subject to non-linear admissibility constraints. In
the presence of errors in image measurements one often
starts with the Linear solution and improves it further
by employing a numerical Gauss-Newton style iterative
procedure until a solution that satis�es the admissibility
constraints is obtained. (see Appendix for more details).

In this paper we investigate the cases in which the lin-
ear solution is degenerate. As it happens, the degeneracy
occurs in typical real situations. We show that when the
sample of features is taken from a con�guration of lines
that have a common intersection, known as a Linear Line
Complex (LLC), then the rank of the linear system re-
duces from 26 (in the general case) to 23 | yet, there
exists a unique solution for the tensor when the non-
linear admissibility constraints are accounted for1. An
LLC includes in particular the case of lines on parallel
planes whose degeneracy was observed in [21].

To appreciate the practical importance of investigat-
ing LLC con�gurations, consider a few typical outdoor
and indoor scene examples depicted in Fig.1. In Fig.1a
the common intersecting line is the edge of the building.
All horizontal lines on the two faces of the building meet
the edge in the image plane, and the vertical lines meet
the edge at in�nity. Note also that the vertical line repre-
senting the lamp-post also meets the edge of the building
(at in�nity) thereby included in the LLC con�guration.
This leaves very few lines (the sidewalk and the oblique
line of the lamp-post) not part of the LLC. The common
line in Fig.1b is the edge of the book-case leaning on the
wall. All vertical lines in the scene meet it at in�nity and
the horizontal lines of the �le cabinet and the arm chair
meet it in the image plane. Again, very few lines in the
scene do not belong to the LLC (the horizontal line seg-
ments of the box near the far end wall and two horizontal
line segments attached to the book-case). Next, all lines
(except the short line segments of the ceiling light) in
the hallway scene in Fig. 1c belong to an LLC whose
common line is the vertical edge de�ned by the meeting
of the front wall and the left side wall. Likewise, Fig. 1d
is an LLC (with the exception of one short line segment)
where the common line is the meeting between the �le
cabinet and the wall on the right.

Finally, an LLC situation occurs also as an arti-
fact in direct estimation of the Tensor from spatio-
temporal derivatives of image brightness [18]. The
spatio-temporal derivatives provide an axis of certainty
(a one-dimensional uncertainty) for the location of the

1This in contrast to critical line con�gurations from which
a unique solution is not possible, see [9, 3, 10]

matching points in views 1,2 relative to points in the
reference view 0. The uncertainty axes in views 1,2 are
parallel which means that the information gathered from
a general scene by means of �rst-order spatio-temporal
derivatives is at most comparable to the information
gathered from an LLC con�guration of discrete matching
lines.

Given our main result, an attempt to reconstruct
structure and motion from the image line information
of the scenes in Fig. 1 using conventional approaches
would be at best unstable. The linear system of equa-
tions is singular or near singular, and would most likely
not serve as a reasonable starting solution for the sub-
sequent Gauss-Newton iterations. Therefore an inves-
tigation into degeneracies caused by an LLC and their
remedy is important also in practice.

The remainder of the paper is organized as follows.
Section 2 contains the main results which include the
statement of degeneracy of the linear system forming a
null space of dimension 4, and the statement of unique-
ness by incorporating the admissibility constraints with
a simple constructive algorithm for obtaining a unique
solution from an LLC con�guration. In Section 3 we dis-
cuss the dimension of the null space for a planar object
of points, and in Section 4 we verify the theory and the
algorithm with experiments with real images. We use a
schematized version of the real scene shown in Fig. 1a
because it allows for a wider set of experiments. One
can accurately �nd both line and point correspondences
and can therefore perform the motion estimation using
line correspondences and then verify the results against
motion estimates obtained using points.

Notations in general, and tensorial notations in par-
ticular, theory and background of the Trilinear Tensor
with its contraction and slicing properties and admissi-
bility constraints, are discussed in the Appendix.

2 Linear Line Complex Scene Structure

Consider the tensor T
jk
i applied to the point-line-line

con�guration:

s
0

js
00

k(p
i
T
jk
i ) = 0;

where p is a point in image 1 and s
0
; s

00 are lines coin-
cident with the matching point p0; p00 in image 2 and 3,

respectively. Note that piT
jk
i is a 3 � 3 matrix deter-

mined by p, which we will denote by Bp, i.e., in matrix

notation s
00>

Bps
0 = 0 for all pairs of lines coincident

with p
0
; p

00. Assume that there exists a matrix B, in-
dependent of p, such that s00>Bs0 = 0, then clearly the

tensor T
jk
i is not unique: slice the tensor into three ma-

trices (T
jk
1
; T

jk
2
; T

jk
3

), then the tensors (B; 0; 0); (0; B; 0)
and (0; 0; B) (and their linear combinations) all satisfy

the constraint s
0

js
00

kp
i
T
jk
i = 0. Hence, such a matrix

B does not exist in general. We may, nevertheless, ask
whether there exists a special con�guration of points and

lines in space for which such a matrix B is valid? Such
a con�guration is a Linear Line Complex (LLC):

Theorem 1 Let S be a set of lines in 3D which have

a common intersecting line L (i.e., S ^ L = 0 for all

S 2 S). Let Q be a set of lines in 3D that intersect the
1



(a) (b)
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Figure 1: Typical urban indoor and outdoor scenes. The lines in the images form a Linear Line Complex. See text

for more details.
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Figure 2: Figure to accompany theorem 1.

line joining the two camera centers. Then, there exists

a unique matrix B satisfying s
00>

Bs
0 = 0 for all pairs of

projections s
0
; s

00
of lines S 2 S onto two distinct views.

The matrix B also satis�es q
00>
Bq

0 = 0 for all pairs of

projections q
0
; q

00
of lines Q 2 Q.

Proof: Let P be the intersection of a line S 2 S

with L and denote its projections by p
0
; p

00 onto views
1,2 respectively (see Fig. 2). Choose any plane � from
the pencil of planes meeting at the line L, and let H�

be the corresponding 2D projective mapping (homogra-
phy matrix) of points in view 1 to points in view 2 via
(projections of) the plane �. Since � contains the line
L, then

H�p
0 �= p

00
:

Let l0; l00 be the projections of L, then p
0 is the intersec-

tion of s0 and l
0, thus,

H�[l
0]xs

0 �= p
00
;

where [l0]x denotes the skew-symmetric matrix of cross
products, i.e., l0 � s

0 = [l0]xs
0. Likewise, s00 is coincident

with p
00, then

s
00>

H�[l
0]xs

0 = 0:

Denote B� = H�[l
0]x. We show next that B� is unique,

i.e., independent of the choice of �. Let �1; �2 be two
distinct planes of the pencil and let H�1 ;H�2 be their
corresponding homography matrices. It is known that
any two homography matrices between two �xed views
satisfy,

H�2
�= �H�1 + e

00
n
>

where e00 is the projection of the optical center of camera
1 onto the image plane of camera 2 (the epipole), and

2



n is a free vector. Because �1; �2 intersect at L, then,
H�1u

�= H�2u for all u>l0 = 0, thus n �= l
0 and we have:

H�2
�= �H�1 + e

00
l
0>
;

and from which it clearly follows that B�1 = B�2 .
Let D be the intersection of a line Q 2 Q with the

plane � and denote its projections by d
0
; d

00 onto views
1 and 2. The image line q0 passes through the point d0

and through the epipole e0 and therefore: q
0 �= e

0
� d

0
:

and similarly q00 �= e
00
� d

00
: We can then write:

q
00>
Bq

0 = (e00 � d
00)>H[l0]x(e

0
� d

0)
= (e00 � d

00)>H(d0 � l0)e0 � (e00 � d
00)>H(l0 � e0)d0

= (d0 � l0)(e00 � d
00)>e00 � (l0 � e0)(e00 � d

00)>d00

= 0

(1)
where we used the identity:

a � (b� c) = (c � a)b � (a � b)c (2)

and the fact that the homography H maps d0 to d00 and
e
0 to e00.

Corollary 1 The rank of the estimation matrix of the

tensor from image measurements of lines across three

views of a Linear Line Complex structure is at most 23.

Proof: Let the tensor T
jk
i be sliced into three ma-

trices (T
jk
1
; T

jk
2
; T

jk
3
), then the tensors (B; 0; 0); (0; B; 0)

and (0; 0; B) (and their linear combinations) span the
tensors of the form:

T
jk
i = �ib

jk

where � is a free vector of the family. Then,

s
0

js
00

kp
i
T
jk
i = (pi�i)(s

0

js
00

kb
jk) = 0:

Since �ib
jk does not include the general form of trilinear

tensors (eqn. 4), the null space of the estimation matrix
includes at least four distinct vectors: the true tensor
describing the relative location of the three cameras, and
the three `ghost' tensors (B; 0; 0); (0; B; 0) and (0; 0; B).
Thus, the rank is at most 27� 4 = 23.

The ambiguity can be further reduced by incorporat-
ing the tensor admissibility constraints (see Appendix)
as detailed below.

Theorem 2 The ambiguity of Tensor estimation from

measurements coming from an LLC structure is at most
an 8-fold ambiguity.

Proof: We assume the correlation matrix slicing
of the tensor into the three standard correlation ma-
trices (T

jk
1
; T

jk
2
; T

jk
3

) (see Appendix). Let W be the
N � 27, N � 27, estimation matrix for linear estima-
tion of the tensor, i.e., Wv = 0 where v is the tensor
whose elements are spread as a 27 element vector, and v
is spanned by the four-dimensional null space of W>

W .
Let v1; v2; v3 be the three 'ghost' tensors corresponding
to (B; 0; 0); (0; B; 0) and (0; 0; B), respectively. Let v0 be
the (one dimensional) null space of

W
>
W � v1v

>

1
� v2v

>

2
� v3v

>

3
:

Since the null space span the admissible tensors, the
three standard correlation matrices (T1; T2; T3) of the

admissible tensors are spanned by the tensors v0; :::; v3,
i.e.,

T1 = T̂1 + �1B

T2 = T̂2 + �2B

T3 = T̂3 + �3B

where T̂i, i = 1; 2; 3, are the standard correlation ma-
trices of the tensor v0, and �i are scalars. As part of
the admissibility constraints (see Appendix), the stan-
dard correlation matrices Ti must be of rank 2, thus �i
are generalized eigenvalues of T̂i and B, and since B is
of rank 2, the characteristic equation for each �i is of
second order. Thus, we have at most 8 distinct solutions
for Ti.

Empirical Observation 1 Only one of the 8 solutions

satis�es all the admissibility constraints.

Explanation: the rank-2 constraint of the standard
correlation matrices is closed under linear superposition
(see Appendix). Numerical experiments show that only
one out of the 8 possible solutions for the generalized
eigenvalues �1; �2 and �3 produces standard correlation
matrices T1; T2; T3 whose linear superpositions produce
rank-2 matrices.

2.1 Algorithm for recovering structure and
motion in the LLC case

1. Using robust estimation techniques determine the line
correspondences which belong to the LLC and compute
the matrix B (see theorem 1). Here one might use a
robust version of the 8 point algorithm [7].

2. From the matrix B create the 3 'ghost' tensors: v1 =
(B; 0; 0); v2 = (0;B; 0) and v3 = (0; 0;B).

3. Using the point-line-line correspondences from the 3
views compute W , the N � 27;N � 27 estimation ma-
trix for the linear estimation of the tensor.

4. Find v0, the 4th vector spanning the (row) null space of
W orthogonal to v1; v2 and v3 by �nding the null space
of:

W
>
W � v1v

>

1 � v2v
>

2 � v3v
>

3 :

In practice take the eigenvector corresponding to the
smallest eigenvalue.

5. Find scalars �i such that the vector:

v = v0 +

3X
i=1

�ivi

is an admissible tensor (see theorem 2). This is done
in two stages:

(a) Let T̂i, Ti , i = 1; 2; 3, be the standard correla-
tion matrices of the tensors v0 and v respectively.
Then:

TI = T̂i + �iB

Enforce the constraint that Ti is of rank-2 to
�nd �i. Since the matrix B is of rank-2 this is
quadratic constraint resulting in up to 2 solutions
for each �i for a total of 23 = 8 solutions.

(b) Prune the number of solutions down to one by en-
forcing the stronger admissibility constraint that
any linear superposition of matrices Ti must be of
rank-2. This is done by generating K random sets

3



of linear coe�cients �i such that
P

�2i = 1 and
computing the determinant of the linear superpo-
sition:

P
�iTi for each of the 8 possible solutions.

The solution that consistently gives det(�iTi) ' 0
is the correct solution.

3 The Case of Planar Con�gurations

Consider again the point-line-line contraction:

p
i
s
0

j(s
00

kT
jk
i ) = 0:

Denote the matrix s
00

kT
jk
i by Es00 , i.e., in matrix nota-

tion we have s0>Es00p = 0. If there exists a matrix E,
independent of s00, such that s0>Ep = 0 for all lines s0

coincident with the matching point p0, then clearly the

tensor T
jk
i is not unique: slice the tensor into three ma-

trices (T
j1
i ; T

j2
i ; T

j3
i ), then the tensors (E; 0; 0); (0; E; 0)

and (0; 0; E) (and their linear combinations) all satisfy

the constraint p
i
s
0

js
00

kT
jk
i = 0. Hence, such a matrix

E does not exist in general. However, if the matching
points p; p0 are projections of a coplanar con�guration
of points � in space and E is the corresponding homog-
raphy matrix Ep �= p

0, then s
0>
Ep = 0 for all lines s0

coincident with p
0.

Likewise, let W be the homography matrix due to
�, i.e., Wp �= p

00, then s
00>

Wp = 0 for all lines s00 co-
incident with p

00. Then, given the slicing of the ten-
sor into three matrices (T 1k

i ; T
2k
i ; T

3k
i ), then the tensors

(W; 0; 0); (0;W; 0) and (0; 0;W ) (and their linear combi-

nations) all satisfy the constraint pis0js
00

kT
jk
i = 0.

Therefore, the rank of the null space of the linear sys-
tem of equations for the tensor is at least 6, since we have
just created 6 'ghost' tensors. The question of whether
the ghost tensors include the true tensor (in which case
the rank of the estimation matrix is 21) or not (rank is
20) is settled below.

Theorem 3 The rank of the estimation matrix of the

tensor from image measurements of three views of a pla-

nar con�guration of points is at most 21.

proof: Denote the planar object by � and let E;W
be the homography matrices due to � from view 0 to 1,
and from view 0 to 2, respectively. The 'ghost' tensors
due to E span the tensors of the form:

T
jk
i = �

k
e
j
i

where � is a free vector of the family. Then,

p
i
s
0

js
00

kT
jk
i = (�ks00k)(p

i
s
0

je
j
i ) = 0:

Likewise, The 'ghost' tensors due to W span the tensors
of the form:

T
jk
i = �

j
w
k
i

where � is a free vector of the family. Then,

p
i
s
0

js
00

kT
jk
i = (�js0j)(p

i
s
00

ke
k
i ) = 0:

The 6 dimensional null space spanned by both families
of 'ghost' tensors spans the tensors of the form:

T
jk
i = �

j
w
k
i + �

k
e
j
i

where �; � are free vectors of the family. This family
includes the true tensor (set � = v

0 and � = v
00). Thus,

the rank of the estimation matrix is at most 27-6 = 21.
Note, that unlike the case of LLC in which the ad-

missibility constraints have reduced the ambiguity to a
single solution, here the null space includes admissible
tensors (admissibility constraints are satis�ed), thus a
unique solution is not possible. The ambiguity is also
evident by straightforward counting: the tensor is deter-
mined by 18 (algebraically independent) parameters, yet
two homography matrices (E;W ) give rise only to 8 pa-
rameters each (because each matrix is up to scale), thus
we have 2 parameters missing for uniquely determining
the tensor from a planar surface.

4 Experiments

4.1 The experimental procedure

Fig.3a,3b, and 3c show the three input images used for
the experiments. The scene is composed of two faces of
a cube and another plane on the left which is parallel to
the vertical edge of the cube. This is a schematic model
of a typical urban scene with an edge of a building such
as in Fig 1a.

Corresponding point features were manually ex-
tracted. The feature points were saddle points formed by
the corners of two black squares which can be found with
subpixel accuracy. The point features were grouped into
four groups: Points from the left and right faces of the
cube form one group each. Points on the planar surface
were grouped into two vertical sets of features.

Line features were created by taking pairs of points.
If no pair of points has members from more than one
group (for example Fig. 3) then we limit ourselves to a
Linear Line Complex since all the 3D lines in the scene
intersect the edge of the cube. By adding pairs that
span two groups we can add lines that do not belong to
the LLC. By judiciously choosing pairs we can add lines
that are close or far from being part of the LLC (see Fig.
3d). We can also choose pairs of points that de�ne lines
passing through the epipoles. This 
exibility allows us
to verify all the claims in theorem 1.

4.1.1 Hardware notes

The images were captured using a Pulnix TM9701
progressive scan camera with a 2=3inch CCD and an
8:5mm lens. The image resolution was 640� 480pixels.

To achieve the results presented here we had to take
into account radial lens distortion. Only the �rst term of
radial distortion was used. The radial distortion param-
eter, K1 = 6e� 7 was found using the method described
in [19]. We note that that parameter value also mini-
mized the error terms in equation 3.

4.2 Determining the LLC

The three input images (Figures 3a,3b, and 3c) will be
denoted image 1, 2 and 3 respectively. We chose N = 28
pairs of points which de�ned lines all belonging to the
LLC. These are overlaid as white lines in the �gures.
For each image pair (1,2), (2,3) and (1,3) we used the 8
point algorithm [7] applied to the line correspondences to

4
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Figure 3: The three input images used. All the lines marked are part of a linear line complex. They all intersect the

line de�ned by the edge of the cube. Vertical lines intersect the edge at the point at in�nity. The LLC was computed

using images (b) and (c). The dashed lines in (b) and (c) are the projection of the common intersection line into the

images. The results show it aligns very well with the edge of the true cube. (d) Three line which are not part of the

LLC that are used in the experiments.
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Table 1: Values of the error cost function for estimating

the LLC when all the lines belong to the LLC (none) and

when we add a line which passes close to or far from the

common line of intersection (the edge of the cube).

Extra Line E23 E12 E13

None 0.000055 0.00064 0.000079
Close 0.0019 0.0016 0.00054
Middle 0.0065 0.0038 0.0017
Far 0.0119 0.0919 0.0062

compute the matrices B12 , B23 and B13 that minimize:

E12 =
1

N

NX
i=1

(siB12s
0

i)
2 (3)

E23 =
1

N

NX
i=1

(siB23s
00

i )
2

E13 =
1

N

NX
i=1

(siB13s
00

i )
2

respectively. The coordinates of the lines s; s0; s00 have
been scaled as described in [7]. From theorem 1, the
left and right null spaces of B23 (for example) are the
projections of the line L in images 2 and 3. The dashed
black line in �gures (3b), and (3c) show the lines corre-
sponding to the null spaces overlaid on the input images.
They align well with the edge of the cube verifying the
theory and showing that the matrix B can be recovered
accurately. Similar results were found using the other
image pairs.

Fig.3d shows image 1 on which we have overlaid three
lines not belonging to the LLC. Table 1 shows the error
terms of equations 3 when all the line are from the LLC
and when we add one of the lines shown in �gure 3d.
When the extra line is far away from the common line of
intersection the error is large. Even when the line nearly
intersects the edge of the cube the error is still signi�-
cant. Therefore if most of the line come from an LLC
robust methods can be used to detect outliers. Other ex-
periments, not reported here, use lines that pass through
the epipole to verify the second half of theorem 1.

4.3 Recovering motion and structure

We computed the motion tensor from the three views
using four methods. First we used the linear method
for a set of 131 point correspondences. Then we used
the linear method for a set of 34 non degenerate line
correspondences. Next we applied the linear method in
a naive way to the set-of 28 line correspondences from an
LLC. In other words we ignored the fact that the lines
come from an LLC. Finally we estimated the tensor from
the 28 degenerate lines using the algorithm described in
section 2.1.

4.3.1 Condition of the estimation matrix

Figure 4a (top) shows the four smallest singular values
of the estimation matrix W used to compute the tensor
from 34 non-degenerate lines. The smallest eigenvalue is

considerably smaller than the others indicating that the
null space of the matrix is of rank = 1 and the problem is
well conditioned. Figure 4a (middle) shows the 5 small-
est singular values for the estimation matrix computed
from 28 lines belonging to an LLC. The 4 smallest singu-
lar values are about equal and are considerably smaller
than the next smallest. This indicates that the null space
of W is of rank = 4 as expected from theorem 1. Sim-
ply taking the eigenvector corresponding to the smallest
eigenvalue would be a mistake.

Figure 4b shows the projection of the vectors v1, v2
and v3 on the eigenvectors of the estimation matrix
W

>
W . The projections onto the eigenvectors corre-

sponding to the �rst 23 eigenvalues are close to zero ver-
ifying that the vectors v1, v2 and v3 are orthogonal to
the �rst 23 eigenvectors. This veri�es part of theorem
2 which states that the vectors v1, v2 and v3 are in the
null space of W>

W (the remaining four eigenvectors).
Following the algorithm described in section 2.1 we

compute the eigenvalues and eigenvectors of the matrix

W
>
W � v1v

>

1
� v2v

>

2
� v3v

>

3
:

Figure 4a (bottom) shows the three smallest eigenvalues.
The smallest eigenvalues is signi�cantly smaller than the
next smallest value indicating that the null space is now
of rank = 1.

4.3.2 Reprojection of lines using the tensor

After recovering the tensor one can use the tensor
to reproject a line given in two images into the third
image. In order to test the tensor estimates we used ten
additional lines shown in �gure 5. Three of the lines lie
in the LLC on the left face of the cube. The other 7 do
not lie on the LLC.

Figures 5b,c,d show the reprojection results (dashed
lines) together with the original lines (solid lines) over-
laid on image 1. One can see that if the set of lines used
to estimate the tensor all belong to an LLC then other
lines in the LLC reproject more or less correctly but the
reprojection of lines not in the LLC is incorrect (�g. 5c).
On the other hand, reprojection using the tensor com-
puted by taking into account the degeneracy (�g. 5d)
gives results as good as if we had a non-degenerate set
of lines to estimate the tensor (�g. 5b).

5 Summary

We have shown that linear methods for estimating mo-
tion and 3D structure from lines lead to a degenerate
set of equations in the case of a Linear Line Complex.
The LLC, a con�guration of lines that all intersect a
common line in P3, is in fact a common con�guration
of lines occuring frequently in man-made environments.
This degeneracy is due to a bilinear constraint on lines
in two views where the constraint equation has a form
similar to the epipolar constraint but where lines replace
points and the epipoles are replaced by the image of the
common line of intersection in the two views. This con-
straint can be used to determine whether a set of lines
belongs to an LLC and enables us to reject a outliers
using least median of squares or other robust estimation
methods.
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Figure 4: (a) The smallest singular values of the estimation matrix W for a degenerate and non degenerate set of

lines. (b) With a degenerate set of lines, the vectors v1, v2 and v3 were projected onto the 27 eigenvectors of W
>
W .

The values for the �rst 23 eigenvectors are close to zero verifying that the vectors v1, v2 and v3 are orthogonal to the

�rst 23 eigenvectors and are therefore in the null space of W
>
W . (See theorem 2.)

An LLC is not degenerate for non-linear methods in
general. The theoretical analysis leads to a modi�ca-
tion of the linear methods that can recover the structure
and motion in the LLC case. We have proven that the
motion can be recovered up to 8 discrete solutions. Em-
pirical evidence shows that the number of solutions can
be reduced further to a single solution one.

We have implemented the algorithm, and experiments
with real images verify the theoretical analysis. Al-
though the results using the modi�ed linear algorithm
compare favorably with the results obtained using a non-
degenerate set of lines, the system at this point is not
robust. For example, it requires that lens distortion be
taken into account. Further engineering would be in-
volved in making a practical system.
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A Mathematical Background and the

Trilinear Tensor

Let x be a point in 3D space and its projection in a pair
of images be p and p

0. Then p = [I; 0]x and p
0 �= Ax,

where �= denotes equality up to scale. The left 3 � 3
minor of A stands for a 2D projective transformation of
the chosen plane at in�nity and the fourth column of
A stands for the epipole (the projection of the center of
camera 0 on the image plane of camera 1). In particular,
in a calibrated setting the 2D projective transformation
is the rotational component of camera motion and the
epipole is the translational component of camera motion.

We will occasionally use tensorial notations as de-
scribed next. We use the covariant-contravariant sum-
mation convention: a point is an object whose co-
ordinates are speci�ed with superscripts, i.e., p

i =
(p1; p2; :::). These are called contravariant vectors. An
element in the dual space (representing hyperplanes |
lines in P

2), is called a covariant vector and is repre-
sented by subscripts, i.e., sj = (s1; s2; ::::). Indices re-
peated in covariant and contravariant forms are summed
over, i.e., pisi = p

1
s1+p

2
s2+:::+p

n
sn. This is known as

a contraction. An outer-product of two 1-valence tensors

(vectors), aib
j, is a 2-valence tensor (matrix) c

j
i whose

i; j entries are aib
j | note that in matrix form C = ba

>.
Matching image points across three views will be

denoted by p; p
0
; p

00; the homogeneous coordinates will
be referred to as p

i
; p

0j
; p

00k, or alternatively as non-
homogeneous image coordinates (x; y); (x0; y0); (x00; y00)
| hence, pi = (x; y; 1), etc.

Three views, p = [I; 0]x; p0 �= Ax and p
00 �= Bx, are

known to produce four trilinear forms whose coe�cients
are arranged in a tensor representing a bilinear function
of the camera matrices A;B:

T
jk
i = v

0j
b
k
i � v

00k
a
j
i (4)

where A = [a
j
i ; v

0j ] (a
j
i is the 3 � 3 left minor and v

0 is

the fourth column of A) and B = [bki ; v
00k]. The tensor

acts on a triplet of matching points in the following way:

p
i
s
�
j r

�
kT

jk
i = 0 (5)

where s
�
j are any two lines (s1j and s

2

j ) intersecting at

p
0, and r

�

k are any two lines intersecting p
00. Since the

free indices are �; � each in the range 1,2, we have 4
trilinear equations (unique up to linear combinations). If
we choose the standard form where s� (and r�) represent
vertical and horizontal scan lines, i.e.,

s
�
j =

�
�1 0 x

0

0 �1 y
0

�

then the four trilinear forms, referred to as trilinearities
[11], have the following explicit form:

x
00
T
13

i p
i
� x

00
x
0
T
33

i p
i + x

0
T
31

i p
i
� T

11

i p
i = 0;

y
00
T
13

i p
i
� y

00
x
0
T
33

i p
i + x

0
T
32

i p
i
� T

12

i p
i = 0;

x
00
T
23

i p
i
� x

00
y
0
T
33

i p
i + y

0
T
31

i p
i
� T

21

i p
i = 0;

y
00
T
23

i p
i
� y

00
y
0
T
33

i p
i + y

0
T
32

i p
i
� T

22

i p
i = 0:

These constraints were �rst derived in [11]; the tensorial
derivation leading to eqns. 4 and 5 was �rst derived in
[13]. The trilinear tensor has been well known in dis-
guise in the context of Euclidean line correspondences
and was not identi�ed at the time as a tensor but as a
collection of three matrices (a particular contraction of
the tensor, correlation contractions, as explained next)
[16, 17, 21]. The link between the two and the general-
ization to projective space was identi�ed later by Hart-
ley [6, 7]. Additional work in this area can be found in
[15, 4, 20, 8, 14, 1], and applications in [2, 18].

The tensor has certain contraction properties and can
be sliced in three principled ways into matrices with
distinct geometric properties. These properties is what
makes the tensor distinct from simply being a collection
of three matrices and will be brie
y discussed next |
further details can be found in [12].

A.1 Contraction Properties and Tensor Slices

Consider the matrix arising from the contraction,

�kT
jk
i (6)

which is a 3�3 matrix, we denote by E, obtained by the

linear combination E = �1T
j1
i + �2T

j2
i + �3T

j3
i (which is

what is meant by a contraction), and �k is an arbitrary

covariant vector. The matrix E has a general meaning
introduced in [15]:
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Proposition 1 (Homography Contractions) The

contraction �kT
jk
i for some arbitrary �k is a homogra-

phy matrix from image one onto image two determined

by the plane containing the third camera center C
00
and

the line �k in the third image plane. Generally, the rank

of E is 3. Likewise, the contraction �jT
jk
i is a homog-

raphy matrix from image one onto image three.

For proof see [15]. Clearly, since � is spanned by three
vectors, we can generate up to at most three distinct
homography matrices by contractions of the tensor. We
de�ne the Standard Homography Slicing as the homog-
raphy contractions associated by selecting � be (1; 0; 0)
or (0; 1; 0) or (0; 0; 1), thus the three standard homogra-

phy slices between image one and two are T
j1
i ; T

j2
i and

T
j3
i , and we denote them by E1; E2; E3 respectively, and

likewise the three standard homography slices between
image one and three are T 1k

i ; T
2k
i and T 3k

i , and we de-
note them by W1;W2;W3 respectively.

Similarly, consider the contraction

�
i
T
jk
i (7)

which is a 3 � 3 matrix, we denote by T , and where �i

is an arbitrary contravariant vector. The matrix T has
a general meaning is well, as detailed below [12]:

Proposition 2 The contraction �
i
T
jk
i for some arbi-

trary �
i
is a rank 2 correlation matrix from image two

onto image three, that maps the dual image plane (the

space of lines in image two) onto a set of collinear points

in image three that form the epipolar line corresponding

to the point �
i
in image one. The null space of the cor-

relation matrix is the epipolar line of �
i
in image two.

Similarly, the transpose of T is a correlation from image

three onto image two with the null space being the epipo-

lar line in image three corresponding to the point �
i
in

image one.

For proof see [12]. We de�ne the Standard Correlation

Slicing as the correlation contractions associated with se-
lecting � be (1; 0; 0) or (0; 1; 0) or (0; 0; 1), thus the three

standard correlation slices are T
jk
1
; T

jk
2

and T
jk
3

, and we
denote them by T1; T2; T3, respectively. The three stan-
dard correlations date back to the work on structure
from motion of lines across three views [16, 21] where
these matrices were �rst introduced.

A.2 Tensor Admissibility Constraints

The 27 coe�cients T jk
i are not independent. One can

easily show that the tensor is determined by only 18 pa-
rameters; and from the contraction properties discussed
above that the constraints among the 27 coe�cients, re-
ferred to as admissibility constraints, are grouped into
three classes. Both will be discussed brie
y below (fur-
ther details in [12]).

A.2.1 18 Parameters

The tensor

T
jk
i = v

0j
b
k
i � v

00k
a
j
i

is determined by 24 parameters given by the two cam-
era matrices, each has 12 parameters. Two additional

parameters drop out because we can scale v
0 and ac-

cordingly b
k
i without changing the tensor, and likewise

scale v
00 and accordingly a

j
i . An additional parameter

drops out because of the global scale factor (tensor is
determined up to overall scale). Thus, we readily see
there can be at most 21 parameters de�ning the tensor.
We can drop out three more parameters by noticing that

the matrices a
j
i and b

k
i belong to a family of homography

matrices that leaves the tensor unchanged (uniqueness
proof in [11]), as detailed below:

T
jk
i = v

0j
b
k
i � v

00k
a
j
i (8)

= v
0j(bki + �iv

00k)� v
00k(a

j
i + �iv

0j) (9)

= T
jk
i + �iv

0j
v
00k
� �iv

0j
v
00k (10)

= T
jk
i (11)

hence, we have three free parameters �i (in geometric
terms there is a free choice of reference plane in space).
We can select �i such that the matrix b

k
i will have a

vanishing column (this corresponds to selecting a refer-
ence plane coplanar with the center of projection of the

third view). Therefore, the new matrices a
j
i and b

k
i have

only 15 non-vanishing entries, and we have reduced the
number of parameters from 21 to 18.

A.2.2 Admissibility Constraints

We may deduce from the Correlation Contractions
discussed above the following three groups of constraints
that the 27 coe�cients must satisfy:

1. Rank(�iT
jk
i )=2 for all choices of �. The three stan-

dard correlation slices T1; T2; T3 are of rank 2 each
and this property is closed under all linear combi-
nations.

2. Rank(null(T1),null(T2),null(T3))=2. This follows

from the fact the the null space of �iT
jk
i is the

epipolar line in the second image corresponding to
the point � in the �rst image | since all epipolar
lines are concurrent, their rank is 2.

3. Rank(null(T>

1
),null(T>

2
),null(T>

3
))=2. These are

epipolar lines in third image, thus their rank is 2
as well.

One can easily show that no subset of these con-
straints is su�cient to describe an admissible tensor of
the form of eqn. 4. In practice, in the presence of er-
rors in image measurements one often starts with the
Linear solution (that might not satisfy the admissibil-
ity constraints) and improves it further by employing a
numerical Gauss-Newton style iterative procedure until
a solution that satis�es the admissibility constraints is
obtained (for example, [5]).
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