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Abstract

Modeling and predicting co-occurrences of events is a fundamental problem of unsupervised learning. In
this contribution we develop a statistical framework for analyzing co-occurrence data in a general setting
where elementary observations are joint occurrences of pairs of abstract objects from two �nite sets. The
main challenge for statistical models in this context is to overcome the inherent data sparseness and to
estimate the probabilities for pairs which were rarely observed or even unobserved in a given sample
set. Moreover, it is often of considerable interest to extract grouping structure or to �nd a hierarchical

data organization. A novel family of mixture models is proposed which explain the observed data by a
�nite number of shared aspects or clusters. This provides a common framework for statistical inference
and structure discovery and also includes several recently proposed models as special cases. Adopting
the maximum likelihood principle, EM algorithms are derived to �t the model parameters. We develop
improved versions of EM which largely avoid over�tting problems and overcome the inherent locality of
EM{based optimization. Among the broad variety of possible applications, e.g., in information retrieval,
natural language processing, data mining, and computer vision, we have chosen document retrieval, the
statistical analysis of noun/adjective co-occurrence and the unsupervised segmentation of textured images
to test and evaluate the proposed algorithms.
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1 Introduction

The ultimate goal of statistical modeling is to explain
observed data with a probabilistic model. In order to
serve as a useful explanation, the model should reduce
the complexity of the raw data and has to o�er a certain
degree of simpli�cation. In this sense statistical modeling
is related to the information theoretic concept of min-

imum description length [47, 48]. A model is a `good'
explanation for the given data if encoding the model
and describing the data conditioned on that model yields
a signi�cant reduction in encoding complexity as com-
pared to a `direct' encoding of the data.

Complexity considerations are in particular relevant
for the type of data investigated in this paper which is
best described by the term co-occurrence data (COD)
[30, 9]. The general setting is as follows: Suppose two
�nite sets X = fx1; : : : ; xNg and Y = fy1; : : : ; yMg of
abstract objects with arbitrary labeling are given. As el-
ementary observations we consider pairs (xi; yj) 2 X�Y,
i.e., a joint occurrence of object xi with object yj . All
data is numbered and collected in a sample set S =
f(xi(r); yj(r); r) : 1 � r � Lg with arbitrary ordering.
The information in S is completely characterized by its
su�cient statistics nij = jf(xi; yj; r) 2 Sgj which mea-
sure the frequency of co-occurrence of xi and yj . An im-
portant special case of COD are histogram data, where
each object xi 2 X is characterized by a distribution
of measured features yj 2 Y. This becomes obvious
by partitioning S into subsets Si according to the X{
component, then the sample set Si represent an empir-
ical distribution njji over Y, where njji � nij=ni and

ni � jSij.
Co-occurrence data is found in many distinctive ap-

plication. An important example is information retrieval
where X may correspond to a collection of documents
and Y to a set of keywords. Hence nij denotes the num-
ber of occurrences of a word yj in the (abstract of) doc-
ument xi. Or consider an application in computational
linguistics, where the two sets correspond to words be-
ing part of a binary syntactic structure such as verbs
with direct objects or nouns with corresponding adjec-
tives [22, 43, 10]. In computer vision, X may correspond
to image locations and Y to (discretized or categorical)
feature values. The local histograms njji in an image
neighborhood around xi can then be utilized for a sub-
sequent image segmentation [24]. Many more examples
from data mining,molecular biology, preference analysis,
etc. could be enumerated here to stress that analyzing
co-occurrences of events is in fact a very general and
fundamental problem of unsupervised learning.

In this contribution a general statistical framework
for COD is presented. At a �rst glance, it may seem
that statistical models for COD are trivial. As a conse-
quence of the arbitrariness of the object labeling, both
sets only have a purely nominal scale without ordering
properties, and the frequencies nij capture all we know
about the data. However, the intrinsic problem of COD
is that of data sparseness, also known as the zero fre-

quency problem [19, 18, 30, 64]. When N andM are very
large, a majority of pairs (xi; yj) only have a small prob-
ability of occurring together in S. Most of the counts

nij will thus typically be zero or at least signi�cantly
corrupted by sampling noise, an e�ect which is largely
independent of the underlying probability distribution.
If the normalized frequencies are used in predicting fu-
ture events, a large number of co-occurrences is observed
which are judged to be impossible based on the data S.
The sparseness problem becomes still more urgent in the
case of higher order COD where triplets, quadruples, etc
are observed.1 Even in the domain of natural language
processing where large text corpora are available, one has
rarely enough data to completely avoid this problem.

Typical state-of-the-art techniques in natural lan-
guage processing apply smoothing techniques to deal
with zero frequencies of unobserved events. Prominent
techniques are, for example, the back-o� method [30]
which makes use of simpler lower order models andmodel

interpolation with held{out data [28, 27]. Another class
of methods are similarity{based local smoothing tech-
niques as, e.g., proposed by Essen and Steinbiss [14] and
Dagan et al. [9, 10]. An empirical comparison of smooth-
ing techniques can be found in [7].

In information retrieval, there have been essentially
two proposals to overcome the sparseness problem. The
�rst class of methods relies on the cluster hypothesis

[62, 20] which suggests to make use of inter{document
similarities in order to improve the retrieval perfor-
mance. Since it is often prohibitive to compute all pair-
wise similarities between documents these methods typ-
ically rely on random comparisons or random fraction-
ation [8]. The second approach focuses on the index
terms to derive an improved feature representation of
documents. The by far most popular technique in this
category is Salton's Vector Space Model [51, 58, 52] of
which di�erent variants have been proposed with di�er-
ent word weighting schemes [53]. A more recent variant
known as latent semantics indexing [12] performs a di-
mension reduction by singular value decomposition. Re-
lated methods of feature selection have been proposed
for text categorization, e.g., the term strength criterion
[66].

In contrast, we propose a model{based statistical ap-
proach and present a family of �nite mixture models

[59, 35] as a way to deal with the data sparseness prob-
lem. Since mixture or class{based models can also be
combined with other models our goal is orthogonal to
standard interpolation techniques. Mixture models have
the advantage to provide a sound statistical foundation
with the calculus of probability theory as a powerful in-
ference mechanism. Compared to the unconstrained ta-
ble count `model', mixture models o�er a controllable
way to reduce the number of free model parameters. As
we will show, this signi�cantly improves statistical infer-
ence and generalization to new data. The canonical way
of complexity control is to vary the number of compo-
nents in the mixture. Yet, we will introduce a di�erent
technique to avoid over�tting problems which relies on
an annealed generalization of the classical EM algorithm
[13]. As we will argue, annealed EM has some additional
advantages making it an important tool for �tting mix-

1Word n-gram models are examples of such higher order
co-occurrence data.
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ture models.

Moreover, mixture models are a natural framework
for unifying statistical inference and clustering. This is
particularly important, since one is often interested in
discovering structure, typically represented by groups of
similar objects as in pairwise data clustering [23]. The
major advantage of clustering based on COD compared
to similarity-based clustering is the fact that it does not
require an external similarity measure, but exclusively
relies on the objects occurrence statistics. Since the
models are directly applicable to co-occurrence and his-
togram data, the necessity for pairwise comparisons is
avoided altogether.

Probabilistic models for COD have recently been in-
vestigated under the titles of class{based n-gram models
[4], distributional clustering [43], and aggregate Markov
models [54] in natural language processing. All three
approaches are recovered as special cases in our COD
framework and we will clarify the relation to our ap-
proach in the following sections. In particular we dis-
cuss the distributional clustering model which has been
a major stimulus for our research in Section 3.

The rest of the paper is organized as follows: Section
2 introduces a mixture model which corresponds to a
probabilistic grouping of object pairs. Section 3 then fo-
cuses on clustering models in the strict sense, i.e., models
which are based on partitioning either one set of objects
(asymmetric models) or both sets simultaneously (sym-
metric models). Section 4 presents a hierarchical model
which combines clustering and abstraction. We discuss
some improved variants of the standard EM algorithm
in Section 5 and �nally apply the derived algorithms to
problems in information retrieval, natural language pro-
cessing, and image segmentation in Section 6.

2 Separable Mixture Models

2.1 The Basic Model

Following the maximum likelihood principle we �rst
specify a parametric model which generates COD over
X � Y, and then try to identify the parameters which
assign the highest probability to the observed data. The
�rst model proposed is the Separable Mixture Model

(SMM). IntroducingK abstract classes C� the SMM gen-
erates data according to the following scheme:

1. choose an abstract class C� according to a distri-
bution ��

2. select an object xi 2 X from a class-speci�c condi-
tional distribution pij�

3. select an object yj 2 Y from a class-speci�c condi-
tional distribution qjj�

Note that steps 2. and 3. can be carried out indepen-
dently. Hence, xi and yj are conditionally independent
given the class C� and the joint probability distribution
of the SMM is a mixture of separable component distri-

butions which can be parameterized by2

pij�P (xi; yj)=

KX
�=1

��P (xi; yj j�)=

KX
�=1

��pij�qjj�: (1)

The number of independent parameters in the SMM is
(N +M � 1)K � 1. Whenever K � minfN;Mg this is
signi�cantly less than a complete table with NM entries.
The complexity reduction is achieved by restricting the
distribution to linear combinations of K separable com-
ponent distributions.

2.2 Fitting the SMM

To optimally �t the SMM to given data S we have to
maximize the log-likelihood

L =

NX
i=1

MX
j=1

nij log

 
KX
�=1

��pij�qjj�

!
(2)

with respect to the model parameters � = (�; p; q). To
overcome the di�culties in maximizing a log of a sum,
a set of unobserved variables is introduced and the cor-
responding EM algorithm [13, 36] is derived. EM is a
general iterative technique for maximum likelihood esti-
mation, where each iteration is composed of two steps:

� an Expectation (E) step for estimating the unob-
served data or, more generally, averaging the com-
plete data log{likelihood,

� and a Maximization (M) step, which involves max-
imization of the expected log{likelihood computed
during the E{step in each iteration.

The EM algorithm is known to increase the likelihood
in every step and converges to a (local) maximum of L
under mild assumptions, cf. [13, 35, 38, 36].

Denote by Rr� an indicator variable to represent
the unknown class C� from which the observation
(xi(r); yj(r); r) 2 S was generated. A set of indicator
variables is summarized in a Boolean matrix R 2 R,
where

R =

(
R = (Rr�) :

KX
�=1

Rr� = 1

)
(3)

denotes a space of Boolean assignment matrices. R e�ec-
tively partitions the sample set S into K classes. Treat-
ing R as additional unobserved data, the complete data

log-likelihood is given by

Lc =

LX
r=1

KX
�=1

Rr�(log�� + log pi(r)j� + log qj(r)j�) (4)

and the estimation problems for �, p and q decouple for
given R.

The posterior probability of Rr� for a given parameter

estimate �̂(t) (E{step) is computed by exploiting Bayes'
rule and is in general obtained by

hRr�i � P (Rr� = 1j�;S)

/ P (Sj�;Rr� = 1)P (Rr� = 1j�) : (5)

2The joint probability model in (1) was the starting point
for the distributional clustering algorithm in [43], however
the authors have in fact restricted their investigations to the
(asymmetric) clustering model (cf. Section 3).
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Thus for the SMM hRr�i is given in each iteration by

hRr�i
(t+1) =

�̂
(t)
� p̂

(t)

i(r)j� q̂
(t)

j(r)j�PK

�=1 �̂
(t)
� p̂

(t)

i(r)j� q̂
(t)

j(r)j�

: (6)

The M{step is obtained by di�erentiation of (4) using
(6) as an estimate for Rr� and imposing the normaliza-
tion constraints by the method of Lagrange multipliers.
This yields a (normalized) summation over the respec-
tive posterior probabilities

�̂
(t)
� =

1

L

LX
r=1

hRr�i
(t)
; (7)

p̂
(t)

ij� =
1

L�̂
(t)
�

X
r:i(r)=i

hRr�i
(t) (8)

and

q̂
(t)

jj� =
1

L�̂
(t)
�

X
r:j(r)=j

hRr�i
(t)

: (9)

Iterating the E{ and M{step, the parameters converge
to a local maximum of the likelihood. Notice, that it is
unnecessary to store all L �K posteriors, as the E- and
M-step can be e�ciently interleaved.

To distinguish more clearly between the di�erent
models proposed in the sequel, a representation in terms
of directed graphical models (belief networks) is utilized.
In this formalism, random variables as well as parame-
ters are represented as nodes in a directed acyclic graph
(cf. [41, 32, 17] for the general semantics of graphical
models). Nodes of observed quantities are shaded and a
number of i.i.d. observations is represented by a frame
with a number in the corner to indicate the number of
observations (called a plate). A graphical representation
of the SMM is given in Fig. 1.
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Figure 1: Graphical model representation for the sym-
metric parameterization of the Separable Mixture Model
(SMM).

2.3 Asymmetric Formulation of the SMM

Our speci�cation of the data generation procedure and
the joint probability distribution in (1) is symmetric in
X and Y and does not favor an interpretation of the ab-
stract classes C� in terms of clusters of objects in X or

Y. The classes C� correspond to groups of pair occur-

rences which we call aspects. As we will see in compari-
son with the cluster{based approaches in Section 3 this is
di�erent from a `hard' assignment of objects to clusters,
but di�ers also from a probabilistic clustering of objects.
Di�erent observations involving the same xi 2 X (or
yj 2 Y) can be explained by di�erent aspects and each
objects has a particular distribution over aspects for its
occurrences. This can be stressed by reparameterizing
the SMM with the help of Bayes' rule

pi =

NX
i=1

pij���; and p�ji =
pij� ��

pi
: (10)

The corresponding generative model, which is in fact
equivalent to the SMM, is illustrated as a graphical
model in Fig. 2. It generates data according to the fol-
lowing scheme:

1. select an object xi 2 X with probability pi

2. choose an abstract class C� according to an object-
speci�c conditional distribution p�ji

3. select an object yj 2 Y from a class-speci�c condi-
tional distribution qjj�

The joint probability distribution of the SMM can thus
be parameterized by

pij � P (xi; yj) = piqjji; qjji �
X
�

p�jiqjj� : (11)

Hence a speci�c conditional distribution qjji de�ned on
Y is associated with each object xi, which can be under-
stood as a linear combination of the prototypical condi-
tional distributions qjj� weighted with probabilities p�ji
(cf. [43]). Notice, that although p�ji de�nes a proba-
bilistic assignment of objects to classes, these probabili-
ties are not induced by the uncertainty of a hidden class
membership of object xi as is typically the case in mix-
ture models. In the special case of X = Y the SMM
is equivalent to the word clustering model of Saul and
Pereira [54] which has been developed parallel to our
work. Comparing the graphical models in Fig. 1 and
Fig. 2 it is obvious that the reparametrization simply
corresponds to an arc reversal.

2.4 Interpreting the SMM in terms of Cross

Entropy

To achieve a better understanding of the SMM con-
sider the following cross entropy (Kullback{Leibler di-
vergence) D between the empirical conditional distribu-
tion njji = nij=ni of yj given xi and the conditional qjji
implied by the model,

D
�
njjijqjji

�
=

MX
j=1

njji log
njji

qjji
(12)

=

MX
j=1

njji lognjji �
1

ni

MX
j=1

nij log
X
�

p�jiqjj�:

Note, that the �rst entropy term does not depend on
the parameters. Let a(S) =

P
i ni

P
j njji lognjji and3
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Figure 2: Graphical model representation for the Sepa-
rable Mixture Model (SMM) using the asymmetric rep-
resentation.

rewrite the observed data log-likelihood in (2) as

L = �

NX
i=1

ni D
�
njjijqjji

�
+

NX
i=1

ni logpi � a(S) : (13)

Since the estimation of pi = ni can be carried out in-
dependently, the remaining parameters are obtained by
optimizing a sum over cross entropies between condi-
tional distributions weighted with ni, the frequency of
appearance of xi in S, i.e., by minimizing the cost func-
tion

H =

NX
i=1

niD
�
njjijqjji

�
: (14)

Because of the symmetry of the SMM an equivalent de-
composition is obtained by interchanging the role of the
sets X and Y.

2.5 Product-Space Mixture Model

The abstract classes C� of a �tted SMM correspond to as-
pects of observations, i.e., pair co-occurrences, and can-
not be directly interpreted as a probabilistic grouping in
either data space. But often we may want to enforce a
simultaneous interpretation in terms of groups or proba-
bilistic clusters in both sets of objects, because this may
re
ect prior belief or is part of the task. This can be
achieved by imposing additional structure on the set of
labels to enforce a product decomposition of aspects

f1; : : : ;Kg � f1; : : : ;KXg � f1; : : : ;KYg : (15)

Each element � is now uniquely identi�ed with a multi-
index (��; ��). The resulting Product-Space Mixture

Model (PMM) has the joint distribution

pij =

KX
�=1

�� pij�� qjj��: (16)

Here �� = ����� is the probability to generate an obser-
vation from a speci�c pair combination of clusters from
X and Y. The di�erence between the SMM and the

PMM is the reduction of the number of conditional dis-
tributions pij� and qjj� which also reduces the model
complexity. In the SMM we have conditional distribu-
tions for each class C�, while the PMM imposes addi-
tional constraints, pij� = pij�, if �� = �� and qjj� = qjj�,
if �� = �� . This is illustrated by the graphical model in
Fig. 3.
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Figure 3: Graphical representation for the Product
Space Mixture Model (PMM).

The PMM with KX X -classes and KY Y-classes is
thus a constrained SMM with K = KXKY abstract
classes. The number of independent parameters in the
PMM reduces to

(KXKY � 1) +KX (N � 1) +KY (M � 1) : (17)

Whether this is an advantage over the unconstrained
SMM depends on the speci�c data generating process.
The only di�erence in the �tting procedure compared to
the SMM occurs in the M{step by substituting

p̂
(t)

ij� /
X

r:i(r)=i

X
�:��=�

hRr�i
(t)
; (18)

q̂
(t)

jj� /
X

r:j(r)=j

X
�:��=�

hRr�i
(t)

: (19)

The E{step has to be adapted with respect to the mod-
i�ed labeling convention.

3 Clustering Models

The grouping structure inferred by the SMM corre-
sponds to a probabilistic partitioning of the observation
space X �Y. Although the conditional probabilities p�ji
and q�jj can be interpreted as class membership proba-
bilities of objects in X or Y, they more precisely corre-
spond to object{speci�c distributions over aspects. Yet,
depending on the application at hand it might be more
natural to assume a typically unknown, but nevertheless
de�nitive assignment of objects to clusters, in particular
when the main interest lies in extracting grouping struc-

ture in X and/or Y as is often the case in exploratory
data analysis tasks. Models where each object is as-
signed to exactly one cluster are referred to as clustering
models in the strict sense and they should be treated as
models in their own right. As we will demonstrate they
have the further advantage to reduce the model com-
plexity compared to the aspect{based SMM approach.
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3.1 Asymmetric Clustering Model

A modi�cation of the SMM leads over to the Asymmet-

ric Clustering Model (ACM). In the original formulation
of the data generation process for the SMM the assump-
tion was made that each observation (xi; yj) is generated
from a class C� according to the class-speci�c distribu-
tion pij� qjj� or, equivalently, the conditional distribu-
tion qjji was a linear combination of probabilities qjj�
weighted according to the distribution p�ji. Now we re-
strict this choice for each object xi to a single class. This
implies that all yj occuring in observations (xi; yj) in-
volving the same object xi are assumed to be generated
from an identical conditional distribution qjj�. Let us
introduce an indicator variable Ii� for the class member-
ship which allows us to specify a probability distribution
by

P (xi; yjjI; p; q) = pi

KX
�=1

Ii�qjj� : (20)

The ACM can be understood as a SMM with Ii� re-
placing p�ji. The model introduces an asymmetry by
clustering only one set of objects X , while �tting class
conditional distributions for the second set Y. Obvi-
ously, we can interchange the role of X and Y and may
obtain two distinct models.

For a sample set S the log{likelihood is given by

L =

NX
i=1

ni logpi +

NX
i=1

KX
�=1

Ii�

MX
j=1

nij log qjj� : (21)

The maximum likelihood equations are

p̂i = ni=L; (22)

Îi� =

�
1 if � = argmin� D

�
njjij q̂jj�

�
0 else,

(23)

q̂jj� =

PN

i=1 Îi�nijPN

i=1 Îi�ni

=

NX
i=1

Îi�niPN

k=1 Îk�nk

njji : (24)

The class-conditional distributions q̂jj� are linear super-
positions of all empirical distributions of objects xi in
cluster C�. Eq. (24) is thus a simple centroid condi-

tion, the distortion measure being the cross entropy or
Kullback{Leibler divergence. In contrast to (13) where
the maximum likelihood estimate for the SMM mini-
mizes the cross entropy by �tting pij�, the cross entropy
serves as a distortion measure in the ACM. The update
scheme to solve the likelihood equations is structurally
very similar to the K{means algorithm: calculate as-
signments for given centroids according to the nearest
neighbor rule and recalculate the centroid distributions
in alternation.

The ACM is in fact similar to the distributional clus-
tering model proposed in [43] as the minimization of

H =

NX
i=1

KX
�=1

Ii�D
�
njjijqjj�

�
: (25)

In distributional clustering, the KL{divergence as a dis-
tortion measure for distributions has been motivated by

the fact that the centroid equation (24) is satis�ed at
stationary points3. Yet, since after dropping the inde-
pendent pi parameters and a data dependent constant
we arrive at

L =

NX
i=1

ni

KX
�=1

Ii�D
�
njjijqjj�

�
; (26)

showing that the choice of the KL-divergence simply fol-
lows from the likelihood principle. We like to point out
the non{negligible di�erence between the distributional
clustering cost function in (25) and the likelihood in (26),
which weights the object speci�c contributions by their
empirical frequencies ni. This implies that objects with
large sample sets Si have a larger in
uence on the opti-
mization of the data partitioning, since they account for
more observations, as opposed to a constant in
uence in
the distributional clustering model.

3.2 EM algorithm for Probabilistic ACM

Instead of interpreting the cluster memberships Ii� as
model parameters, we may also consider them as unob-
served variables. In fact, this interpretation is consistent
with other common mixture models [35, 59] and might
be preferred in the context of statistical modeling, in
particular if N scales with L. Therefore consider the
following complete data distribution

P (S; Ij�; p; q) = P (SjI; p; q)P (Ij�); (27)

P (Ij�) =

NY
i=1

�
Ii�
� : (28)

Here � speci�es a prior probability for the hidden vari-
ables, P (Ii� = 1j�) = ��.

The introduction of unobservable variables Ii� yields
an EM-scheme and replaces the argmin-evaluation in
(23) with posterior probabilities

hIi�i
(t+1) =

�̂
(t)
�

QM

j=1

�
q̂
(t)

jj�

�nij
PK

�=1 �̂
(t)
�

QM

j=1

�
q̂
(t)

jj�

�nij (29)

=
�̂
(t)
� exp

�
�niD

h
njjijq̂

(t)

jj�

i�
PK

�=1 �̂
(t)
� exp

�
�niD

h
njjijq̂

(t)

jj�

i� : (30)

The M{step is equivalent to (24) with posteriors replac-
ing Boolean variables. Finally, the additional mixing
proportions are estimated in the M{step by

�̂
(t)
� =

1

N

NX
i=1

hIi�i
(t)

: (31)

Notice the crucial di�erence compared to SMM poste-
riors in (6): Since all indicator variables Rr� belonging
to the same xi are identi�ed, the likelihoods for obser-
vations in Si are collected in a product before they are
suitably normalized. To illustrate the di�erence consider
the following example. Let a fraction s of the observed

3This is in fact not a unique property of the KL{
divergence as it is also satis�ed for the Euclidean distance.
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pairs involving xi be best explained by assigning xi to
C� while the remaining fraction 1� s of the data is best
explained by assigning it to C�. Fitting the SMM model
approximately results in p�ji = s and p�ji = 1 � s, ir-
respective of the number of observations, because pos-
teriors hIr�i are additively collected. In the ACM all
contributions �rst enter a huge product. In particular,
for ni ! 1 the posteriors hIi�i approach Boolean val-
ues and automatically result in a hard partitioning of
X . Compared to the original distributional clustering
model as proposed in [43] our maximum likelihood ap-
proach naturally includes additional parameters for the
mixing proportions �.

Notice that in this model, to which we refer as prob-
abilistic ACM, di�erent observations involving the same
object xi are actually not independent, even if condi-
tioned on the parameters (�; p; q). As a consequence,
considering the predictive probability for an additional
observation s = (xi; yj; L + 1) requires to condition on
the given sample set S, more precisely on the subset Si,
which yields

P (sjS; �; p; q)=

KX
�=1

P (sjIi�=1; p; q)P (Ii�=1jSi; �; q)

= pi

KX
�=1

qjj�hIi�i : (32)

Thus we have to keep the posterior probabilities in ad-
dition to the parameters (p; q) in order to de�ne a (pre-
dictive) probability distribution on co-occurrence pairs.
The corresponding graphical representation in Fig. 4
stresses the fact that observations with identical X{
objects are coupled by the hidden variable Ii�

4.

777777
777777
777777
777777
777777
777777

yj(r)

N

ni

qj|α

Iiα

777777
777777
777777
777777
777777
777777

xi

pi ρα

Figure 4: Graphical representation for the Asymmetric
Clustering Model (ACM).

4Notice that ni is not interpreted as a random variable,
but treated as a given quantity.

3.3 Symmetric Clustering Model

We can classify the models discussed so far w.r.t. the
way they model p�ji: (i) as an arbitrary probability dis-

tribution (SMM), (ii) as an unobserved hidden variable
(p�ji = hIi�i, probabilistic ACM), (iii) as a Boolean vari-

able (p�ji = Ii� 2 f0; 1g, hard ACM). On the other
hand, no model imposes restrictions on the conditional
distributions qjj�. This introduces the asymmetry in
ACM, where p�ji and hence pij� is actually restricted,
while qjj� is not. However, it also indicates a way to
derive symmetric clustering models, namely by impos-
ing the same constraints on conditional distributions pij�
and qjj�. Unfortunately, naively modifying the SMM for
both object sets simultaneously does not result in a rea-
sonable model. Introducing indicator variables Ii� and
Jj� to replace p�ji and q�jj yields a joint probability

pij / piqj

KX
�=1

Ii�Jj� �� (33)

which can be normalized to yield a valid probability dis-
tribution, but which is zero for pairs (xi; yj), wheneverP

� Ii�Jj� = 0 and therefore results in zero probabilities
for each co-occurrence of pairs not belonging to the same
cluster C�.

For the PMM, however, the corresponding clustering
model is more interesting. Let us introduce cluster asso-
ciation parameters c�� and de�ne the joint probability
distribution of the symmetric clustering model (SCM) by

pij = piqj

X
�;�

Ii�Jj�c�� ; (34)

where we have to impose the global normalization con-
straint

NX
i=1

MX
j=1

pij =

NX
i=1

MX
j=1

piqj

X
�;�

Ii�Jj�c�� = 1 : (35)

In the sequel, we will add more constraints to break cer-
tain invariances w.r.t. multiplicative constants, but for
now no restrictions besides (35) are enforced.

Introducing a Lagrange multiplier � results in the fol-
lowing augmented log{likelihood

L =
X
i;j

nij

X
�;�

Ii�Jj� (log pi + log qj + log c��)

+�

0
@X

i;j

piqj

X
�;�

Ii�Jj�c�� � 1

1
A : (36)

The corresponding stationary equations for the maxi-
mum likelihood estimators are

p̂i = �
ni

�
P

�;� Ii�c��

P
j qjJj�

; (37)

q̂j = �
mj

�
P

�;� Jj�c��

P
i piIi�

; mj=
P

i nij; (38)

ĉ�� = �

PN

i=1

PM

j=1 nijIi�Jj�

�(
PN

i=1 piIi�)(
PM

j=1 qjJj�)
; (39)
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together with (35) which is obtained from (36) by di�er-
entiation with respect to �. Substituting the right-hand
side of (39) into (35) results in the following equation for
�,

� = �
X
i;j

nij

X
�;�

Ii�Jj� = �L : (40)

Inserting � = �L into (39) gives an explicit expression
for ĉ�� which depends on p and q. Substituting this
expression back into (37,38) yields

p̂i = ni

X
�

Ii�

P
k p̂kIk�P
k nkIk�

(41)

and an equivalent expression for q̂j. Observing that the
fraction on the right-hand side in (41) does not depend
on the speci�c index i, the self{consistency equations can
be written as p̂i = ni

P
� Ii�a� . It is straightforward to

verify that: (i) any choice of constants a� 2 IR+ gives a
valid solution and (ii) each such solution corresponds to
a (local) maximum of L. This is because a simultaneous
re-scaling of all p̂i for which Ii� = 1 is compensated by a
reciprocal change in ĉ�� as is obvious from (34) or (39),
leaving the joint probability una�ected.

We break this scale invariance by imposing the ad-
ditional conditions

P
i piIi� = �

x
� �

P
i niIi�=L andP

j qjJj� = �
y
� �

P
jmjJj�=L on the parameters. This

has the advantage to result in the simple estimators
p̂i = ni=L and q̂j = mj=L, respectively. The proposed
choice decouples the estimation of p and q from all other
parameters. Moreover it supports an interpretation of p̂i
and q̂j in terms of marginal probabilities, while �x� and
�
y
� correspond to occurrence frequencies of objects from

a particular cluster. With the above constraints the �nal
expression for the maximum likelihood estimates for c��
becomes

ĉ�� =
���

�x��
y
�

; where (42)

��� �

NX
i=1

MX
j=1

nij

L
Ii�Jj� : (43)

��� can be interpreted as an estimate of the joint proba-
bility for the cluster pair (�; �). Notice that the auxiliary
parameters are related by marginalization

P
� ��� = �

x
�

and
P

� ��� = �
y
�. The maximum likelihood estimate

ĉ�� is a quotient of the joint frequency of objects from
clusters Cx� and Cy� and the product of the respective
marginal cluster frequencies. If we treat ĉ�� as func-
tions of I, J and insert (42) into (36), this results in
a term which represents the average mutual informa-

tion between the random events xi 2 Cx� and yj 2 Cy�.
Maximizing L w.r.t. I and J thus maximizes the mutual
information which is very satisfying, since it gives the
SCM a precise interpretation in terms of an information
theoretic concept. A similar criterion based on mutual
information has been proposed by Brown et al. [4] in
their class{based n{gram model. More precisely their
model is a special case of the (hard clustering) SCM,
where formally X = Y and Ii� = Ji�.

5

5For the bigram model in [4] this implies that the word

The coupled K{means like equations for either set of
discrete variables are obtained by maximizing the aug-
mented likelihood in (36) from which we deduce

Îi� =

�
1 if � = argmax� hi�
0 else

; with (44)

hi� �
X
j

X
�

Jj�

�
nij log ĉ�� �

nimj

L
ĉ��

�
The expression for hi� further simpli�es, becauseX
j;�

nimj

L
Jj�ĉ��=ni

X
�

�
y
�

���

�x��
y
�

=ni

P
� ���

�x�

=ni (45)

is a constant independent of the cluster index � which
can be dropped in the maximization in (44). It has to
be stressed that the manipulations in (45) have made
use of the fact that the J{variables appearing in (42)
and (45) can be identi�ed; the ĉ{estimates have thus to
be J{consistent6. This can be made more plausible by
verifying that for given J and J{consistent parameters,
the marginalization

P
j
pij = pi holds independently of

the speci�c choice of I. This automatically ensures the
global normalization since

P
i p̂i = 1 which in turn ex-

plains why the global constraint does not a�ect the op-

timal choices of Î according to (44). Similar equations
can be obtained for J ,

Ĵj� =

�
1 if � = argmax�

P
i nij

P
� Ii� log ĉ��

0 else
:

The nature of the simultaneous clustering suggests an al-
ternating minimization procedure where the X{partition
is optimized for a �xed Y{partition and vice versa. Af-
ter each update step for either partition the estimators
ĉ�� have to be updated in order to ensure the validity of

(45), i.e., the update sequence (Î ; ĉ; Ĵ ; ĉ) is guaranteed
to increase the likelihood in every step. Notice that the
cluster association parameters e�ectively decouple the
interactions between assignment variables Ii� , Ik� for
di�erent xi, xk and between assignment variables Jj�,
Jl� for di�erent yj , yl. Although we could in principle
insert the expression in (36) directly into the likelihood
and derive a local maximization algorithm for I and J

(cf. [4]), this would result in much more complicated
stationary conditions than (44). The decoupling e�ect is
even more important for the probabilistic SCM derived
in the next section.

3.4 Probabilistic SCM

As for the ACM, we now investigate the approach pre-
ferred in statistics and treat the discrete I and J as hid-
den variables. The situation is essentially the same as
for the ACM. The complete data distribution for the
probabilistic SCM (PSCM) is given by

P (S; I; J j�x; �y; c) =

2
4Y
i;j

X
�;�

Ii�Jj�c
nij
��

3
5 (46)

classes are implicitly utilized in two di�erent ways: as classes
for predicting and for being predicted. It is not obvious that
this is actually an unquestionable choice.

6Hereby we mean that ĉ�� depends on J by the formula in
(42), where I can be an arbitrary partitioning of the X{space.
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q
mj

j

X
�

Jj��
y
�)

3
5

and the predictive probability for s = (xi; yj; L+1) now
involves joint posteriors,

P (sjS; : : :) = piqj

X
�;�

hIi�Jj�ic�� : (47)

The M{step equations are obtained from (42) by replac-
ing (products of) Boolean variables by their posteriors.
The estimates for the �{parameters are given by

�̂
x(t)
� =

PN

i=1hIi�i
(t)

N
; �̂

y(t)
� =

PM

j=1hJi�i
(t)

M
: (48)

The coupling of I and J makes the exact computa-
tion of posteriors in the E{step intractable. To preserve
tractability of the procedure we propose to apply a fac-
torial approximation (called mean{�eld approximation,
cf. Appendix A), hIi�Jj�i � hIi�ihJj�i, which results in
the following approximations for the marginal posterior
probabilities

hIi�i / �̂
x
� exp

2
4�X

j

nij

X
�

hJj�i log ĉ��

3
5 (49)

and a similar equation for hJj�i. The mean{�eld equa-
tions can be more intuitively understood as a soft-max
versions of the hard clustering equations with additional
priors �x; �y. Alternatively, one may also apply Markov
chain Monte Carlo (MCMC) methods to approximate
the required correlations. Yet, the mean{�eld approxi-
mation has the advantage to be more e�cient due to its
deterministic nature. Notice that the mean{�eld condi-
tions (49) form a highly non-linear, coupled system of
equations. A solution is found by a �xed{point iteration
which alternates the update of posterior marginals with
an update of the continuous parameters (hIi, (ĉ; �̂x), hJi,
(ĉ; �̂y) sequence). This optimizes a common objective
function in every step and always maintains a valid prob-
ability distribution.7

3.5 Overview

Altogether we have derived six di�erent model types for
COD8 which are summarized in the following systematic
scheme in Table 1. As can be seen the models span a
large range of model complexity by imposing constraints
on the class conditional distributions pij� and qjj�.

4 Hierarchical Clustering Model

4.1 Model Speci�cation

In this section we present a novel hierarchical generative
model, called HACM. Assume therefore a tree topology

7The EM approach for SCM has problems when started
from a random initialization, because all posteriors typically
approach uniform distributions. A remedy which we applied
is to utilize a solution of the ACM to initialize one arbitrarily
selected set of hidden variables.

8We ignore the variants obtained from asymmetric models
by reversing the role of X and Y for simplicity.

Model pij� qjj�

� = (�; �) � = (�; �)

SMM unconstr. unconstr.

PMM pij� qij�

(hard) ACM Ii�pi
��

unconstr.

(probabilistic) ACM
hIi�ipi
��

unconstr.

(hard) SCM Ii�pi
�x
�

Ji�qj

�
y

�

(probabilistic) SCM
hIi� ipi
�x
�

hJi�iqj
�
y

�

Table 1: Systematic overview of presented COD models.

T on the clusters to be given, e.g., a complete binary
tree. Clusters C� are identi�ed with the terminal nodes
of T . Conditional probabilities qjj� are not only attached
to the leaves, but also to all inner nodes of the tree. The
HACM involves two stages. In the �rst step, which is
similar to the ACM case, each object xi is assigned to
one component or cluster C� represented by an (unob-
served) variable Ii�. Now, instead of generating all ni
observations from the conditional distribution qjj�, a sec-
ond probabilistic sampling step is involved by selecting a
resolution or abstraction level. Hence, the �rst step is a
selection from a horizontal mixture of possible paths for
each object xi, while the second step is a probabilistic se-
lection of a component from the vertical mixture of nodes
on the selected path for each observation. To model the
vertical selection we introduce a second set of hidden
variables Vr� which encode the resolution level A� for
the r-th observation. Notice the di�erent nature of both
sets of variables: the I variables represent a partitioning
in the X space similar to the ACM, while V partitions
the co-occurrence space X � Y like in the SMM. Obvi-
ously, the hidden variables are not independent and have
to ful�ll the following set of constraints induced by T :X

�

X
A�"C�

Ii(r)�Vr� = 1; 8r; (50)

where A� " C� denotes the nodes A� `above' C�, i.e.,
nodes on the path to C�. The constraints ensure that
once xi is assigned to a cluster C� all observation in Si
are restricted to be generated from one of the abstraction
nodes A� on the path above C�. A pictorial represen-
tation can be found in Fig. 5: for an object xi assigned
to C� the choices for abstraction levels of observations
(xi; yj; r) are restricted to the `active' (highlighted) ver-
tical path. The `tension' in this model is imposed by the
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Classes of X objects

Abstraction levels
of Y objects

X partitioning

Y abstraction

(a)
(b)

I    = 1iα
xi

Cα

V    = 1
rν

(x ,y ,r)i j

Aν

Figure 5: Scheme for data generation with the HACM.

constraints on Ii(r)�Vr� as opposed to the independent
choices Rr� in the SMM.

To complete the speci�cation of the HACM one has
to specify prior probabilities for Vr� . The most general
choice is to condition the priors on the terminal node
selected by the I variables and on xi itself, i.e., to intro-
duce parameters ��j�;i. This assumes that each object
has a speci�c distribution over abstraction levels. For
simplicity, the constraints in (50) are incorporated in
the prior by setting ��j�;i = 0 whenever A� 6" C�. With
the above de�nitions the complete data log{likelihood of
the HACM is given by

Lc =
X
i;j

nij

X
�

Ii�

X
Si

X
�

Vr� log ��j�;i qjj�

+
X
i

ni logpi +
X
i

X
�

Ii� log �� : (51)

The corresponding representation in terms of a graphical
model is shown in Fig. 6.

We may think of the HACM as a mixture model with
a horizontal mixture of clusters and a vertical mixture
of abstraction levels. Each horizontal component is a
mixture of vertical components on the path to the root,
vertical components being shared by di�erent horizontal
components according to the tree topology. The HACM
is more general than the ACM in that it allows to use a
di�erent abstraction level for each observation. The class
conditional probability qjj� is now modeled by a vertical
mixture o�ering additional degrees of freedom. In fact
the ACM is retrieved as a special case by setting ��j�;i =
���. On the other hand, the HACM is more constrained
than the SMM since the mixing of component densities
qjj� is restricted to nodes on a single path through the
tree. This restriction precisely expresses why we obtain a
hierarchical clustering organization of objects in X and,
simultaneously, an abstractive organization of objects in
Y. The dual organization is in particular interesting for
information retrieval where the HACM can be used to
cluster documents (� X ) in a hierarchical fashion and
simultaneously assign abstraction levels to the di�erent
keywords (� Y).

4.2 EM Algorithm for the HACM

Skipping the derivation of the maximumlikelihood equa-
tions for the hard clustering case of HACM, we directly
continue with the probabilistic EM version.

In the E{step we need to calculate posterior probabil-
ities hIi(r)�Vr�i. Since the values of the clustering vari-
ables Ii� restrict the admissible values of Vr� , we may
compute the joint posterior probabilities from the chain
rule

P (Ii(r)�Vr�= 1jS; �) =P (Vr�= 1jSi(r); �; Ii(r)� = 1)

P (Ii(r)�= 1jSi(r); �); (52)

where � = (p; q; �; � ) summarizes all continuous param-
eters. The conditional posterior probabilities for Vr� are
given by

hVr�j�i
(t+1) =

�̂
(t)

�j�;i(r)q̂
(t)

j(r)j�P
� �̂

(t)

�j�;i(r)q̂
(t)

j(r)j�

: (53)

The marginal posteriors can by de�nition be computed
from

hIi�i =
X
fV g

P (Ii� = 1; V jS; �) (54)

which yields

hIi�i
(t+1) / �̂

(t)
�

Y
Si

X
�

�̂
(t)

�j�;i q̂
(t)

j(r)�
; (55)

completing the E{step.
In the M{step all parameters are updated according

to the following set of equations

�̂
(t)
� =

1

N

X
i

hIi�i
(t) (56)

q̂
(t)
j� /

X
r:j(r)=j

X
�

hVr�j�i
(t)hIi�i

(t) (57)

�̂
(t)

�j�;i =
1

jSij

X
Si

hVr�j�i
(t) (58)

Using the HACM in large{scale applications requires
a closer investigation of the computational complexity
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Figure 6: Graphical representation for the Hierarchical
Asymmetric Clustering Model (HACM).

of the EM model �tting procedure. The major com-
putational burden of the algorithm is the re{calculation
of posterior probabilities hVr�j�i in the E{step. To ac-
celerate the EM algorithm we exploit the fact that the
hierarchical and abstractive organization does not criti-
cally depend on the parameters ��j�;i. By this we mean,

that even setting ��j�;i = const: (for all A� " C�) will
result in a reasonable model. In fact, to learn xi{speci�c
distribution of the vertical mixtures is more of a �ne tun-
ing which may improve the model performance once the
essential structure has been identi�ed. An intermediate
choice which worked well in our experiments is to set
��j�;i = ��j�, i.e., to introduce priors which are shared
by all objects xi belonging to the same cluster C�. The
simpli�ed E{step has the advantage that hVr�j�i does not
depend on xi(r). Moreover it reduces the model complex-
ity and may prevent over�tting. In the simpli�ed model,
instead of computing posteriors for all L observations, it
su�ces to compute posterior probabilities for all M Y{
objects. This can result in a signi�cant acceleration, for
example, in natural language modeling where M would
be the size of the vocabulary as compared to the size R
of the corpus of word occurrences which typically di�er
by several orders of magnitude. For ��j� = const: an
additional speed{up results from a simpli�ed propaga-
tion of posteriors in the tree. In our simulation we have
thus pursued a three{stage strategy, where the degrees
of freedom are incrementally increased.

Like for the ACM it is straightforward to check that
the predictive probabilities for s = (xi; yj; L + 1) are
given by

P (sjS; �) = pi

X
�

p�ji qjj�; p�ji �
X
�

hIi�i��j�;i : (59)

4.3 Hierarchies and Abstraction

With other hierarchical mixture models proposed for
supervised [3, 29] and unsupervised learning [37] the
HACM shares the organization of clusters in a tree struc-
ture. It extracts hierarchical relations between clusters,
i.e., it breaks the permutation{symmetry of the cluster
labeling. Even more important, however, it is capable
to perform statistical abstraction. Observations which
are common to all clusters in the subtree rooted at an

inner node are preferably captured at the level of general-
ity represented by that node. Observations being highly
speci�c are `explained' on the terminal level. Therefore
inner nodes do not represent a coarser view on the data
which could be obtained, e.g., by a weighted combina-
tion of the distributions at successor nodes and as might
be expected for a hierarchical model.9 The vertical mix-
tures perform a specialization in terms of the level of gen-
erality most adequate for each of the observations. Thus
the HACM incorporates a novel notion of hierarchical
modeling, which di�ers frommultiresolution approaches,
but also from other hierarchical concepts of unsupervised
learning (e.g. [11]). It o�ers several new possibilities in
data analysis and information retrieval tasks like extract-
ing resolution{dependent meaningful keywords for sub-
collection of documents and gives a satisfying solution
to the problem of cluster summarization (cf. [8]) since
it explicitly �nds the most characteristic terms for each
(super-)cluster of documents.

There are several additional problems which have to
be solved to arrive at a complete algorithm for the
HACM. The most important concerns the speci�cation
of a procedure to obtain the tree{topology T . Before
explaining our heuristic we have to introduce the impor-
tant concept of annealing.

5 Improved EM Variants

5.1 Annealed EM

So far we have mainly focused on the modeling prob-
lem of de�ning mixture models for COD. The standard
model �tting procedure has been the EM algorithm and
its hard clustering variants. We now discuss two im-
portant problems which naturally occur in this context.
The �rst problem is to avoid unfavorable local maxima
of the log{likelihood. The second, even more important
problem is to avoid over�tting, i.e., maximize the per-
formance on unseen future data. The framework which
allows us to improve the presented EM procedures in
both aspects is known as deterministic annealing.

Deterministic annealing has been applied to many
clustering problems, including vectorial clustering [49,
50, 5], pairwise clustering [23], and in the context of
COD for distributional clustering [43]. The key idea is
to introduce a temperature parameter T and to replace
the minimization of a combinatorial objective function
by a substitute known as the free energy. Details on
this topic are given in Appendix A. Here, we present an-
nealing methods without reference to statistical physics.
Consider therefore the general case of maximum likeli-
hood estimation by the EM algorithm. The E{step by
de�nition computes a posterior average of the complete
data log{likelihood which is maximized in the M{step.
The annealed E{step at temperature T performs this av-
erage w.r.t. a distribution which is obtained by generaliz-
ing Bayes' formula such that the likelihood contribution
is taken to the power of 1=T . For T > 1 this amounts

9In fact, it is also important to develop hierarchical gen-
eralizations of the kind. However, we focus on the HACM
which is more speci�c to COD.
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to increasing the e�ect of the prior which in turn will re-
sult in a larger entropy of the (annealed) posteriors. For
example, in the case of the ACM the annealed E{step
generalizing (21) is given by10

hIi�i
(t) =

�̂
(t)
� exp

�
�ni

T
D

h
njjijq̂

(t)

jj�

i�
PK

�=1 �̂
(t)
� exp

�
�ni

T
D

h
njjijq̂

(t)

jj�

i� : (60)

For (hard) clustering applications deterministic anneal-
ing is utilized in its usual T ! 0 limit. Although there
is no guarantee that deterministic annealing in general
�nds the global minimum, many independent empirical
studies indicate that the typical solutions obtained are
often signi�cantly better than the corresponding `unan-
nealed' optimization. This is due to the fact that an-
nealing is a homotopy method, where the (expected) like-
lihood as a cost function is smoothed for large T and is
recovered in the limit T ! 1.

In addition, for �xed T > 1 the annealed E{step per-
forms a regularization based on entropy, because the pos-
terior probabilities minimize the generalized free energy
at T = 1 which balances expected costs and (relative)
entropy [38] (cf. Appendix A). This is the reason why
annealed EM not only reduces the sensitivity to local
minima but also controls the e�ective model complexity.
It thereby has the potential to improve the generaliza-
tion for otherwise over�tting models. The advantages of
deterministic annealing are investigated experimentally
in Section 6.

In addition, the annealed EM algorithm o�ers a way
to generate tree topologies. As is known from adaptive
vector quantization [49], starting at a high value of T
and successively lowering T leads through a sequence of
phase transitions. At each phase transition the e�ective
number of distinguishable clusters grows until somemax-
imal number is reached or the annealing is stopped. This
suggests a heuristic procedure where we start with a sin-
gle cluster and recursively split clusters. In the course of
the annealing one keeps track of the splits and uses the
`phase diagram' as a tree topology T . Note that merely
the tree topology is successively grown, while the data
partition obtained at a speci�c temperature is regrouped
and may drastically change during the annealing process.

To summarize, annealed EM solves three problems at
once:

1. It avoids unfavorable local minima by applying a
temperature based continuation method, as the
modi�ed likelihood becomes convex at high tem-
perature,

10Eq. (60) di�ers from the original formula by Pereira et
al. [43] in that it scales the temperature with the frequency ni

and includes the mixing proportions. As pointed out before
this is naturally obtained in the ML framework, while in the
distributional clustering cost function (25) the weights ni are
not considered. Canceling these weights may be a reasonable
approach to limit the e�ect of frequently observed `objects' xi
on the organization of clusters. From a statistical viewpoint,
however, the latter is implausible, because more observations
should automatically sharpen the posterior distributions at a
given temperature level T .

2. it avoids over�tting by discounting the likelihood
contribution in the E{step

3. it o�ers a physically motivated heuristic to produce
a meaningful tree topology (for the HACM).

In all experiments and for all statistical models we have
therefore utilized the annealed variant of EM.

5.2 Predictive EM

Another modi�cation of the E{step to improve gener-
alization is worth considering. For notational simplic-
ity focus on the E{step in the SMM as given by (6). If
the parameters are eliminated by substituting them with
their current M{step estimators in terms of posteriors as
given by (7-9), we arrive at

hRr�i
(t+1)/

�P
i(u)=ihRu�i

(t)
��P

j(u)=jhRu�i
(t)
�

L
P

uhRu�i(t)
(61)

where i = i(r) and j = j(r). Eq. (61) reveals that in
estimating hRr�i in the E{step its old estimator actu-
ally appear on the right hand side for u = r. This
has the e�ect to systematically overestimate high pos-
terior probabilities while small posteriors are underes-
timated. This positive feedback on the posteriors may
lead to substantial over�tting phenomena. To illustrate
this problem consider the extreme case, where ni = 1,
e.g., (xi; yl; r) 2 S is the only observation with xi. Then
the stationary condition for the E{step is given by

hRr�i =
hRr�iqjj�P
�0hRr�0iqjj�0

(62)

and hence qjj� =
P

�0hRr�0iqjj�0 whenever hRi�i > 0

which is only ful�lled if hRr�i = 1 (being a stable solu-
tion for � = argmax�0 qjj�0). For sparse data the diago-
nal contribution can thus be dominant and the positive
feedback bears the risk of over�tting.

In order to overcome these problems we propose a
variant of EM which we refer to as predictive EM. The
only modi�cation is to exclude the r{th observation in
recalculating posteriors hRr�i. The class membership of
the r-th observation is predicted based on the remain-
ing samples.11 For the SMM this implies that diagonal
contributions are excluded in (61). It is obvious that the
proposed correction does only have a minor in
uence on
the computational complexity of the �tting procedure.
Despite the heuristic 
avor caused by modifying an al-
gorithmic step, the predictive EM can be motivated from
strict optimization principles. Further details and con-
vergence considerations are given in Appendix B.

In conclusion we would like to stress the fact, that
although the positive feedback occurs in other EM al-
gorithms, it is most severe for COD models, because of
the inherent sparseness problem. Furthermore, other er-
ror measures like the squared error between a data vector
and a cluster centroid are far less sensitive to this type of
problems then is the cross entropy involving logarithms
of small probabilities.

11This may result in unde�ned posterior probabilities due
to zeros, as in the above example. In this case we assume the
posterior to be uniform.
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5.3 Accelerated EM

EM algorithms have important advantages over
gradient{based methods, however for many problems the
convergence speed of EM may restrict its applicability
to large data sets. A simple way to accelerate EM al-
gorithms is by overrelaxation in the M{step. This has
been discussed early in the context of mixture models
[44, 45] and was `rediscovered' more recently under the
title of EM (�) in [1]. We found this method useful in
accelerating the �tting procedure for all discussed mod-
els. Essentially the estimator for a generic parameter �
in the M{step is modi�ed by

�̂
(t+1) = (1� �)�̂(t) + ��

(t+1)
; (63)

where �
(t+1)

is the M{step estimate, i.e., � = 1 is the
usual M-step. Choosing 1 < � < 2 still guarantees con-
vergence, and typically � � 1:8 has been found to be
a good choice to speed up convergence. In case that
a constraint is violated after performing an overrelaxed
M{step, the parameter set is projected back on the ad-
missible parameter space. For an overview on more elab-
orated acceleration methods for EM we refer to [36].

5.4 Multiscale Optimization

Multiscale optimization [21, 46] is an approach for ac-
celerating clustering algorithms whenever a topologi-
cal structure exists on the object space(s). In image
segmentation, for example, it is a natural assumption
that adjacent image sites belong with high probabil-
ity to the same cluster or image segment. This fact
can be exploited to signi�cantly accelerate the estima-
tion process by maximizing over a suitable nested se-
quence of variable subspaces in a coarse{to{�ne manner.
This is achieved by temporarily tying adjacent sites in
a joint assignment variable. For notational convenience
we again restrict the presentation to the ACM, while ex-
tensions to the SCM and both probabilistic variants are
straightforward.12

More formally a coarsening hierarchy for X is given by
a nested sequence of equivalence relations M(l) over X ,
where M(l) � M(l+1) and M(0) = f(xi; xi) : xi 2 Xg.
In the context of image analysis these equivalence rela-
tions typically correspond to multi{resolution pixel grids
obtained by subsampling. The log{likelihood in (21) is
minimized at coarsening level l by imposing constraints
of the form Ii� = Ij� whenever (xi; xj) 2 M

(l). For all
models under consideration this e�ectively amounts to
reducing the number of indicator functions to one set of
variables for each equivalence class in M(l), while pre-
serving the functional form of the likelihood, thus en-
abling highly accelerated optimization at coarser levels.
Once the maximization procedure at a resolution level l
is converged, the optimization proceeds at the next level
l � 1 by prolongating the found solution in M(l) to the
subset de�ned byM(l�1), thus initializing the optimiza-
tion at level l � 1 with the solution at level l. For the
probabilistic version multiscale optimization amounts to

12Multiscale optimization in its current form is not appli-
cable to the SMM/PMM.

SMM ACM HACM SCM
K � P � P � P � P

CRAN
1 - 685 - - - - - -
8 0.88 482 0.09 527 0.18 511 0.67 615
16 0.85 431 0.07 482 0.14 471 0.60 543
32 0.83 386 0.07 452 0.12 438 0.53 506
64 0.79 360 0.06 527 0.11 422 0.48 477
128 0.78 353 0.04 663 0.10 410 0.45 462

PENN
1 - 639 - - - - - -
8 0.73 312 0.08 352 0.13 322 0.55 394
16 0.72 255 0.07 302 0.10 268 0.51 335
32 0.71 205 0.07 254 0.08 226 0.46 286
64 0.69 182 0.07 223 0.07 204 0.44 272
128 0.68 166 0.06 231 0.06 179 0.40 241

Table 2: Perplexity results for di�erent models (SMM,
ACM, HACM, SCM) on two data sets (CRAN: predict-
ing words conditioned on documents, PENN: predicting
nouns conditioned on adjectives) based on ten-fold cross
validation (KX= K

Y= K for SCM).

modifying the E{step of the EM algorithmby computing
posteriors for the reduced sets of indicator functions.

We like to emphasize that in contrast to most mul-
tiresolution optimization schemes, multiscale optimiza-
tion has the advantage to maximize the original log{
likelihood at all resolution levels. It is only the set of
hidden variables which is e�ectively reduced by impos-
ing the constraints on the set of hidden variables M(l).
We applied multiscale optimization in all image analysis
experiments resulting in typical accelerations by factors
10{100 compared to single{level optimization.

6 Results

6.1 Information Retrieval

Information retrieval in large databases is one of the key
topics in data mining. The problem is most severe in
cases where the query cannot be formulated precisely,
e.g., in natural language interfaces for documents or in
image databases. Typically, one would like to obtain
those entries which best match a given query according
to some similarity measure. Yet, it is often di�cult to
reliably estimate similarities, because the query may not
contain enough information, e.g., not all possibly rele-
vant keywords might occur in a query for documents.
Therefore, one often applies the cluster hypothesis [62]:
if an entry is relevant to a query, similar entries may also
be relevant to the query although they may not possess
a high similarity to the query itself due to the small
number of keywords. Clustering thus provides a way of
pre-structuring a database for the purpose of improved
information retrieval, cf. [63] for an overview. Both types
of clustering approaches, for the set of documents as well
as for the keywords, have been proposed in the litera-
ture. The most frequently used methods in this context
are linkage algorithms (single linkage, complete linkage,
Wards method, cf. [26]), or hybrid combinations of ag-
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Figure 7: (a) Generalization performance and (b) training likelihood for the annealed EM at di�erent temperatures
on the Cran�eld collection.
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Figure 8: (a) Training likelihood and (b) generalization performance for the (annealed) predictive EM variant at
di�erent temperatures on the Cran�eld collection.

glomerative and centroid{based methods [8] which have
no probabilistic interpretation and have a number of
other disadvantages. In contrast, COD mixture models
provide a sound statistical basis and overcome the fun-
damental sparseness problem of proximity{based clus-
tering. In particular the hierarchical clustering model
(HACM) has many additional features which make it a
suitable candidate for interactive or coarse-to-�ne infor-
mation retrieval.

We have performed experiments for information re-
trieval on di�erent collections of abstracts. The index
terms for each dataset have been automatically extracted
from all documents with the help of a standard word
stemmer. Following [62], a list of stop words has been
utilized to exclude frequently used words. Words with
few overall occurrences have also been eliminated. The
documents are identi�ed with the set of objects X , while
index terms correspond to Y.

In the �rst series of experiments we have investi-
gated how well the di�erent models perform in pre-
dicting the occurrences of certain words in the con-

text of a particular document. Therefore, the set of
all word occurrences has been divided into a training
and a test set. From a statistical point of view the
canonical goodness-of-�t measure is the average log{
likelihood on the test set. Yet, in the context of nat-
ural language processing it is more customary to utilize
the perplexity P which is related to the average test
set log{likelihood l by P = exp(�l). Since we have
used the annealed EM algorithm, a validation set was
utilized to determine the optimal choice of the compu-
tational temperature. Comparative results for all dis-
cussed models13 on the standard test collection Cran-
�eld (CRAN, N=1400,M=1664,L=111803) are summa-
rized in Table 2. For all experiments we have performed
a ten-fold cross validation. The main conclusions are:

� The lowest perplexity is obtained with the SMM.
The HACM performs better than the more con-
strained ACM and SCM. Hence, in terms of per-
plexity the linear mixture models should be pre-

13The performance of the PMM is comparable to the SMM
and hence not displayed.
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Figure 9: Upper part of a cluster hierarchy (6 levels) for the CLUSTER dataset generated by annealed EM for
HACM. Each node is described by the index words yj with the highest probability qjj�.

ferred over the clustering models.

� The optimal temperature for the SMM is consis-
tently below T = 1 which is the standard EM algo-
rithm. For the clustering models the optimal gener-
alization performance even requires a much higher
temperature as expected.

� Temperature{based complexity control clearly does
much better than restricting the numberK of com-
ponents. Even the SMM with K = 8 components
su�ers from over�tting at T = 1.

To stress the advantages of the proposed EM variants,
we have investigated the e�ect of a temperature{based
regularization in more detail. Fig. 7 shows log{likelihood
curves for typical runs of the annealed EM algorithm at
di�erent temperatures.14 The over�tting phenomenon is
clearly visible, e.g., for the SMM at T = 1, where the
test{set performance degrades after 30 iterations. No-
tice, that annealing performs much better than early

stopping. A comparison of the predictive EM vari-
ant with the standard EM for the SMM is depicted in
Fig. 8. This demonstrates that even the (presumably)

14These simulations have been performed on COD from
the CRAN collection. Qualitatively similar results have been
obtained for all other data sets.

slight modi�cation to avoid positive feedback improves
the test{set performance. The overrelaxed EM variant
has also proven to be a valuable tool in our simulations
with a typical acceleration by a factor 2� 3.

To facilitate the assessment of the extracted structure

we have investigated a dataset of N = 1584 documents
containing abstracts of papers with clustering as a ti-
tle word (CLUSTER). This data is presumably more
amenable to an interpretation by the reader than are
the standard text collections. The top{levels of a cluster
hierarchy generated by HACM are visualized in Fig. 9.

To demonstrate the ability of the HACM to identify
abstraction levels in the hierarchy, we have visualized
the distribution of the responsibility for observations in-
volving the same index word yj for some particularly
interesting examples in Fig. 10. The �rst tree for the
word `cluster' shows that, as expected, the occurrences
of `cluster' in documents are explained to be a common
feature of all documents, hence most of the occurrences
are assigned to the root. The word `decision' is found
on a level 3 node, indicating that it is a typical word for
all algorithmically oriented documents assigned to nodes
in the subtree, but e.g. not for the left branch of papers
from physics and astronomy. The index term `robust' oc-
curs in two di�erent meanings: �rst, it has a highly spe-
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Figure 10: Exemplary relative word distributions over nodes for the CLUSTER dataset for the keywords 'cluster',
'decision', 'glass', 'robust', 'segment', and 'channel'.

ci�c meaning in the context of stability analysis (`plane',
`perturb', `eigenvalue', `root', etc.) and a rather broad
meaning in the sense of robust methods and algorithms.
The word `segment' occurs mainly in documents about
computer vision and language processing, but it is used
to a signi�cant larger extend in the �rst �eld. `glass' is
a speci�c term in solid state physics, it thus is found on
the lowest level of the hierarchy. `channel' is again am-
bivalent, it is used in the context of physics as well as in
communication theory. The bimodal distribution clearly
captures this fact.

The same experiments have been carried out for a
dataset of 1278 documents with abstracts from the jour-
nals Neural Computation and Neural Networks (NN).
The solution of a HACM with K = 32 clusters is vi-
sualized in Fig. 11, each node is again described by the
index words with the highest probability.

These examples are only spotlights, but they demon-
strate that the hierarchical organization obtained by the
HACM is able to extract interesting structure from co-
occurrence data. A detailed investigation of its full po-
tential in the context of information retrieval is beyond
the scope of this paper and will be pursued in future
work.

6.2 Computational Linguistics

In computational linguistics, the statistical analysis of
word co-occurrences in lexical structures like adjec-
tive/noun or verb/direct object has recently received a

considerable degree of attention [22, 43, 9, 10]. Potential
applications of these methods are in word{sense disam-
biguation, a problem which occurs in di�erent linguis-
tic tasks ranging from parsing and tagging to machine
translation.

The data we have utilized to test the di�erent mod-
els consists of adjective{noun pairs extracted from a
tagged version of the Penn Treebank corpus (N = 6931,
M = 4995, L = 55214) and the LOB corpus (N = 5548,
M = 6275, L = 36723)15. Performance results on the
Penn dataset are reported in the second half of Table 2.
The results are qualitatively very similar to the ones ob-
tained on the CRAN document collection, although this
application is quite di�erent from the one in information
retrieval.

A result for a simultaneous hard clustering of the LOB
data with the SCM is reported in Fig. 12. The visual-
ization of the ��� matrix reveals that many groups in
either space are preferably combined with mainly one
group in the complementary space. For example the ad-
jective group `holy', `divine', `human' has its occurrences
almost exclusively with nouns from the cluster `life', `na-
ture', `being'. Some groups are very much indi�erent
with respect to the groups in the corresponding set, e.g.,
the adjective group headed by `small', `big', `suitable'. `

15Singular and plural forms have been identi�ed.
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Figure 11: Upper part of a cluster hierarchy (6 levels) for the NN dataset generated by annealed EM for HACM.
Each node is described by the index words yj with the highest probability qjj�.

6.3 Unsupervised Texture Segmentation

The unsupervised segmentation of textured images is one
of the most challenging and still only partially solved
problems in low level computer vision. Numerous ap-
proaches to texture segmentation have been proposed
over the past decades, most of which obey a two{stage
scheme:

1. A modeling stage: characteristic features are ex-
tracted from the textured input image, which range
from spatial frequencies [25, 24], MRF{models
[33, 34], co-occurrence matrices [16] to fractal in-
dices [6].

2. In the clustering stage features are grouped into
homogeneous segments, where homogeneity of fea-
tures has to be formalized by a mathematical no-
tion of similarity.

Most widely, features are interpreted as vectors in a Eu-
clidean space [25, 33, 34, 65, 40, 6, 31] and a segmenta-
tion is obtained by minimizing the K{means criterion,
which sums over the square distances between feature
vectors and their assigned, group{speci�c prototype fea-

ture vectors. K{means clustering can be understood as
a statistical mixture model with isotropic Gaussian class
distributions.

Occasionally, the grouping process has been based on
pairwise similarity measurements between image sites,
where similarity is measured by a non{parametric sta-
tistical test applied to the feature distribution of a
surrounding neighborhood [16, 39, 24]. Agglomerative
techniques [39] and, more rigorously, optimization ap-
proaches [24, 57] have been developed and applied for
the grouping of similarity data in the texture segmenta-
tion context. Pairwise similarity clustering thus provides
an indirect way to group (discrete) feature distributions
without reducing information in a distribution to their
mean.

COD mixture models, especially the ACM model, for-
malize the grouping of feature distribution in a more di-
rect manner. In contrast to pairwise similarity cluster-
ing, they o�er a sound generative model for texture class
description which can be utilized in subsequent process-
ing stages like edge localization [56]. Furthermore, there
is no need to compute a large matrix of pairwise simi-
larity scores between image sites, which greatly reduces
the overall processing time and memory requirements.
Compared to the mixture of Gaussian model, ACM pro-
vides signi�cantly more 
exibility in distribution model-
ing. Especially in the texture segmentation application
class features often exhibit a non{Gaussian, e.g., multi{
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Figure 12: Clustering of LOB using the SCM (KX = K
Y = 32) with a visualization of the ��� matrix and a

characterization of clusters by their most probable words.

modal distribution, which is the main reason for the suc-
cess of pairwise similarity clustering approaches and the
ACM compared to standard K{means.

The ACM is applicable to any feature extraction pro-
cess. As an example we exploit a Gabor �lter image
representation. More speci�cally, in all experiments we
used the modulus of a bank of Gabor �lters with 4 ori-
entations at 3 scales with an octave spacing, resulting in
a 12 dimensional feature vector associated to each image
site. In our experiments the features were discretized
separately for each dimension using 40 bins. Statistical
independence of the feature channels has been assumed
for simplicity.

The feature generation process is then modeled as a
co-occurrence of an image site xi 2 X and a measured
Gabor feature occurrence in one channel yj = f

rj
kj
2 Y,

where rj denotes the Gabor channel and kj denotes the
index of the (discretized) feature. The sample set Si for
site xi consists of all Gabor responses in a window cen-
tered at xi, where the size of the window is chosen pro-
portional to the �lter scale [25]. Hence each image loca-
tion xi is e�ectively characterized by 12 one-dimensional
histograms over Gabor coe�cients.

We have applied the ACM{based texture segmenta-
tion algorithm to a collection of textured images. Fig. 13
shows exemplary results for images which were ran-
domly generated from the Brodatz texture collection of
micro{textures. Fig. 14 shows similar results for mix-
tures of aerial images. A detailed benchmark study of
this novel segmentation algorithm including comparisons
with state-of-the-art techniques will appear in a forth-
coming paper.

7 Conclusion

As the main contribution of this paper a novel class of
statistical models for the analysis of co-occurrence data
has been proposed and evaluated. We have introduced
and discussed several di�erent models, not only by enu-
merating them as alternative approaches, but by distin-
guishing them from a systematic point of view. The
criterion to di�erentiate between these models is the
way hidden variables are introduced, which e�ectively
imposes constraints on the component distributions of
the mixture. Several recently proposed statistical mod-
els have turned out to be special cases. All models have
a sound statistical foundation in that they de�ne a gen-
erative distribution, and all of them can be �tted by an
(approximate) EM algorithm.

Which of these models is the method of choice for a
given problem crucially depends on the modeling goal.
As we have argued, it is often required to detect groups
structure or hierarchical representations. In these situ-
ations one may be willing to sacri�ce some precision in
terms of statistical accuracy (i.e., perplexity reduction)
to extract the structure of interest. Within the proposed
framework models have been derived to extract group
structure on either one or both object spaces and to
model hierarchical dependencies of clusters. We strongly
believe the proposed framework is 
exible enough to be
adapted to many di�erent tasks. The generality of the
developed methods has been stressed by discussing their
bene�ts in the context of a broad range of potential ap-
plications.

In addition to the modeling problem we have also ad-
dressed computational issues, in particular focusing on
improved variants of the basic EM algorithm. Most im-
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Figure 13: (a), (c) Two mixture images containing 5 textures each. (b), (d) The image segmentation obtained based
on the ACM.

portantly, our experiments underline the possible advan-
tages of the annealed version of EM, which is a fruitful
combination of ideas and methods from statistics and
statistical physics.
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Appendix A

First, we establish an important relationship between
the log{likelihood and a quantity known as free en-

ergy in statistical physics [38]. Consider the data log{
likelihood L = logP (Sj�;R) as a function of the discrete
hidden states R over R for �xed parameters, and let
H(R;S; �) = �L de�ne a cost function on the hidden
variable space. Minimizing E [H(R;S; �)] w.r.t. prob-
ability distributions over R subject to a constraint on
the entropy yields a quantity which is known as the free
energy in statistical physics. This is generalized to non{
uniform priors by �xing the relative entropy with respect
to a prior distribution �(R). Introducing a Lagrange pa-
rameter T we arrive at the following objective function
for probability distributions over the discrete space R

FT (P jS; �; �) = EP [H(I)] + TEP

�
log

P (R)

�(R)

�
: (64)

The solution of the minimization problem associated
with the generalized free energy in (64) is the (tilted)
Gibbs distribution

P (RjS; �; �) / �(R) exp

�
�
1

T
H(R;S; �)

�

= �(R) [P (Sj�;R)]
1
T : (65)

For T = 1 this is exactly the posterior probability of
R. The posterior thus minimizes FT at T = 1. The
annealed EM algorithm is the generalization de�ned by
an arbitrary choice of (the temperature) T [60]. In the

E{step for T > 1 this amounts to discounting the likeli-
hood as compared to the prior by taking it to the 1=T{
th power. The M{step performs a minimization over
EP [H(I;S; �)] and therefore FT (P jS; �; �) with respect
to � for �xed P where P is a Gibbs distribution which
does not necessarily correspond to the true posterior.
Notice that convergence of annealed EM is guaranteed
since FT (but not necessarily the likelihood itself) is a
Lyapunov function.

If an exact calculation of the posterior in the E{step
is intractable, typically because of higher order correla-
tions between the hidden variables as in the SCM, the
optimization problem in (64) is restricted to factorial dis-
tributions P (Rjpr�) =

Q
r

Q
� p

Rr�

r� . We make use of the
more suggestive notation hRr�i = pr� to stress that the
variational parameters pr� can actually be thought of as
an approximation of the posterior marginals. This vari-
ational technique is known as mean-�eld approximation
[42, 2] and has been successfully applied for optimization
problems [61, 23], in computer vision [15, 67, 24], and for
inference in graphical models [55].

In general, solutions of the mean{�eld approximation

have to ful�ll the stationary conditions

hRr�i =
1

Z
�r� exp

�
�
1

T
hH(R;S; �; Rr� = 1)i

�
(66)

where expectations are taken with respect to P (Rjpr�)
[24]. Notice that expected costs appear in the exponent,
however the expectation is taken with respect to all hid-
den variables except Rr� itself which is �xed. In order
to obtain a convergent iteration procedure in the general
case one has to replace the `synchronous' E{step update
by a `sequential' update. In the SCM, the coupling be-
tween hidden variables is restricted to pairs of variables
Ii� and Jj� with nij > 0 which allows us to recompute
all posteriors for the I variables for given posteriors J in
one sweep, and vice versa.

Appendix B

In order to preserve strict optimization principles, the
predictive E{step variant has to be implemented slightly
more careful than naively eliminating diagonal contribu-
tions. Inserting the corrected estimates of � for given
R into the complete data log{likelihood function (2) we
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Figure 14: (a), (c) Two mixture images each containing
7 textures extracted from aerial images. (b), (d) The
image segmentation obtained based on the ACM.

obtain the following cost function for R

H(R;S) =

LX
r=1

KX
�=1

Rr�hr� (67)

hr�= log
X
u6=r

i(u)=i(r)

Ru� + log
X
u 6=r

j(u)=j(r)

Ru� � log
X
u6=r

Ru�;

which we refer to as predictive likelihood. Minimizing
the free energy corresponding to (67) in a mean-�eld
approximation yields a direct contribution proportional
to exp[�hr�=T ] but also additional terms which result
from the indirect e�ect Rr� has on hs� for other vari-
ables Rs�. We omit the details of the derivation which
is purely technical. As a consequence one has to utilize
sequential update to guarantee convergence of predictive
EM. For reasons of e�ciency we have ignored the indirect
e�ects in the computation of the posterior probabilities
in our experiments which empirically turned out to work
well.
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