MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I1. Memo No. 1626 Feb 16, 1998

An Algorithm for Group Formation and
Maximal Independent Set in an
Amorphous Computer

Radhika Nagpal, Daniel Coore

{radhi, newts}@martigny.ai.mit.edu

Abstract

Amorphous computing is the study of programming ultra-scale computing environments
of smart sensors and actuators [1]. The individual elements are identical, asynchronous,
randomly placed, unreliable, embedded and communicate with a small local neighborhood
via wireless broadcast. In such environments, where individual processors have limited
resources, aggregating the processors into groups is useful for specialization, increased ro-
bustness, and efficient resource allocation.

This paper presents a new algorithm, called the clubs algorithm, for efficiently aggre-
gating processors into groups in an amorphous computer, in time proportional to the local
density of processors. The clubs algorithm takes advantage of the local broadcast commu-
nication model of the amorphous computer and is efficient in an asynchronous setting. In
addition, the algorithm derives two properties from the physical embedding of the amor-
phous computer: an upper bound on the number of groups formed and a constant upper
bound on the density of groups. The clubs algorithm forms a general mechanism for sym-
metry breaking and can be extended to find the maximal independent set (MIS) and A +1
vertex coloring in O(log N) rounds, where N is the total number of elements and A is the
maximum degree. Simulation results and example applications of clubs are also presented.

Copyright © Massachusetts Institute of Technology, 1996.
This publication can be retrieved by anonymous ftp at URL ftp://publications.ai.mit.edu/ai-publications/

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technol-
ogy. Support for this research was provided in part by DARPA under contract number N00014-96-1-1228 administered
by ONR. Nagpal is also supported by Lucent GRPW Program. Address: Room 432, 545 Technology Square, Cam-
bridge MA 02139.

1 Introduction

Recent developments in micro-fabrication and
nanotechnology will enable the inexpensive man-
ufacturing of massive numbers of tiny comput-
ing elements with integrated sensors and actua-
tors. These computing and sensing agents can
be applied to surfaces or embedded in structures
to create active surfaces, improved materials and
responsive environments [4, 8]. Amorphous com-
puting [1] is the study of such ultra-scale com-
puting environments, where the individual el-
ements are bulk manufactured, randomly and
densely distributed in the material, and commu-
nicate wirelessly within a small local neighbor-
hood. The objective of this research is to de-
termine paradigms for coordinating the behavior
and local interactions of millions of processing el-
ements to achieve global goals. In such environ-
ments, where individual processors have limited
resources, aggregating processors into groups is
a useful paradigm for programming. Groups can
be used for increased robustness, task specializa-
tion and efficient resource allocation [2, 3, 5].

This paper presents a new algorithm, called
clubs, for efficiently organizing an amorphous
computer into groups. The local wireless broad-
cast and the asynchronicity of the amorphous
computing elements make it difficult and inef-
ficient to implement group forming algorithms
that are designed for synchronous point-to-point
networks, such as [3, 9]. The clubs algorithm
forms groups in time proportional to the local
density of processors by taking advantage of the
local broadcast mechanism. The algorithm can
be extended to the asynchronous environment
without the use of complex synchronization and
without sacrificing efficiency.

The algorithm also satisfies many constraints
that arise in other distributed environments such
as not having access to global IDs or knowledge
of the topology. We show how the algorithm
can be extended to deal with processor failure.
In addition, two interesting bounds on the clubs
algorithm can be derived from the physical em-
bedding of the amorphous computer - an upper
bound on the number of groups formed by the
clubs algorithm and a maximum density with
which these groups can be packed, irrespective
of the total number of processors. We present
results from running the clubs algorithm on an
amorphous computer simulation to support the
analysis.

The clubs algorithm also provides a general

mechanism for symmetry breaking in an amor-
phous computer. We show how the clubs algo-
rithm can be extended to solve traditional dis-
tributed computing problems like MIS and A +1
vertex coloring in O(log N) rounds, where N is
the total number of elements and A is the max-
imum degree. Lastly we present some example
applications of using the clubs algorithm to self-
organize non-local and point-to-point communi-
cation infrastructure on top of the local broadcast
mechanism.

Section 2 presents the model for an amorphous
computer. Section 3 presents the clubs algo-
rithm. Section 4 presents the analysis of the al-
gorithm with synchronous, asynchronous and un-
reliable processors. Section 5 presents the prop-
erties derived from the physical embedding. Sec-
tion 6 presents simulation results. In Section 7
we show how the clubs algorithm can be extended
to solve for MIS and A + 1 coloring. Section 8
presents example applications of the clubs algo-
rithm.

2 Computational Model

In this section we describe the model for an amor-
phous computer. This model, and the intuition
behind it, are presented in more detail in [1]. An
amorphous computer consists of myriad process-
ing elements. The processing elements:

e are bulk manufactured and identical. They
run the same program and do not have
knowledge about the global topology.

e have limited computing resources.

e do not have globally unique identifiers but
instead have random number generators for
breaking symmetry.

e are asynchronous. They have similar clocks
speeds but do not operate in lockstep.

e are unreliable. A processor may stop execut-
ing at any time - this failure model is known
as stopping failures [10].

e have no precise interconnect. The processors
are randomly and densely distributed. We
assume that the density is sufficiently high
so that all processors are connected and the
variance in density is low.

e The processors are distributed on a surface
or in a volume. Processors occupy physical

space and cannot be packed arbitrarily close.
In this case we assume that the processors
are placed on a two dimensional plane.

These features make it possible to cheaply
manufacture and program large quantities of
smart elements, and embed them in materials.
What makes an amorphous computer different
from traditional distributed and parallel comput-
ers is the physical embedding of the amorphous
computer and the communications model.

e Processors communicate only with physi-
cally nearby processors. Each processor
communicates locally with all processors
within a circular region of radius r. The lo-
cal neighborhood size is much smaller than
the total number of processors and r is much
smaller than the dimensions of the surface.

e Processors communicate with their local
neighborhood by wireless broadcast. All
processors share the same channel. There-
fore collisions occur when two processors
with overlapping broadcast regions send
messages simultaneously. Collisions result in
both messages being lost. A processor listen-
ing to the channel can detect a collision be-
cause it receives a garbled message. However
the sender can not detect a collision because
it it can not listen and transmit at the same
time. This model is similar to that of multi-
hop broadcast networks such as packet radio
networks [11].

This communication model allows for the sim-
ple assembly of large numbers of nodes. How-
ever, the interference due to overlapping broad-
cast regions, lack of collision detection and asyn-
chronicity of the processors make it difficult and
inefficient to emulate point to point networks.
In environments where processors have limited
individual resources and are unreliable, assem-
bling them into groups is advantageous. However
group forming algorithms such as [3, 9], that are
designed for point-to-point networks, are difficult
to implement without a huge loss in efficiency. In
addition such algorithms often require synchro-
nizers to function correctly in asynchronous envi-
ronments. Typical synchronizing techniques gen-
erate large numbers of messages [10], further ex-
acerbating the problem of message loss. Hence al-
gorithms designed for synchronous point-to-point
distributed computers do not easily extend to the
amorphous computing environment.

In the next sections we present the clubs al-
gorithm, that takes advantage of the broadcast
nature of the communications model and asyn-
chronicity of the processors. The remainder of
this section provides the notation that will be
used in analyzing the performance of amorphous
computing algorithms.

The amorphous computer can be represented
as a graph where the nodes of the graph, V, are
the processors and N = |V|. From the commu-
nication model, the set of edges E = {(i,5)]i,j €
V Adistance(i, j) < r}. Hence an edge has a max-
imum physical distance of r associated with it.
Each processor has a local neighborhood defined
by its communication region. For a processor i,
its local neighborhood is n(i) = {j|(¢,j) € E}
and its degree in the graph is the size of its neigh-
borhood, d(i) = |n(i)]. The average neighbor-
hood size is dqyg, Where dgyg < N. The number
of edges |E| = (dqvgN)/2.

Processors occupy physical space and can not
be placed on top of each other in a two dimen-
sional plane. Therefore, there is a limit, py,qz, On
the number of processors that can fit in a com-
munication region. p... is a physical constant
and is equal to (772 /processor size). Hence pqx
provides a physical upper bound on the degree of
any processor, i.e. d(i) < pmaz, for all processors
i. In addition, the number of neighbors within A
hops of a processor is physically upper bounded
by h?pmae in a two dimensional plane.

3 Clubs Algorithm

The objective is to aggregate processors into
groups. The groups formed should have three
main properties.

1. All processors should belong to some group.

2. All groups should have the same maximum
diameter.

3. A group should have local routing [2], which
means that all processors within the group
should be able to talk to each other using
only processors within that same group.

These features make groups useful for re-
source allocation and self-organizing communi-
cation networks [5]. The clubs algorithm forms
groups, called clubs, with a maximum diameter
of two hops. We will first describe this algo-
rithm assuming that the processors are reliable

integer R (upper bound for random numbers)
boolean leader, follower = false

procedure CLUBS ()
1 t,‘ =R

2 r; ;= random[0,R)

3 while (not follower and not leader)
4 ti=1;-1

5 if (r; > 0)

6 ri=1r; -1

7 if (not_empty(msg_queue))

8 if (first(msg_queue) = “recruit”)
9 follower := true

10 else

11 leader := true

12 broadcast(“recruit”)

13 while (¢; > 0)

14 listen for other leaders

15 ti=1;-1

Figure 2: This figure shows leaders forming clubs.
The dark processors are the current leaders and the
dgircles around them represent their local broadcast
fegion. All processors within this area are recruited
ds members of the leader’s club.

Figure 1: Clubs Algorithm

and synchronous, and that messages are trans-
mitted instantaneously. These assumptions will
be removed in Section 4.

In the clubs algorithm, the processors compete
to start new groups. The processors compete by
choosing random numbers from a fixed integer
range [0, R). Then each processor counts down
from that number silently. If it reaches zero with-
out being interrupted, the processor becomes a
group leader and recruits its local neighborhood
into its group by broadcasting a “recruit” mes-
sage. The processors that get recruited are called
followers.

If a processor hears a recruit message from a
neighbor before reaching zero, it becomes a fol-
lower. Once it has been recruited as a follower,
it can no longer compete to form a new group.
Therefore it stops counting down. However it
keeps listening for additional recruit messages.
Groups are allowed to overlap, and a processor
can be a follower of more than one leader. If a
processor detects a collision (hears a garbled mes-
sage) while counting down, it assumes that more
than one of its neighbors tried to recruit it at the
same time. It becomes a follower and figures out
its leaders later. The algorithm completes when
all processors are members of some group (lead-
ers or followers). Figure 1 presents the code run

on a single processor and figures 2 and 3 show
clubs forming on a simulation of an amorphous
computer.

4 Analysis

4.1 Synchronous and Reliable Pro-

cessors

Theorem 1: The clubs algorithm completes
in R steps and produces valid groups, when the
processors are synchronous.

Proof 1: If [0,R) is the range from which
random numbers are chosen, then the algorithm
completes in time R. This is because each proces-
sor chooses to be a follower or leader by the end
of its countdown and the countdown is chosen to
be smaller than R. The club leader is adjacent
to each processor in its club, which guarantees
local routing as well as the maximum diameter
of two hops. Clubs can be made non-overlapping
by followers arbitrarily choosing one of the clubs
they belong to. This does not violate the re-
quired group properties because the group leader
still guarantees that its members are locally con-
nected in two hops.

If we remove the assumption that messages are
instantaneous and each message takes time m to
transmit (all the messages are the same length in
the algorithm), then each processor should mul-

Figure 3: This shows the final clubs formed. All pro-
cessors are either leaders or members of some club.
Processors with a darker shade of gray belong to more
than one club because they are in the overlapping re-
gion of several leaders’ broadcast range.

tiply its random count, r;, by m. If the proces-
sors are synchronous, they will broadcast only at
intervals of m, thus preventing conflicts due to
partially overlapping messages. The total time
in that case is mR. By treating messages as in-
stantaneous, we are simply normalizing the unit
time to the transmission time, m.

Leadership conflicts: The algorithm intro-
duces a natural spacing between clubs. Leaders
prevent their neighbors from competing to form
new clubs. Therefore leaders will be non-adjacent
and at least r distance apart. However if two
neighboring nodes declare leadership at the same
time, then two clubs are formed such that their
leaders are adjacent. This is a leadership conflict.
The expected number of leadership conflicts is in-
timately related to the choice of the upper bound
R. For many applications of clubs it is desirable
that group leaders belong to only one club (their
own) and that the overlap between clubs be lim-
ited [5]. In addition the spacing between clubs
allows us to derive important properties on the
graph induced by the clubs (Section 5). There-
fore, we would like to keep the number of leader-
ship conflicts low.

Theorem 2: The expected number of leader-
ship conflicts, E(conflicts), is at most (d;;%g)N,
for a synchronous amorphous computer.

Proof 2: We will first analyze the expected
leadership conflicts in a simplified version of
clubs, called sclubs. Then we will show that the
expected number of leadership conflicts in sclubs
is at least as large as that in the original clubs
algorithm.

In sclubs, leaders do not remove their neigh-
bors from competition. Each processor chooses a
random number, counts down and declares lead-
ership when it reaches zero. Hence there are no
followers.

Each processor ¢ chooses a value r; from the
range [0, R). At step k of the algorithm, proces-
sor i declares leadership if r; = k. Processor i
experiences a leadership conflict at step k if it
chose r; = k and some neighbor did as well.

We can determine the expected number of
leadership conflicts at step k.

E(conflicts,,) < %ZP(T,‘ =kA3jen(i),r; =k)
i€V

A leadership conflict involves at least 2 proces-
sors, therefore summing the probabilities of con-
flicts over all processors overcounts the number
of conflicts at least twice. We can calculate the
probability that a node ¢ experiences a leadership
conflict at step k.

P(ri=kA3jen(i),r; =k)

1 1 d()

SRR

jen(d)
Hence,
. 1 d(i)
E(conflicts;,) < 3 Z 5
eV
_ I8

Since the random numbers are chosen in the
first step and the random numbers are less than
R, there are R total steps.

E
E(conflicts) < R- |R_Z|
d
< 2N
- 2R

Lemma: The expected number of leadership
conflicts for sclubs is at least as large as the ex-
pected number of leadership conflicts in the clubs

algorithm.

This is derived from the observation that for a
given set of random values chosen by the nodes,
the graph for sclubs, Vicups, 1S a superset of the
graph for clubs, V..ps at every step of the al-
gorithm. This is easily proven using induction
(proof omitted). As a result, the number of lead-
ership conflicts in Vieups is greater than or equal
to the number of leadership conflicts in Vijyups
at any step k. Since this is true for any initial
choice of random values, the overall E(conflicts)
in sclubs is > E(conflicts) for the original clubs.

Corollary: If we choose R = ad,.g, where o
is a constant and o > 1, then the expected number
of conflicts is at worst a constant fraction of the
total number of nodes, (1/2a)N.

This follows immediately from Theorem 2.
Thus, a can be chosen to make the percentage
of leadership conflicts acceptably (or arbitrarily)
small, at the expense of running time.

Apart from the leader conflicts, message colli-
sions also occur when two leaders with overlap-
ping broadcast ranges (i.e. within two hops of
each other) broadcast at the same time. The
choice of « also affects these collisions. Given
that a processor has at most 4p,,., neighbors
within two hops and using arguments similar to
those for calculating leadership conflicts, the ex-
pected number of collisions is < %N. Hence,
if R = adgayg, then increasing a also decreases
collisions.

Number of Messages: The total number of
messages is one per club.

The only messages sent in this algorithm are
leaders declaring the start of a new group, there-
fore the total number of messages is equal to the
number of groups formed. In Section 5 we show
that there is an upper bound on the number of
clubs formed for a given physical embedding that
does not depend on N. This gives us an upper
bound on the number of messages. The algo-
rithm is efficient in the number of messages be-
cause it takes advantage of the local broadcast
mechanism, rather than using a point-to-point
protocol.

Effect of the Distribution of Processors:

The clubs algorithm works for arbitrary graphs
and is not significantly affected by the proces-
sor distribution. The algorithm is most efficient
when dy,4 is small compared to N. The distribu-
tion does affect the resulting groups. The lower

the variance in distribution, the lower the vari-
ance in the number of members in a group.

Global Knowledge: Since the processors
may be programmed before being embedded in
a surface, the algorithms should not depend on
global knowledge of the topology. The clubs al-
gorithm does not require knowing N or having
global IDs. Processors can estimate the value of
davg locally, if the variance in the density of pro-
cessors is small. Alternatively processors can use
the maximum neighborhood size, p;,q2, which is
a physical property of the processor known at
manufacture time.

No Global IDs: Although there are no global
IDs, it is useful for leaders and groups to have
names. A processor can randomly choose an id
such that, with high probability, no processor
within a two hop radius has the same id. If a
processor chooses an id from [0, p,,.), the prob-
ability that another processor in the two hop ra-
dius chooses the same value is less than (1/p2,,,)
(i.e. very small). The two hop uniqueness is im-
portant from a follower’s point of view, since it
may belong to more than one group and therefore
need to distinguish between two or more leaders.

A leader can broadcast its id along with the
recruit message in the clubs algorithm. In the
case of a collision, a follower broadcasts a request
after the clubs algorithm has completed to de-
termine which clubs it belongs to. The follower
can use the simple strategy of broadcasting a re-
quest, waiting a random delay and then trying
again. If the random delay is chosen from the
range [0, pmax) and all processors are using the
same strategy and range, it can be shown that
the expected number of trials after which a pro-
cessor i gets through is (%)d(’)fl, which is
less than 3 [11]. We will refer to this broadcast
strategy as random-wait protocol. This and al-
ternative point-to-point protocols (like exponen-
tial backoff and CSMA) for broadcast networks
are presented in detail in [11]. Resolving colli-
sions using random-wait adds O(pmaz) expected
steps to the algorithm and increases the number
of messages by O(conflicts).

4.2 Asynchronous Processors

The clubs algorithm is simple to implement in
an asynchronous environment because no syn-
chronization between processors is required dur-
ing the execution of the algorithm. The only

synchronization required is at the beginning of
the algorithm. Processors may start at differ-
ent times, so if a processor announces leadership
while its neighbors are not listening there will
be unnecessary leadership conflicts. A processor
needs to wait only for its immediate neighbors to
complete previous tasks, before choosing a ran-
dom number and counting down. This can be de-
termined if all processors broadcast a done mes-
sage after completing previous tasks. A proces-
sor should continue to listen for recruit messages
even after reaching the timeout. A processor can
also locally determine when the algorithm is com-
plete if its neighbors broadcast similar done mes-
sages after reaching their timeouts.

Theorem 3: The clubs algorithm completes
in D + R steps, where D is the delay between
when the first processor starts counting down and
the last processor starts counting down, for asyn-
chronous processors. The expected number of
leadership conflicts E(conflicts), is still at most
(dz";’%g)N, for the aynschronous amorphous com-
puter.

Proof 3: Let delay; be the time between when
the first processor starts counting down and a
processor ¢ starts counting down'. Each proces-
sor can be treated as choosing a random number
r; and a random offset delay; which is equivalent
to a processor starting at time 0 choosing from
the range [0,D + R) where D is the maximum
delay. Hence each processor will have either de-
clared leadership or become a follower by D + R
steps. Therefore all processors will belong to a
group at the end of D + R steps.

Let processor i start counting down d timesteps
before some other processor j. Then the choices
of R for which the two processors can conflict
must lie within the range [d, R) for processor i
and [0, R — d). The probability of having a con-
flict is (gz (R — d)). If we allow an adversary to
choose the delay, so as to maximize the prob-
ability of leadership conflicts, we see that the
probability is maximized when the delay d = 0.
The probability of a leadership conflict decreases
when the processors are not synchronous. Hence
the expected number of collisions is still at most

davg
(SN

A similar argument can be made when the pro-
cessor speeds are different. Let processor ¢ oper-
ate at a speed S times that of processor j, where
S > 1, and let both processors start at time 0.

1'We assume that delay includes the time required to
retransmit done messages.

Then collisions will occur only when processor
j chooses values from the range [0, |R/S]|) and
processor i chooses values from [0, R) that are
divisible by S. The probability of collision is
(2 2). Again this is maximized when S = 1,
i.e. the speeds are the same. The reason is that
the range of random choices over which a conflict
can occur has decreased. The time taken by the
algorithm to complete is the time taken by the
slowest, processor to count to zero.

Treating messages as having non-zero trans-
mission times also does not affect the expected
number of conflicts. Since a processor knows not
to send a message while it is currently receiv-
ing one, conflicts will only occur when two ad-
jacent, processors choose the same time to start
declaring leadership. If one processor precedes
the other, then the second processor will sense
that the channel is busy before sending a mes-
sage and abort its claim for leadership. Thus,
leadership conflicts will not occur due to partially
overlapping recruit messages.

4.3 Processor Failures

Only failures of the leaders affect the clubs algo-
rithm. Until now we have assumed that proces-
sors are reliable. A processor may stop execut-
ing at any time (stopping failures). The clubs
algorithm is robust to most failures because pro-
cessors execute relatively independently and the
communication is simple. Processors failing be-
fore finishing the countdown or after becoming
followers do not affect the algorithm. However,
leaders guarantee that a group has local routing
and a maximum diameter of two hops. If a leader
fails, the group may potentially become discon-
nected and the diameter may increase, violating
two group properties.

Adaptive Clubs: The clubs algorithm can
be extended so that whenever a leader fails, its
followers rerun the clubs algorithm to elect a
new leader(s). After completing the initial group
formation, each leader periodically reasserts its
leadership. If a follower does not hear a leader
for several time intervals (77), it broadcasts a
challenge to the leader. If it does not hear a re-
sponse from the leader within a certain timeout
period (T»), then it assumes the leader is dead
and broadcasts a message declaring the leader
dead. Upon hearing this message, only the pro-
cessors that do not belong to any group need to
rerun the clubs algorithm. Hence the overlapping
groups add robustness by decreasing the effect of

the failure of a single leader.

Correctness: If a leader dies, members will
eventually detect it. They will either hear a dec-
laration that the leader is dead, or timeout them-
selves and challenge the leader. If they do not
belong to any group, then they will compete us-
ing the clubs algorithm, until all of them belong
to some group. Even if a leader is not dead, a
processor may falsely think it is dead (it chal-
lenged the leader and for some reason did not
hear the response within the timeout 7). As
a result, several processors may rerun the clubs
algorithm and create new groups and later re-
alize that the leader is alive. This results in
unnecessary clubs (and leadership conflicts) but
still guarantees that all processors belong to some
club.

Parameters: The rate at which the leader re-
asserts leadership depends on the expected time
to failure as well as how soon the application
needs to detect a failure. The leader does not
have to send a special message, as long as it
broadcasts some message within the specified pe-
riod. To challenge a leader or to respond to a
challenge, a processor can use the random-wait
protocol or exponential backoff. The timeouts
T, and T, depend on the expected time for mes-
sages to get through, given the particular broad-
cast strategy. The timeouts should be chosen so
that probability of false death declarations is low
and the incidence of unnecessary leadership con-
flicts is low.

Thus, adaptive clubs can reorganize to accom-
modate failures. This method can also be used
for accommodating new processors into an al-
ready existing clubs structure.

4.4 Conclusions

The clubs algorithm produces groups of diam-
eter two hops in time proportional to the lo-
cal neighborhood size. The algorithm does not
require point-to-point communication or syn-
chronous processors. Rather it takes advantage
of those properties that are generally difficult to
deal with. This is achieved by relying on the
local broadcast mechanism rather than point-to-
point message exchanges and allowing leadership
conflicts to occur probabilistically. Hence com-
plex synchronization is not required and the al-
gorithm performs efficiently in both synchronous
and asynchronous settings.

In addition the algorithm satisfies several other
constraints that that generally occur in large dis-

tributed systems. The algorithm does not re-
quire global IDs, relying on randomization in-
stead, and does not use require that processors
know the diameter of the network or the number
of nodes. The algorithm can be extended to re-
organize groups automatically in response to the
processor failures or the addition of new proces-
Sors.

5 Physical
Clubs

Properties of

A distinctive property of an amorphous computer
is that it has geometry as well as topology. The
geometry is derived from the communication ge-
ometry and the space within which the amor-
phous computer is embedded. The geometry can
be used to derive additional properties of the
clubs algorithm.

Assuming that there are no leadership con-
flicts, we can derive two bounds on the clubs al-
gorithms:

Theorem 4: The mazimum number of clubs
formed is fized for a given surface area and com-
munication radius, and does not depend on N.

Theorem 5: The degree of a club is at worst
24.

The proof for both theorems is based on model-
ing a processor as a circle of radius /2, centered
at the processor (figure 4). An edge implies a
maximum physical distance of r. Therefore the
circles will overlap if and only if the processors
are adjacent.

Proof 4: If there are no leadership conflicts,
then all the leaders are non-adjacent. The max-
imum number of clubs that can be formed in a
given area is the same as the maximum num-
ber of leaders one can place in that area without
violating the constraint that no two leaders be
adjacent.

If we model each leader as a circle of radius
r/2, as described before, the problem of finding
the maximum number of clubs can be restated as
a packing problem i.e. what is the densest pack-
ing of non-intersecting circles of radius r/2 in a
plane. In a two dimensional plane, the densest
packing of circles is a hexagonal packing. Hence
the densest packing of leaders is a hexagonal lat-
tice where the distance between two adjacent lat-
tice points is 7. This implies that, for a given
surface and a given communication radius, the
maximum number of clubs is fixed irrespective of
N and is equal to the number of grid points on

=7 -~
(3@ (b)

Figure 4: A node is modeled as a circle of radius r/2.
(a) If the circles intersect, the nodes are adjacent.
(b) If the circles do not intersect, the nodes are not
adjacent.

the hexagonal lattice.

Proof 5: If we consider each club to be a node
and clubs that overlap to be adjacent, we can talk
about the graph induced by the clubs. The de-
gree of a given club is the maximum number of
clubs that it can be adjacent to. In order for
two clubs to be adjacent, or overlap, their lead-
ers must be less than 2r apart (by the triangle in-
equality). Hence for a particular leader, all lead-
ers within the circle of radius 2r are potential
neighbor clubs. However leaders must be at least
r distance apart. If we model the neighboring
leaders as non-overlapping circles of radius r/2,
then all the circles must fit within an annulus
of inner radius r/2 and outer radius (2r + r/2),
centered at the given leader. Since each circle
occupies an area of 7r%/4, no more than 24 non-
adjacent leaders can be placed in the annulus.
Therefore a leader can have no more than 24
neighboring leaders and the degree is at worst 24.
Hence we see that the degree is upper bounded
by a constant and does not depend on the area
or N. Using a similar argument a processor can
belong to no more than 9 clubs.

If the number of leadership conflicts is small,
these theorems will still hold with high proba-
bility. In Section 7.1 we provide an extension to
the clubs algorithm that guarantees no leadership
conflicts.

Both bounds are very useful for designing algo-
rithms on top of clubs. The first bound provides
an estimate of the number of groups to expect,
given the area and communication radius. The
second bound tells us that the graph induced by
the clubs has small degree. The decomposition of
processors into groups with small diameter such
that the graph induced by the groups has small
degree is very useful in the design of many algo-
rithms [3, 5].

Simulation Results: Percentage of Conflicts

=
o

Upper Bound on Expected Conflicts —— |
N=4000,davg=10 -+
N=8000,davg=10 -+
N=4000,davg=30 -=
N=8000,davg=30 -=---

Conflicts (as a % of N)

O P N W A OO N 0 ©
L S B AL

5 10 15 20 25 30 35 40 45 50
Alpha

Figure 5: Leadership conflicts as a percentage of N
vs. « for different (N, dqvg) pairs

6 Simulation Results

We simulated an amorphous computer run-
ning the clubs algorithm with 1000, 4000 and
8000 processors, each with average neighborhood
sizes of 10, 30 and 50, for different values of a.
The processors are uniformly distributed over a
unit square surface. The processors are asyn-
chronous with a small delay (less than a message
transmission time) and the message transmission
time is a hundred clock cycles. A collision oc-
curs if messages partially overlap. The proces-
sors choose a random value from the range [0, R)
where R = adyyy and multiply it by the trans-
mission time.

The simulation results correspond well with
the analysis for the synchronous case. Graph 5
plots the number of leadership conflicts, as a per-
centage of the total number of processors, for four
(N, dqug) pairs?. Each data point is averaged over
several runs. In each run the layout of the pro-
cessors is changed and new random values are
chosen. Therefore there is significant variation in
the number of conflicts in each run. As we can
see, the average percentage of conflicts varies as
expected with a and does not seem to be affected
by N or dgyg-

In graph 6, we have plotted the number of clubs
formed in the same experiments against the com-
munication radius. As we see, even with up to
10% conflicts, the number of clubs varies with the
radius close to expectations. Each data point is
averaged over twenty runs with different proces-
sor layouts, however there is little variation in the
number of clubs formed in each run. This is be-

2The remaining curves also occupy the same region, so
for clarity we have plotted only 4 of the 9 curves

Simulation Results: Number of Clubs
3000 T T T

hexagonal pack —

2500 simulation data —— |

2000 +
1500 r

1000 |

Number of Clubs

500 r

0 L L PO T P
0.02 0.04 0.06 0.08 0.1 0.12
communication radius (in a unit square area)

Figure 6: Number of clubs formed vs. communica-
tion radius for processors distributed in a unit square

cause the number of clubs depends more on the
surface and communication geometry than pro-
cessor layout or initial random state. In all of
the runs, no processor belonged to more than 5
clubs, in spite of the conflicts.

7 Extensions

In this section we describe the extension of the
clubs algorithm to solve problems like MIS and
A + 1 vertex coloring.

7.1 Maximal Independent Set

A maximal independent set (MIS) is a set of
nodes in a graph such that no two nodes in the set
are adjacent (independent) and no more nodes
can be added to that set without violating in-
dependence (maximal). Computing the MIS of
the graph induced by a network is a useful tool
for solving many distributed computing problems
[10, 9].

In an amorphous computer, the set of club
leaders is almost an MIS on the amorphous com-
puter graph. All non-leader processors (follow-
ers) are adjacent to at least one leader, and hence
cannot be added to the MIS. Most leaders are
non-adjacent, except those that have a leader-
ship conflict. Solving for a MIS is equivalent to
guaranteeing that no leadership conflicts occur.

This can be achieved by running several rounds
of the clubs algorithm. After each round, there
is a conflict-detection stage during which lead-
ers determine if they experienced a leadership
conflict. If so they abdicate leadership and they
and their followers compete in the next round of

clubs. The algorithm completes when there are
no leadership conflicts left. We call this algorithm
clubs-MIS.

The clubs algorithm guarantees that all non-
leader nodes are adjacent to some leader. The
clubs-MIS algorithm runs a new round of clubs if
any of the leaders are adjacent. The followers of
the conflicting leaders are forced to compete as
well if they are no longer adjacent to some leader.
The algorithm keeps running until there are no
conflicting leaders. Hence, the final set of leaders
forms an MIS.

Theorem 6 : The expected time to find the
MIS is O(pmazlog N) in a synchronous amor-
phous computer

Proof 6: In each round, the competing nodes
choose new random numbers from the range
[0, R). Therefore, each round is independent.
The upper bound R is chosen to be ady.y and
is the same for every round. Let the number of
nodes in round k£ be Ni. In round k& + 1 only the
nodes that experienced a conflict will re-compete.

E(Ngy1) = E(conflicts in round k)
1
< —N,
S ok
Therefore,
E(Nigy1) < 1after (k =log,, N) rounds

Hence, all processors are expected to have been
removed from the graph in O(log N) rounds.
Each round of clubs takes R steps where R =
adgyg. In the conflict resolution stage, only the
leaders need to exchange messages to determine
if there were any conflicts. Using the random-
wait protocol for communication, the conflict-
detection stage takes O(pmae) expected steps.
Therefore the expected time to find the MIS us-
ing clubs-MIS is O(psaz log N).

The clubs algorithm uses a small number of
messages per round and naturally staggers mes-
sages to avoid collisions. Furthermore one can
choose a to reduce the number of rounds. This
makes clubs particularly suited to the asyn-
chronous amorphous environment. In the asyn-
chronous implementation, there needs to be syn-
chronization at the beginning of each new round
to make sure all conflicts have been detected be-
fore running the next round. Both synchroniza-
tion and conflict-detection are expensive com-

pared to the clubs algorithm. « can be chosen
to minimize the overall time.

Luby [9] presents an algorithm for finding an
MIS, which also takes O(paz log N) time in an
amorphous computer. Processors choose a ran-
dom value and compare it with their neighbors’
values. The processors with the minimum values
become leaders and remove their neighborhood
from the graph. The remaining processors take
part in a new round. The algorithm continues
until there are no processors left. In this algo-
rithm, each round requires a complete exchange
of messages between all neighbors which takes
O(pmaz) steps. This is difficult to implement ef-
ficiently, since processors do not synchronize mes-
sage sending. Using a protocol like random-wait,
a significant amount of time is wasted due to mes-
sage collisions. There is also no control over the
number of rounds. The clubs algorithm is sim-
pler to implement in an amorphous computer and
takes advantage of the local broadcast capability.

7.2 A +1 Coloring

Vertex coloring assigns colors to each node of a
graph such that no two adjacent nodes have the
same color. A + 1 vertex coloring implies that
the graph is colored with A + 1 colors where A is
the maximum degree of the graph (A < pmaz)-
MIS algorithms can be extended to do graph col-
oring [7]. In this section we will extend the clubs
algorithm to do A + 1 graph coloring.

The clubs-coloring algorithm proceeds by run-
ning multiple rounds of color-picking. After each
round of color-picking, color conflicts are de-
tected (i.e. cases where two adjacent nodes have
the same color) and only the conflicting nodes
participate in the next round of color-picking.
The algorithm completes when there are no con-
flicts, i.e. all nodes have been assigned a valid
color.

Color-picking uses a similar countdown mecha-
nism as clubs. Figure 7 presents the code for ex-
ecuting a round of color-picking on a single pro-
cessor. A processor chooses a random number
from the range [0, R). As it counts down silently,
it collects colors that it hears from its neighbors.
When it reaches zero it chooses the smallest color
not chosen by its neighbors and broadcasts that
color. Once the round is complete, the proces-
sor checks for leadership conflicts. If two leaders
broadcasted at the same time (a leadership con-
flict), they might have chosen the same color. Or
some node may not have heard the color they

10

integer R (upper bound for random numbers)

list colorlist = empty (list of neighbor colors)
procedure CLUB.COLOR-PICKING ()

1 ti =R

2 r; :=random[0,R)

3 while (¢; > 0)

4 if (not_empty(msg_queue))

5 newcolor := first(msg_queue)

6 insert(color_list, newcolor)

7 if (r=0)

8 broadcast(smallest color not € color_list)

9 ryi=Tr; - 1
10 tl‘ = ti -1

Figure 7: Algorithm for Color Picking

chose due to the collision, and may have cho-
sen the same color. In either case the processors
that broadcasted at the same time must renounce
their colors and participate in the next round of
color-picking. Since processors always choose the
smallest color not chosen by their neighbors, and
the maximum number of neighbors is A, the color
values range from 1 to (A + 1).

Theorem 7 : The expected time for A+1 col-
oring is O(pmaz log N) in a synchronous amor-
phous computer

Proof 7: Color-picking is similar to the sim-
plified clubs, sclubs, presented in Section 4 be-
cause processors that count down to zero do
not prevent their neighbors from continuing to
count. Hence, if R is chosen to be adgyyg, the ex-
pected number of conflicts is less than or equal
to (1/2a)N. By the same argument as clubs-
MIS, the number of nodes in each round is less
than a constant fraction of the previous nodes,
therefore all nodes will be removed in O(log N)
expected rounds. Each round takes O(pmaz) €x-
pected time. therefore the total expected time is
O(pmaz log N).

8 Example Applications of
the Clubs Algorithm

Clubs can be used for task specialization, in-
creased robustness, or resource allocation. In this
section we provide three examples of using the

clubs to address the issue of efficient communi-
cation in an amorphous computer. Several other
examples are presented in [5].

The clubs can be used as a higher level point-
to-point network. The leaders communicate
point-to-point with each other and relay mes-
sages to and from their members. The com-
munication between adjacent leaders is accom-
plished via elected representatives in the over-
lap regions. This significantly reduces the num-
ber of messages and potential collisions. For ex-
ample a full broadcast operation can be imple-
mented constructing a spanning tree on the graph
induced by the leaders. Collisions can be fur-
ther reduced if leaders run a coloring algorithm
to choose non-interfering channels and members
choose a single clubs to belong to. Within the
group, a leader can poll its members to prevent
collisions between members. This is analogous
to self-organizing a cellular network with clubs
as cells and leaders as base stations. The upper
bound of 24 on the degree of a club tells us the
maximum number of distinct channels required.

An extension of this idea is to use the clubs
algorithm to self-organize a hierarchical network
for efficient non-local communication. The group
leaders can run the clubs algorithm to form
higher level groups. In a separate paper [5] we
show how the clubs local leader election mecha-
nism can be extended to form groups of a given
diameter h. The efficiency of the resulting net-
work will depend on the number of levels in the
hierarchy and the diameter of groups at each
level.

It is also possible to use the clubs-based col-
oring algorithm to create an efficient local point-
to-point communication for applications that re-
quire frequent local exchanges of values, such
as partial differential equation (PDE) calcula-
tions and cellular automata style local rules.
For such algorithms protocols like random-wait
are inefficient due to high percentage of colli-
sions. The A + 1 coloring can be used to imple-
ment CDMA (code division multiple access) in
an asynchronous amorphous computer [11, 6]. In
CDMA, messages modulated with different digi-
tal codes can be broadcast simultaneously with-
out interfering. Processors use their color to de-
termine which code to listen on. The sender
broadcasts using the code of the intended re-
ceiver. The number of codes required A + 1,
which is upper bounded by ppq.. By assigning
nearby processors different channels to listen on
the probability of collisions can be significantly

11

reduced. However a receiver can still only re-
ceive from a single sender at any time, hence it
is not the same model as a wired point-to-point
network. Nevertheless it can be used to apply
point-to-point algorithms more efficiently on the
amorphous computer. Our hardware prototype
will support spread spectrum CDMA and use this
mechanism to assign channels.

9 Conclusion

In this paper we presented the clubs algorithm
for forming groups in an amorphous computer.
The clubs algorithm performs efficiently by tak-
ing advantage of the local broadcast mechanism
and directly addressing the problem of message
loss through collisions. The simplicity of the lo-
cal leader election mechanism makes it easy to
extend to asynchronous processors without com-
plex synchronization. In addition the algorithm
does not use global IDs and can be extended to
deal with processor failures. The algorithm can
also be used in point-to-point distributed envi-
ronments with similar constraints.

In addition, we derive upper bounds on the
number of groups formed and the density of
groups formed by the clubs algorithm, using the
physical embedding of the amorphous computer.
We present simulation results for the clubs algo-
rithm that concur with the analysis. Extensions
of the clubs algorithm to solve for a maximal in-
dependent set and produce a A 4 1 coloring are
presented. Lastly, we present three examples of
applying the clubs algorithm to address commu-
nication issues in an amorphous computer.

References
[1] Abelson, Knight, and Sussman. Amor-
phous computing. White paper, Octo-

ber 1995. http: //www-swiss.ai.mit.edu/
~switz/amorphous/.

Awerbuch, Berger, Cowen, and Peleg. Fast
distributed network decompositions and
covers. Journal of Parallel and Distributed
Computing, 39:105-114, 1996.

Awerbuch, Goldberg, Luby, and Plotkin.
Network decomposition and locality in dis-
tributed computation. In Proceedings of the
30th Annual Symposium on Foundations of
Computer Science, pages 364-369, October
1989.

[4]

[6]

[7]

[9]

[10]

[11]

Berlin. Towards Intelligent Structures: Ac-
tive Control of Buckling. PhD thesis, MIT,
Department of Electrical Engineering and
Computer Science, May 1994.

Coore, Nagpal, and Weiss. Paradigms for
structure in an amorphous computer. Al
Memo 1614, MIT, 1997.

Dixon. Spread Spectrum Systems with Com-
mercial Applications. John Wiley & Sons,
New York, 1994.

Goldberg and Plotkin. Parallel (A + 1)-
coloring of constant-degree graphs. Informa-
tion Processing Letters, 25(4):241-245, June
1987.

Hall, Crawley, Howe, and Ward. A hierar-
chic control architecture for intelligent struc-
tures. Journal of Guidance, Control and Dy-
namics, 14(3):503-512, 1991.

Luby. A simple parallel algorithm for the
maximal independent set problem. SIAM
Journal of Computing, 15(4), November
1986.

Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers, Wonderland, 1996.

Tanenbaum. Computer Networks, second
edition. Prentice-Hall of India, New Delhi,
1990.

12

