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Abstract

In macaque inferotemporal cortex (IT), neurons have been found to respond selectively to complex shapes while
showing broad tuning (“invariance”) with respect to stimulus transformations such as translation and scale changes
and a limited tuning to rotationin depth. Training monkeys with novel, paperclip-like objects, Logettatis could
investigate whether these invariance properties are due to experience with exhaustively many transformed instances
of an object or if there are mechanisms that allow the cells to show response invariance also to previously unseen
instances of that object. They found object-selective cells in anterior IT which exhibited limited invariance to various
transformations after training with single object views. While previous models accounted for the tuning of the cells
for rotations in depth and for their selectivity to a specific object relative to a population of distractor dBjécts,

the model described here attempts to explain in a biologically plausible way the additional properties of translation
and size invariance. Using the same stimuli as in the experiment, we find that model IT neurons exhibit invariance
properties which closely parallel those of real neurons. Simulations show that the model is capable of unsupervised
learning of view-tuned neurons. The model also allows to make experimentally testable predictions regarding novel
stimulus transformations and combinations of stimuli.
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1 Introduction feedforward model. Figure 1 shows a cartoon of the model:

. . Aretinal input pattern leads to excitation of a set of “vV1” cells,
Neurons in macaque inferotemporal cortex (IT) have bee, i figure abstracted as having derivative-of-Gaussian re-

shown to respond to views of complex objetjch as faces centive field profiles. These “V1” cells are tuned to simple
or body parts, even when the retinal image undergoes sizgaqres and have relatively small receptive fields. While they

changes over several octaves, is translated by several degrees, 4 pe cells from a variety of areasg., V1 or V2 (cf. Dis-
of visual anglé& or rotated in depth by a certain amotihfsee cussion), for simplicity, we label them as “V1” cells (see

[15] for a review). _ _figure). Different cells differ in preferred featureg., ori-
These findings have prompted researchers to investigaigiation, preferred spatial frequency (scale), and receptive

the physiological mechanisms underlying these tl_Jning_ PropPfield location. “V1” cells of the same typé.€, having the
erties. The original modéf that led to the physiological same preferred stimulus, but of different preferred scale and
experiments of Logothetist al.'” explains the behavioral receptive field location) feed into the same neuron in an inter-
view invariance for rotation in depth through the learning andediate layer. These intermediate neurons could be complex
memory of a few example views, each represented by aneureais in /1 or V2 or V4 or even posterior IT: we label them as
tuned to that view. Invariant recognition for translation and«4» cells, in the same spiritin which we labeled the neurons
scale transformations have been explained either as a resﬂé%ding into them as “V1” units. Thus, a “v4” cell receives
of object-specific learnirigor as a result of a normalization jnpyts from “v1” cells over a large area and different spatial
procedure (“shifter”) that is applied to any image and hencgcgles ([9] reports an average receptive field size in V4 of
requires only one object-view for recognitiof. 4.4° of visual angle, as opposed to abo@ii VV1; for spatial

A problem with previous experiments has been that the}frequency tuning, [4] report an average FWHM of 2.2 oc-
did notilluminate the mechanism underlying invariance sincegyes, compared to 1.4 (foveally) to 1.8 octaves (parafoveally)
they employed objectse@., faces) with which the monkey i, v/16). These “v4” cells in turn feed into a layer of “IT”

was quite familiar, having seen them numerous times und&geyrons, whose invariance properties are to be compared with

et al.'° addressed this question by training monkeys to rec-
ognizenovel objects (“paperclips” and amoeba-like objects)
with which the monkey had no previous visual experience
After training, responses of IT cells to transformed versior
of the training stimuli and to distractors of the same type we
collected. Since the views the monkeys were exposed to d
ing training were tightly controlled, the paradigm allowed tc
estimate the degree of invariance that can be extracted fr
just one object view.

In particular, Logothetist al.!° tested the cells’ responses
to rotations in depth, translation and size changes. Defini
“invariance” as yielding a higher response to test views thi
to distractor objects, they repdft!! an average rotation in-
variance over 39 translation invariance over2°, and size
invariance of up tat1 octave around the training view.

These results establish that there are cells showing so ‘ . .‘ - * e O “V4”

degree of invariance even after training with just one ol
ject view, thereby arguing against a completely learnin

dependent mechanisms that requires visual experience v . w1

each transformed instance that is to be recognized. On

other hand, invariance is far from perfect but rather center

around the object views seen during training.

2 TheMode .
Retina

Studies of the visual areas in the ventral stream of the macar
visual systerfi show a tendency for cells higher up in the
pathway (from V1 over V2 and V4 to anterior and posteric
IT) to respond to increasingly complex objects and to sha
increasing invariance to transformations such as translatio
size changes or rotation in depth.

We tried to construct a model that explains the receptive
field properties found in the experiment based on a simplé&igure 1: Cartoon of the model. See text for explanation.



A crucial element of the model is the mechanism an in-where o is the excitation of the intermediate layer and
termediate neuron uses to pool the activities of its afferentsthe variance of the Gaussian, which was chosen based on
From the computational point of view, the intermediate neu-the distribution of responses (for section 3.1) or learned (for
rons should be robust feature detectaes, measure the pres- section 3.2).

ence of SpeCifiC features without being confused by clutter The stimulus images were views of 21 rand0m|y genera‘[ed
and context in the receptive field. More detailed COﬂSidera“paperCnps” of the type used in the phys|0|ogy experirn]é?nt_
tions (Riesenhuber and Poggio, in preparation) show that thipjistractors were 60 other paperclip images generated by the
cannot be achieved with a response function that just sumsame method. Training size w28 x 128 pixels.

mates over all the afferents (cf. Results). Instead, intermediate

neurons in our model perform a “max” operation (akin to a

“Winner-Take-All") over all their afferentd,.e., the response 3 Results

of an intermediate neuron is determined by its most strongly ) )

excited afferent. This hypothesis appears to be compatible3-1 Invariance of Representation

X s L )
W'th_ recent datd? that ShOV\_’ that yvhen two stlmull_(gratlngs In a first set of simulations we investigated whether the pro-
of different contrast and orientation) are brought into the re-

S , osed model could indeed account for the observed invariance
ceptive field of a V4 cell, the cell's response tends FO be clos roperties. Here we assumed that connection strengths from
to the stronger of the two individual responses (instead o

) ; he intermediate layer cells to the top layer had already been
eg. the sumas in a linear model). ) ) ) learned by a separate process, allowing us to focus on the
Thus, th_e response functm_n of an intermediate neuran tolerance of the representation to the above-mentioned trans-
to stimulation with an image is formations and on the selectivity of the top layer cells.
0; = max{vaj) - &}, 1) To establish the_tuning properties ofview-tuned model neu-
jeA rons, the connections; between the intermediate layer and
top layer unitj were set to be equal to the excitatiofiajining
in the intermediate layer caused by the training view. Fig-
ure 2 shows the “tuning curve” for rotation in depth and Fig.

with A; the set of afferents to neurana(;) the receptive
field center of afferent, v, ;) the (square-normalized) image
patch centered at(;) that corresponds in size to the receptive o :
field, ¢; (also square-normalized) of afferginand “ the dot 3 the response to changes |n_st|n_1ulus_3|z_e of one sqch neu-
product operation. ron. The neuron shows rotation invarianée.{ producing

Studies have shown that V4 neurons respond to feature® NGNer response than to any distractor) over abotiadd
of “intermediate” complexity such as gratings, cormners andnvariance to scale changes over the whole range tested. For

crosses. In V4 the receptive fields are comparatively large ranslation (not shown), the neuron showed invariance over
(4.4 of visual angle on averad while the preferred stimuli translatlons_ oft96 pixels a_round the center in any direction,
are usually much smallérinterestingly, cells respond inde- COrTesponding te-1.7¢ of visual angle.

pendently of the location of the stimulus within the receptive  The average invariance ranges for the 21 tested paperclips
field. Moreover, average V4 receptive field size is comparawere 33 of rotation angle, 2.9 octaves of scale invariance
ble to the range of translation invariance of IT cels £2°) and+1.8° of translation invariance. Comparing this to the
observed in the experimeHt.For afferent receptive fieldg, ~ experimentally observédl 30°, 2 octaves and:2°, resp.,

we chose features similar to the ones found for V4 cells irshows a very good agreement of the invariance properties of
the visual syster:bars (modeled as second derivatives ofmodel and experimental neurons.

Gaussians) in two orientations, and “corners” of four differ-

ent orientations and two different degrees of obtuseness. This
yielded a total of 10 intermediate neurons. This set of features
was chosen to give a compact and biologically plausible rep-
1

resentation. Each intermediate cell received input from cells
with the same type of preferred stimulus densely covering the
visual field 0f256 x 256 pixels (which thus would correspond
to about 4.4 of visual angle, the average receptive field size in
V4°), with receptive field sizes of afferent cells ranging from
710 19 pixels in steps of 2 pixels. The features used in this pa-
per represent the first set of features tried, optimizing feature 60 80 100 120 20 40 60
shapes might further improve the model’s performance. angle distractor

The responsé;of top layer neuronj with connecting
weightsw; to the intermediate layer was settobe a Gaussiarﬁ

[y
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igure 2: Responses of a sample top layer neuron to different views of the
aining stimulus and to distractors. The left plot shows the rotation tuning

centered Ow;, curve, with the training view (99view) shown in the middle image over the
plot. The neighboringimages show the views of the paperclip at the borders
1 ||0 JE— | |2 of the rotation tuning curve, which are located where the response to the
t. = exp | — J (2) rotated clip falls below the response to the best distractor (shown in the plot

J \/W 252 on the right). The neuron exhibits broad rotation tuning over more th&n 40
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Figure 5: The model neuron’s response to the scrambled stimuli. The

stimulus size distractor left plot shows the model neuron’s response (its preferred stimiudusthe
unscrambled paperclip shown in Fig. 2, would evoke a response of 1) to the
. o scrambled stimuli with various tile sizes as shown on the x-axis. The right

Figure3: Responses of the same top layer neuronas in Fig. 2to scale changgsiot shows the model neuron’s response to the 60 distractor paperclip objects

of the training stimulus and to distractors. The left plot shows the size tuningas used before.

curve, with the training sizel@8 x 128 pixels) shown in the middle image

overthe plot. The neighboringimages show scaled versions of the paperclip.

Other elements as in Fig. 2. The neuron exhibits scale invariance over more

than 2 octaves. . . . .
Averaging over 21 model neurons as in the previous section,

we can calculate the average performamnee,the percentage

of cases for each tile size in which the neuronal response to
3.2 Scrambling the scrambled stimulus remained higher than that to any of the

distractor objects. For tile sizes of 8, 16, 32, and 64 pixels, we

obtain a recognition rate of 5%, 10%, 33%, and 57%, resp.

Wh”e. the previous section _show_ed that the model is able tq’hus, as expected, recognizability of scrambled stimuliin the
explain existing data on the invariances of IT cells, the mode odel decreases with decreasing tile size

also allows us to make experimentally testable predictions

for novel stimulus paradigms. For instance, we can see how

the response of model neurons changes when the stimuli a3 gyperposition of Stimuli

scrambled versions of the preferred paperclip (cf. Fig. 4).

Averyrecent paper [13] describes changesinIT cell responses
HQ overlapping shapes. The authors report that in general,
fguronal responses change dramatically if a background (a
polygon of different or same color or texture as the foreground
fimulus) is added to the display (consisting of an isolated

We investigated this question in simulationg\ priori,
we would expect the neuronal response to depend on t
coarseness of scrambling, as scrambling an object an a fi
scale seems to impair recognition more thaneify., only
whole quadrants of the image were exchanged, leaving loc&
features relatively intact. This expectation is also borne ouP°Y90n):
in the model, as shown in Fig. 5. We can easily perform the same experiment in our model,
by looking at model neurons’ responses to the superposition
of two stimuli. For this, the stimuli were combinations of the
cell's preferred stimulus and another object, either a circle or
a square (similar to backgrounds used in [13]), as shown in
Fig. 6.

Figure 4: One example of a scrambled stimulus with varying tile sizes. The

tile size is the linear extension of the blocks into which the image was divided.

Scrambling was then performed by randomly assigning the square blocks of

the original image to new locations in the scrambled image. Tile size is 8Figure 6: Example of stimulus superposition. The left plot shows a pa-
pixels in the upper left, 16 in the upper right, 32 in the lower left and 64 in perclip superimposed on a circle, the right plot shows the same paperclip
the lower right (for al 28 x 128 pixel stimulus). superimposed on a square.
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Figure 7: Response of model neuron tuned to the paperclip shown in Fig. 6Figure 9: Response on the model neuronto the two-stimulus condition. The

to the superimposed stimuli of Fig. 6. The left plot shows the response of thenodel neuron is tuned to the paperclip shown in the upper left corners of the

model neuron the left and right display in Fig. 6, resp., the right plot showsplots in Fig. 8 64 x 64 pixels,i.e,, the whole display i428 x 128 pixels).

the response of the model neuron to the 60 distractors. The left plot shows the model neuron’s response to all combinations of the
preferred stimulus with any of the 21 clips used for preferred stimuli. The
response to two copies of its preferred stimulus in its receptive field is 1,
shown in the leftmost bar of the left plot. The right plot shows the neuron’s

On average, we find a recognition rate of 38% for the circlg’@sPonse to the 60 distractor objects.
as the background object and 14% for the square. This indi-
cates that the choice of features for the intermediate neurons
strongly influences the performance in this case: paperclips
and the square activate similar features, while the circle lead

to a different pattern of activation. Hence, the superpositio Tarﬁlr?#mt rglsp;nrieltfiuTctlon,i T CfeilhrES[r)OfnSrf :js ez(rﬁelcted
of a square interferes with recognition more than that of g0 femain stap'e uttiple copies of Ihe preterred sumuius

circle for our set of features. are displayed in the receptive fie_lo_l (with thg caveat given in
_ o _ o the footnote above). In contrast, if intermediate neurons used
In general, in qualitative agreement with the findings re-3 summation-like response function, the response would be
portedin[13], we observe a strong decrease of model neurongypected to change strongly (as observed in simulations with
responses when background shapes are added to the prefergegl;mmation-like response function).
stimulus in the display.

Hence, this set of simulations makes a strong prediction that
easily testable in an experiment: If intermediate cells use

35 Learning
3.4 Multiple Objects
In the previous sections we assumed that the connections
A crucial test for the model concerns the question of whaffrom the intermediate layer to a view-tuned neuron in the top
happens if multiple stimuli are presented simultaneously inlayer were pre-set to appropriate values. In this section, we
the neuron’s receptive field. Due to the intermediate neuronshvestigate whether the system allows unsupervised learning
“max” response function, we expect no change of neuronadf view-tuned neurons.
response if multiple copies ofthe same stimulus are introduced gjnce piological plausibility of the learning algorithm was
in the receptive field If stimuli are different, however, the o4 o primary focus here, we chose a general, rather abstract
response is expected to change, as shown in Fig. 9. learning algorithmyiz a mixture of Gaussians model trained
with the EM algorithm. Our model had four neurons in the
top level, the stimuli were views of four paperclips, randomly

selected from the 21 paperclips used in the previous experi-

Q’/ Q// ments. For each clip, the stimulus set contained views from
17 different viewpoints, spanning 34f viewpoint change.

Q// 0 Also, each clip was included at 11 different scales in the stim-

ulus set, covering a range of two octaves of scale change.

Connectionswv; and variances;, i = 1,...,4, were ini-
Q’/ Q’/ tialized to random values at the beginning of training. After
a few iterations of the EM algorithm (usually less than 30), a
@ ‘Q stationary state was reached, in which each model neuron had

become tuned to views of one paperclip: For each paperclip,
all rotated and scaled views were mappedite,(activated
most strongly) the same model neuron and views of different
Figure 8: Example stimuli for the case of multiple objects (in this case, two) paperc"ps were mapped to different neurons. Hence, when
in the cell’'s receptive field. . . . . . '

the system is presented with multiple views of different ob-

jects, receptive fields of top level neurons self-organize in

*This is unless the combination of several copies creates nevwuUch a way that different neurons become tuned to different

features in the image that excite other IT cell afferents. objects.




4 Discussion sequently, future work will aim to improve the filtering step
. L - . of the model and to test it on more real world stimuli. One can

Object recc_)gmtl_on ISa d|1_‘f|cult probl_gm be(_:ause_objec_ts musﬂfmagine a hierarchy of cell layers, similar to the “S” and “C”

be recognized irrespective of position, size, viewpoint an ayers in Fukushima’s NeocognitrGrin which progressively

iIIumina_ltion. Computational models and engineeri_ng irT‘ple'more complex features are synthesized from simple ones. The
mentations have shown that most of the required invarianceg, o\ getectors in our model are likely candidates for such a

can be obtlfunetd bfya relatll\/elys:ArI%%IOe {/e\:/arnlng sr(]:heme, bas heme. We are currently investigating the feasibility of such
on a small St Of example VIEWS. € now have psy- f’:\hierarchy of feature detectors.
chophysical and physiological evidence that this is one o The demonstration that unsupervised learning of view-

thg strategies “?Sd by _the wsua_l system to achieve V®%Uned neurons is possible in this representation (which is not
point invariancé ' Invariance to image-plane transforma- clear for related view-based mod€ls) shows that different
tions such as scale and translation can be achieved inthe saQ|&, s of one object tend to form distinct clusters in the re-

way by using a suf_f|C|ent number .Of e.X?"mp_'e VIEWS. Th_'ssponse space of intermediate neurons. The current learning
strategy, however, is exceedingly inefficient; pSyChOpm/s'c‘f‘;llgorithm, however, is not very plausible, and more realis-

and physiology suggest that it is not used by the brain. QUitqic learning schemes have to be explored, as, for instance, in

sensibly, the visual system can also achieve some significame attention-based model of Riesenhuber and Ddyahich
degree of scale and translation invariance from just one VieVYncorporated a learning mechanism using bottom-up and top-
Several successful computer vision algorithms for ObjeCHown pathways. Combining the two approaches could also
recognition achieve size and position invariance from ongyemonsirate how invariance over a wide range of transfor-
yiew bY a brute force approach — e_ssentially scanning th?nations can be learned from several example views, as in
Image Inw, y andgscale_ and searching for a match with &y, ¢ase of familiar stimuli. We also plan to simulate detailed
set of _templates . Wh.'Ch meCha.”'Sm n the bram_could physiologicalimplementations of several aspects of the model
be equivalent to the biologically implausible scanning OP-sch as the maximum operation (for instance comparing non-

eration Or_1e ge”er‘?" h_ypothe5|s (?ee [16] fo_r a dlscussq{hear dendritic interactiort$ with recurrent excitation and
of computational motivation and of biophysical implementa- inhibition)

_tion) that we _explore in th? specific case studigd in this PAPET The model makes various experimentally testable predic-
'S a mechanlsm_of the Wlnner-Ta_lke-AII type, implementing ions,e.g., regarding scrambling of images, clutter, and mul-
search over the inputs and selection of a subset of them (hefﬁle stimuli in the receptive field. In the latter case, using

at the level of each of the V4 cells). Our simulations shoWgiyper 3 maximum or a summation response lead to very dif-
tha:cthe mammt;n;]respodnsle 1‘\tljvr_1(r:1t|on|_s e_lkey corlnponentm th1E'erent predictions regarding the changes in cell response, as
pertormance (I) the rr;ohe];_l It o_utt1|th—|—.e_n, Implementing - yegcribed above. We are currently planning, in collaboration
a direct corvolution of the filters with the input images and a,.;,, Nikos Logothetis’ lab, to analyze the responses of mon-

fubsleigentbsil??atlon N |n_var_|f€_;mce:[|to rcl)\;an(;ndm de'i_th ?In ey IT neurons to displays where two copies of the preferred
ransiation both decrease significantly. - Most dramaticallygtjn, |ys fall into the cell’'s receptive field.

however, invariance to scale changes is abolished completely,

due to the strong changes in afferent cell activity with changRefer ences

ing stimul ize. Taking the maximum over the afferent _ . . .

INg S u(';sls Ie axir gk ti S ¢ u toh'e f'ﬁ ae (ej hs’ as[1] Bricolo, E, Poggio, T & Logothetis, N (1997). 3D object recog-

Inour model, always picks the best matching hiter an e_nce nition: A model of view-tuned neurons. kdvancesIn Neural

produce_s a more stable_ response. _We expect a maximum  |nformation Processing 9, 41-47. MIT Press.

me_chanlsm to be essential for recognltlon-m-context,_a_ MOr€(7] Bilthoff, H & Edelman, S (1992). Psychophysical support for

difficult task and much more common than the recognition of * * a two-dimensional view interpolation theory of object recogni-

isolated objects studied here and in the related psychophysical tion. Proc. Nat. Acad. Sci. USA 89, 60-64.

and physiological experiments. [3] Brunelli, R & Poggio, T (1993). Face Recognition: Features
The recognition of a specific paperclip object is a difficult, Versus Template$EEE PAMI 15, 1042-1052.

subordinate level classification task. It is interesting that our [4] Desimone, R & Schein, S (1987). Visual properties of neu-

model solves it well and with a performance closely resem- rons in area V4 of the macaque: Sensitivity to stimulus form.

bling the physiological data on the same task. The modelisa J Neurophys.57,835-868. _

more biologically plausible and complete model than previous [5] Foldiak, P (1991). Learning invariance from transformation

ones™ ! butitis still at the level of a plausibility proof rather sequencedleural Computation 3, 194-200. _

than a detailed physiological model. It suggests a maximum-[€] Foztter, KH, C|5aSI|(a,t\']E)t’ NE}QI‘M & Pollen, DA (|198t5)- Tc'pat'f’“ v

; ; - : and temporal selectivity of neuronesin visual cortical areas

like response of |nterr_ned|ate_ cells as a key me_chanls_,r_n for and V2 of the macaque monkePhy. 365, 331-363.

explaining the properties of view-tuned IT cells, in addition

. . . . 7] Fukushima, K (1980). Neocognitron: A self-organizing neural
to view-based representations (already described in [1, 10]). 71 network mode? for a)mechan%sm of pattern regcognitign unaf-

Neurons in the intermediate layer currently use a very sim-  fected by shift in positiorBiological Cybernetics36, 193-202.
ple set of features. While this appears to be adequate for8] Ito, M, Tamura, H, Fujita, | & Tanaka, K (1995). Size and posi-
the class of paperclip objects, more complex filters might be "~ tion invariance of neuronal responses in monkey inferotemporal
necessary for more complex stimulus classes like faces. Con-  cortex. J. Neurophys. 73, 218-226.



9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

Kobatake, E & Tanaka, K (1995). Neuronal selectivities to
complex object features in the ventral visual pathway of the
macaque cerebral cortéxNeurophys., 71, 856-867.

Logothetis, NK, Pauls, J & Poggio, T (1995). Shape repre-
sentation in the inferior temporal cortex of monkegsirrent
Biology, 5, 552-563.

Nikos Logothetis, personal communication.

Mel, BW, Ruderman, DL & Archie, KA (1997). Translation-
invariant orientation tuning in visual ‘complex’ cells could de-
rive from intradendritic computations. Manuscript in prepara-
tion.

Missal, M, Vogels, R & Orban, GA (1997). Responses of
macaque inferior temporal neurons to overlapping shapes.
Cerebral Cortex 7, 758-767.

Olshausen, BA, Anderson, CH & Van Essen, DC (1993). A
neurobiological model of visual attention and invariant pat-
tern recognition based on dynamic routing of informatidn.
Neurosci. 13, 4700-4719.

Perret, D & Oram, M (1993). Neurophysiology of shape pro-
cessinglmage Vision Comput. 11, 317-333.

Poggio, T. Reflections on how the cortex works. In preparation.

Poggio, T & Edelman, S (1990). A Network that learns to
recognize 3D objectdNature 343, 263-266.

Reynolds, JH & Desimone, R (1997). Attention and contrast
have similar effects on competitive interactions in macaque
area V4.Soc. Neurosc. Abstr. 23, 302.

Riesenhuber, M & Dayan, P (1997). Neural models for part-
whole hierarchies. IddvancesIn Neural I nformation Process-
ing 9, 17-23. MIT Press.

Ullman, S (1996)High-level vision: Object recognition and
visual cognition. MIT Press.



