MASSACHUSETTS INSTITUTE OF TECHEOLOGY

PROJECT MAC
Artificial Intelligence
Memo. No. 163 August 1968
Revised April 1970
HOLES

Patrick H. Winston

This memo originally had two parts. The
first dealt with certain deficiencies in

an early version of Guegman's program, SEE.
The problems hawve been fixed, and the cor-
responding discussion has been dropped frem
this memo. The part remaining deals with
line drawings of objects with holes.

Part II: Holes in Objects

Guzman's program does not work very well on holes. The scene of
figure 10 is identified as two objects. Humans do a little better but
do not know how. If one selects a typical human and asks how he iz sure

something is a hole rather than a second object, he usually complainsg that
it just cannot be any object.

Figure 10. A hole.

I do not think we identify holes through elimination of other candi-
dates. But then the question is What is it in a conglomeration of lines
that we call a hole such that we do indeed call it a hole. To answer

this question, I examine a number of obscured holes to determine what is
sufficient for the identification of holeyness.

In figure 11, one sees that the arrow alone does not help much. The
arrow might represent a hole, but an upended brick or wedge are alsoc

7

Figure 11, The arrow of a hole.

possible.

4

2

The arrow together wit'. an L are better. Examine figure 12. Om
the right one has a halef while on the left one has a brick resting on a
wedge. The only difference is the direction of the arrowed line. Figure
13 shows intermediate cases. Most people agree that on the right one has
an oddly shaped hole, while on the left, a lopsided brick. The emergent
rule seems to be: If the directiom of the further line of the L is
parallel te the center line of the fork, then no hole; 1f the direction
is parallel to the other line of the fork, then a hole is quite likely;
intermediate directions indicate situations between these bounds.

L

Figure 12. A hole and a brick.

&

The pyramid and wedge are also possible, but only if viewed from a degen=
erate angle; notice that the lines observed to be parallel lese that feature
under perturbation except in the case of a heole.

/(

Figure 13, A poor hele and a poor brick.

Figure 14, Adding s fork.

&

Adding the bottom of the hole does not add much as cne can see in
figure 14. 1In one case we have a hole; in another, an upended brick; and
without the L, complete ambiguity just as before. WNaturally in the case
of heles with bottoms it is useful to do a simple check to see 1f the hole
goes all the way through.

Turning to the solo T joint as seen in figure 15, one notes first of
all that Guzman's program fails to bind. Humans have a hard time too.
Tdepntificatlion in these caseés seems to be global and vapgue, perhaps since
go little evidence is present.

In any case, the explanation of the through line of the T decldes the
case., If it makes sense as an edge of some known object, there is probably
no hole; otherwise, hole. How to derive the necessary explanation is khe
next question, and I have no good answer to that yet. Attaching an L to
the T does not change the test. A sceéne similar to that of figure 15 can
be drawn to sepport this conclusion. Figure 16 shows that a fork also makes
no change. Again the decision between hole and obscured object lies in
the explanation of the through line of the T.

Finally, with unobscured heles (figure 10}, one has all of these
factors working together. Moreover, the connectiom of the T to the arrow

via the L is local evidence that the through line of the T is not an edge
of some cbscuring body.

I submit that correct identification of the parts of the scene in
figure 17 would be a good final exam for a hole pregram. Guzman's
program would suggest 1-2-3 and 4-5-6-7-8-5-10 as ebjects using bottom of
the barrel heuristics. 1 think the ideas of Part 1 and Part II allied
with a lot of sweat and cursing eould handle the job.

Figure 15. The T joint.

Figure 16, Adding a fork.

L0

Figure 17.

The final exam.

L LS = E O '-'-1 L EY
ﬁph\ VA
— - e
Part I: Holes in Guzman's Program E{?f}f A7 e i #4

*
Guzman's program amalgamates reglons Into objects adroitly and,

for the most part, the resultant partitionings are in harmony with
human tastes. This is particularly impressive since the knowledge of
the world built into the program is so slight.

But while the program is a remarkable achievement indeed, it can
be fooled by scenes with which humans have no trouble. Guzman himself
reports some situations in which the program is too conservative and
fails to unite all parts of certain abje:ta.** Beyond these, it is also
possible to find situations in which the program is too liberal. Consider
figure 1. Surprisingly, the three blocks are reported as a single object!:
The fault lies with the two fork joints indicated by the arrows. These
joints create spurious links which are sufficient te bind everything
together.

QB

Figure 1. A bad scene for Guzman's program.

*HhC—HrJST- A.L. Ko. 139,
ek
See Cuzman, pages 42, 45, and 47.

The scene in figure 2a also causes a blunder. Here the same linkage
combination that binds regions 1 and 2 of the wedge also binds regiom 2 to
region 3. Both objects are reported as a single object. Curiously,
turning the wedge around, as In figure 2Zb, eliminates the problem.

strong links: ==
weak links: s

Figure 2. Another bad scene.

There are at least three possible approaches to improvement: tuning
the program, providing the program with more information, and integrating
the program with an object recognizer., Tuning refers teo adding te or
glightly modifying the basic heuristics of the program. This seems fruit-
less. Most ideas that help the program over these examples foul it wup
somewhere else.

Giving the program more information has promise in situations where
a scene happens to be recorded from a bad angle. By this I mean that
the program would be cautioned against psemdo-joints of various kinds
whose hoax can be exposed through infintesimal perturbation of the viewer's
angle. Hence the T joints in figure 3 would be identified as degenerate.
gince perturbation of the viewer's angle changes them into an arrow and &
fork. On the other hand, the Te of figure & are persistant since they

remain Ts under any infintesimal perturbation of the viewer's angle.

t

Figure 3. Degenerate Ts

Figure 4. Persistant Te.

In cases where perturbation of the degenerate T results in an arrow
ot fork, the appropriate binding could, of course, be effected with the
usual confidence. 1In other cases such Ts would vield misleading linkage
were they not identified as degenerate. Joints indicated by arrows in
figure 5 illustrate this poinc. Checking the validity of the five other
joints that cause binding should be similarly helpful.

2 — =
<Gy — 0.

Figure 5. More degenerate Is.

The third way te improve performance iz more radical, difficult, and
potentially powerful. Rather than organize the system in the vertical
chain of figure &, one would marry region partitioner and object identifier
When the object identifier finds & proposed group of regions unseemly,
control would pass to a routine that trieste split the group into more
palatable subgroups which are again checked by the cbject identifier. Imn
the case of figure 1, such a program would have a good hint. Hotice that
the linkage pairs that bind up 1-2-3, &-5=6, and 7-8-9 all occur across &
single line as follows:

But the linkage pair that binds 3=7 and causes the trouble involves

two separated lines. This seems wesker. Noticing this, the regrouping
program would correctly propose 1-2-3, &4=5=6, and 7-8-9 as objects, which
in turn would be confirmed by the object identifier.

<
J

I FIND LIMES

GROUF REGIONS
INTO OBJECTS

IDENTIFY OBJECIS J

!

Figure &. Elementary vision system organization.

This particular heuristic is not useful in the case of figure 2a
gince the same kind of joint both correctly binds together the wedge and
incorrectly binds the wedge to the block., Toe K jolnt might save the day
here (Guzman's program does not use the K joint at all)}. I think the K
offers evidence that region 3 should be bound to either 2 or 4 but not
both. Given this, the regrouping program would try two alternatives. One
would be to add & link between 2 and 3 while breaking the link between 3
and &, This brings no improvement. The other pogsibility would be to
add a link between 3 and 4 and break thoze between 2 and 3. Victoery.

The region identifier discovers a wedge and a brick.

The regrouper should also be equipped to try binding regions on the
gtrength of a common edge, particularly when this invelves a region that
is otherwise unbound. This would allow the cbject of figure 7 to be
identified as a wedge rather than twe single-region cbjects.

N\

Figure 7. A troublesome wedge.

Resmarks on the nature of an object identifier must be even more
gystical at this point. One or two not very well substansiated views
may be worth mentioning however.

First, I do not think extension of cccluded limes 1z a2 very good way
to identify obscured objects. For onme thing, there are cases in which the
line extender would have to propose more than one extension possibility.
Figure 13, te be seen in Part I, displays an example of such a scene.
Secondly, reasonably extended lines often do nmot help much. Figure]
looks like twe bBlocks, but it is difficult to imagine how line extension
could contribute to that conclusion.

Figure B. Two blocks.

Instead, I think recegnition should be done by a description matching
routine capable of matching observed features against models while excusing
absent features that may logically be obscured.

Finally, these models might be arrayed in a preference list. Higher
positions on the list would be reserved for several object types: si=ple
objects; objects the program is told to leook for; and objects already found
in the surround. An unknown would be compared to these in turn. Thus the
obscured cbject in figure 9 could be identified as a wedge or cube depending
on which the program is looking for or which predominates in the rest of
the scene.

If no match 1s found on the list, a regrouping of regions could be
tried or the cbject could be described as & near match with some flaw.

Figure %, Use of the preference list.

