
Coordinate-Independent Computations

on Di�erential Equations

by

Kevin K. Lin

Last revised March 27, 1998

c Massachusetts Institute of Technology 1997. All rights reserved.



Coordinate-Independent Computations

on Di�erential Equations

by

Kevin K. Lin

Abstract

This project investigates the computational representation of di�erentiable manifolds, with

the primary goal of solving partial di�erential equations using multiple coordinate systems

on general n-dimensional spaces. In the process, this abstraction is used to perform accurate

integrations of ordinary di�erential equations using multiple coordinate systems. In the case

of linear partial di�erential equations, however, unexpected di�culties arise even with the

simplest equations.

This report is a revised version of a thesis submitted to the Department of Electrical Engi-

neering and Computer Science in Septembr 1997 in partial ful�llment of the requirements

for the degree of Master of Engineering.

This report describes research done at the Arti�cial Intelligence Laboratory of the Mas-

sachusetts Institute of Technology. Support for this research is provided in part by the

Advanced Research Projects Agency of the Department of Defense under O�ce of Naval

Research contracts N00014-96-1-1228 and N00014-92-J-4097.

2



Acknowledgments

As is the case with any undertaking, there are far too many people I should thank. If I

neglected anyone, it is purely out of failure of memory and I hope they won't hold a grudge.

To begin, I would like to thank Norman K. Yeh and Mariya Minkova for proof-reading my

thesis proposal, and Tim McNerney for suggestions on how to present manifolds. Because

of them, the presentation is much better than the rambling mess that was the �rst draft.

To the folk at Project Mathematics and Computation, especially Daniel Coore and Jim

McBride: Thanks for the stimulating (and sometimes late-night) discussions on life, the

universe, and everything. Thanks are also due to Eric Grimson, Thanos Siapas, and Ken

Yip for crucial references, to Hardy Mayer and Michael Chechelnitsky for many helpful

conversations on PDEs, and to Rebecca Bisbee and Anne Hunter for making sure that all

the important things got done.

Portions of this work was supported by the Barry M. Goldwater Foundation, without

whose help it would have been di�cult to get this far.

I am forever indebted to my teachers throughout the years: To Mr. Reyerson at BCP,

and Professors Flanigan and Morris at SJSU, for introducing me to mathematics; to Pro-

fessors Munkres, Guillemin, and Wisdom for being such great teachers; and �nally, to

Gerald Jay Sussman, who has helped shape my interests, guided my work, and above all

else encouraged me onward as I took the �rst faltering steps into a world of breathtaking

wonders.

To my family and all my friends: You have made a great di�erence, and I could not

have made it without you.

Still round the corner there may wait

A new road or a secret gate;

And though I oft have passed them by,

A day will come at last when I

Shall take the hidden paths that run

West of the Moon, East of the Sun.

|J. R. R. Tolkien

3



To Grandpa.

1908{1994

4



Contents

1 Introduction 8

2 Ordinary Di�erential Equations and Manifolds 10

2.1 A brief introduction to manifolds . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 The spherical pendulum . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Di�erentiable manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Tangent vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.5 Smooth maps and di�erentials . . . . . . . . . . . . . . . . . . . . . 20

2.1.6 Tangent bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.7 Making new manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.8 Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Vector �elds and di�erential equations . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Smooth vector �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Flows generated by smooth vector �elds . . . . . . . . . . . . . . . . 28

2.2.3 Manifolds and classical mechanics . . . . . . . . . . . . . . . . . . . 30

2.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 The circle �eld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 The spherical pendulum . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Rigid body motion and coordinate singularities . . . . . . . . . . . . 41

2.4 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Linear partial di�erential equations 52

3.1 Partial di�erential operators on manifolds . . . . . . . . . . . . . . . . . . . 53

3.2 Approaches to discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Finite di�erences on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Generating coe�cients for irregular sample points . . . . . . . . . . 59

3.3.2 Solving linear algebraic equations . . . . . . . . . . . . . . . . . . . . 61

3.3.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5



3.4 Finite elements on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.1 Integration on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.2 More about boundaries . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.3 Computing with �nite elements on manifolds . . . . . . . . . . . . . 77

3.4.4 Local �nite-elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.5 Basic FEM algorithm on manifolds . . . . . . . . . . . . . . . . . . . 85

3.4.6 Interpolation between charts . . . . . . . . . . . . . . . . . . . . . . 88

3.4.7 Some numerical results. . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.8 The problem with interpolation . . . . . . . . . . . . . . . . . . . . . 98

3.4.9 Other approaches to FEM on manifolds . . . . . . . . . . . . . . . . 102

3.5 Some comments on mesh generation . . . . . . . . . . . . . . . . . . . . . . 113

3.6 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.6.1 Improvements to �nite di�erences . . . . . . . . . . . . . . . . . . . 114

3.6.2 Improvements to �nite elements . . . . . . . . . . . . . . . . . . . . 115

3.6.3 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4 Hyperbolic equations 116

4.1 The linear wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2 Initial value problems and characteristics . . . . . . . . . . . . . . . . . . . 118

4.2.1 Characteristic curves for a �rst-order equation . . . . . . . . . . . . 119

4.2.2 Characteristics for general equations . . . . . . . . . . . . . . . . . . 120

4.2.3 Variational principles revisited . . . . . . . . . . . . . . . . . . . . . 121

4.2.4 Galerkin's method and the initial value problem . . . . . . . . . . . 123

4.3 Variations on a theme of Lagrange . . . . . . . . . . . . . . . . . . . . . . . 124

4.3.1 Modifying the action principle . . . . . . . . . . . . . . . . . . . . . 124

4.3.2 Modifying the domain . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.4 Di�culties with the spacetime approach . . . . . . . . . . . . . . . . . . . . 136

4.4.1 Why the variations failed . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4.2 Other problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.5 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A Background Material on Partial Di�erential Equations 139

A.1 Matrix inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.1 Iterative methods and relaxation . . . . . . . . . . . . . . . . . . . . 139

A.1.2 Jacobi iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.1.3 Gauss-Seidel iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.1.4 Overrelaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6



A.2 A brief introduction to �nite elements . . . . . . . . . . . . . . . . . . . . . 141

A.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.2.2 Partial di�erential equations . . . . . . . . . . . . . . . . . . . . . . 142

A.2.3 The Rayleigh-Ritz Method . . . . . . . . . . . . . . . . . . . . . . . 144

A.2.4 Galerkin's method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B Integration of Di�erential Forms on Manifolds 151

B.1 Stokes's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7



Chapter 1

Introduction

Partial di�erential equations1 arise naturally in a large variety of physical problems. Like or-

dinary di�erential equations, the majority of partial di�erential equations cannot be solved

analytically save in special cases. Thus, e�cient and accurate numerical solutions of partial

di�erential equations are essential in many applications. However, unlike ordinary di�eren-

tial equations, the solution of even linear partial di�erential equations can be a non-trivial

task. There are no general methods that apply to all types of partial di�erential equations,

and it is often necessary to exploit special structures in the problem at hand.

This project explores the the numerical solution of partial di�erential equations using

coordinate-independent representations. It was hoped that this approach makes possible

the use of whatever coordinate system that happens to simplify the problem locally, so

that we can exploit the structure and locality of interaction inherent in many physical

systems. This should provide more accurate solutions as well as insights into the physical

and mathematical structure of problems. In addition, it may also help us reformulate such

problems for distributed computers. Despite all these hopes, however, a large portion of

this project is devoted to the study of ordinary di�erential equations. This is because the

manifold abstraction arises naturally in the study of classical mechanics, which is described

by ordinary di�erential equations. Furthermore, the formulation and solution of ODEs on

manifolds is much more natural and straightforward than for PDEs.

The rest of this document, then, is divided into three chapters and two appendices.

The �rst chapter develops the idea of di�erentiable manifolds and other basic concepts

from modern di�erential geometry, and applies these concepts directly to the representa-

tion and solution of ordinary di�erential equations, particularly those arising from classical

mechanics. Next, partial di�erential equations are discussed; for simplicity, the discussion

is restricted to simple scalar linear equations, such as Laplace's equation over regions in the

1Often referred to as PDEs for short, just as ordinary di�erential equations are ODEs.

8



plane; the focus on low-order linear equations in low dimensions makes available analytical

solutions, so that we can check our numerical results. Finally, the coordinate-independent

solution of equations involving time, such as the linear wave equation, is investigated; in

this context, the spacetime representation of equations (rather than the traditional \space

+ time") seems most natural.

While the manifold abstraction works beautifully with ordinary di�erential equations,

some unexpected di�culties arise when dealing with even the simplest partial di�erential

equations. Thus, most of the methods described herein, with one notable exception, actually

do not work all that well, and in some cases completely fail. Thus, there is much work to

be done. However, given the limited scope and time scale of this project, not all possible

solutions to these problems can be adequately explored. It is hoped that these ideas can be

explored more fully in the future.

Appendix A includes relevant background material on partial di�erential equations.

In particular, it presents the numerical methods that form a basis for this project, as

well as some important geometric and analytical properties of partial di�erential equations.

Appendix B contains some material on the theory of manifolds that was not directly needed

in this project. Complete program listings are not included in this report; interested readers

should contact the author by electronic mail at kkylin@alum.mit.edu for more information

on how to obtain the source code.

The entire document, including the material on abstract manifolds, suppose only a

strong background in linear algebra and advanced calculus; little familiarity with more

advanced mathematics is assumed. Also, it is helpful, though not necessary, to be acquainted

with classical mechanics in Chapter 2, and x4.3.1 presumes some acquaintance with the basic

concepts of relativity.

Finally, a note about the presentation: Throughout this document, programs imple-

menting the main ideas will be presented alongside the mathematics. This serves a few

di�erent purposes: First, because this project is fundamentally about computational tech-

niques, it would not be complete without actual programs. Second, it is often the case that

seeing something presented in di�erent ways aids in understanding, especially in subjects

involving a signi�cant amount of abstraction. Furthermore, programming languages, by

their very nature, force one to be as careful with the details as with the main concepts,

something that math and physics texts sometimes neglect. The language chosen for this

project is Scheme, a dialect of Lisp. The choice is primarily based on the exceptional ease

and exibility with which Scheme expresses mathematical concepts; good references for the

language are [9] and [2].

9



Chapter 2

Ordinary Di�erential Equations

and Manifolds

This chapter describes the computational representation of manifolds, as well as their use

in the formulation and numerical solution of ordinary di�erential equations. As motivat-

ing examples for the main de�nitions, problems in classical mechanics are presented using

the manifold formalism. In following chapters, some ideas for integrating linear partial

di�erential equations using multiple coordinate systems are treated.

For a good reference on advanced calculus as well as an elementary introduction to

manifolds, Munkres [21] is excellent. Also, Guillemin and Pollack give a beautifully lucid

exposition on the topology of manifolds [14]. A more technical and abstract treatment is

given in Warner [28], and the classic by Arnold [4] presents manifolds in the context of

classical mechanics|An approach followed closely in spirit in this chapter.

2.1 A brief introduction to manifolds

This section introduces the basic notions using a physical example, which will be revisited

from time to time as new concepts are developed.

2.1.1 The spherical pendulum

A good starting point for the study of manifolds is a variation on the classical pendulum,

the spherical pendulum (see Figure 2-1): Suppose a point mass of mass m is connected to

a �xed point by a massless rod of length l. Furthermore, suppose that the point mass is

allowed to move freely in any angle (not simply constrained to a vertical plane, as in the

usual pendulum), and that it is subject only to a uniform gravitational �eld of constant

magnitude g.

10



Figure 2-1: The spherical pendulum.

The equations of motion for this problem are easy to derive. However, instead of de-

riving the equations to analyze properties of the motion, let us focus on some of the more

fundamental issues in a complete mathematical description of the problem. As we will see,

this problem illustrates most of the basic ideas in the theory of manifolds.1

First, consider the problem of specifying the con�guration of the system. What informa-

tion do we need to specify the position of the pendulum? Since the point mass is constrained

to move at a constant distance l from the fulcrum, the problem of specifying con�gurations

of the spherical pendulum is equivalent to the problem of locating points on a sphere.

In order to specify points on a sphere, there are a couple of alternatives. One natural idea

is to use the fact that the two-dimensional sphere sits inside three-dimensional Euclidean

space, and to use the coordinates of R3 to parametrize the sphere. Unfortunately, this

approach is natural only for the sphere, and there are many important abstract spaces

that cannot be easily visualized as subspaces of Euclidean space, such as the space of all

orientations of a rigid body (which will be discussed later). Furthermore, in numerical

integrations of ODEs, it will often happen that the trajectory \veers o�" the sphere due

to the accumulation of round-o� error, and the constraint that the point mass lies at a

constant distance l from the origin would no longer hold.

Another approach is to put coordinate systems on the sphere that require only two

parameters. Formally, these are di�erentiable one-to-one mappings that map subsets of the

sphere onto subsets of the plane and for which a di�erentiable inverse exists. This turns out

to be a well-studied problem, since cartographers must deal with the fact that the surface of

1The ordinary pendulum, often used to illustrate important physical concepts, is not complicated enough

geometrically to bring out the di�culties that manifolds were invented to handle.

11



the Earth is spherical (approximately) but maps are at (Euclidean). The usual examples

of map-making projections, such as the Mercator projection (cylindrical coordinates) or the

system of longitudes and latitudes (spherical coordinates) are all examples of coordinate

systems on the sphere. Note that there exists no two-parameter coordinate system that

covers all of the sphere in a continuous fashion, but for every point on the sphere, we can

always �nd a coordinate system that parametrizes a neighborhood of the point using a pair

of parameters, so that the parametrization matches the dimension of the space.

In addition, in cartography, there is a natural solution to the problem that no coordinate

system covers all of the Earth: We can simply use more than one map. We can simply

switch to another map when one map becomes nearly useless. All that is required is some

systematic way of �guring out when coordinates in two di�erent maps are in fact the same

point on the sphere, so that one could switch between maps without getting lost. This

idea has been generalized beyond recognition to form the foundation of modern di�erential

geometry, and spaces covered by maps (usually called charts) that make the space look

\locally Euclidean" are called manifolds.

2.1.2 Di�erentiable manifolds

These ideas can be formulated mathematically as follows: Let M be a non-empty set of

points,2 and let n be some �xed positive integer. An n-dimensional chart on M is a triple

(U; V; �), where U is a subset of M , V an open subset of Rn, and � a one-to-one map of

U onto V (see Figure 2-2). � is a coordinate map, and a chart (U; V; �) is said to contain

a point p 2 M if U contains p. Given two charts C1 = (U1; V1; �1) and C2 = (U2; V2; �2),

suppose the intersection U1 \ U2 is non-empty, and let Wi be the image �i(U1 \ U2) for

i = 1; 2. We can then form a transition map, �2 � ��11 , which is a bijective mapping from

W1 to W2. Note that the inverse of this transition map is �1 � ��12 , which is represented by

the same set of lines in Figure 2-2 with the arrows reversed. Now, if W1 and W2 are both

open subsets of Euclidean n-space, then it makes sense to talk about the di�erentiability of

the transition map �2 � ��11 , and the charts C1 and C2 are said to be compatible if W1 and

W2 are open and the corresponding transition map is smooth, i.e. has all orders of partial

derivatives.3 A collection A of charts on M is called an atlas if all its charts are mutually

compatible, and if every point of M is contained in some chart in A.4 M , together with an

2In theory, points in an abstract space need not necessarily be points in a Euclidean space. They can

also be classes of matrices or other abstract mathematical structures.
3In the present setting, the setsWi are required to be open subsets of Vi (and hence of R

n). An alternative

is to require the subsets Ui of the abstract space M to be open, but to de�ne what that means requires some

knowledge of general topology (which is not assumed here).
4It is easy to check that compatibility of charts is transitive, that is, if C1 and C2 are compatible charts,

and C2 and C3 are also compatible, then so are C1 and C3.

12



1
U

2

W
2

V
2

1
W

1
V

φ
1

φ
2

U

Transition map

Figure 2-2: The sphere with generic charts and a transition map.

atlas A, is called a di�erentiable manifold of dimension n.5

These formal de�nitions may take some time to absorb, but after some thought one

should see that all that this says is that M is completely covered by a collection of maps, so

that given any point p 2M , we can �nd a chart that makes a neighborhood of p look like

an open subset of Euclidean n-space. Thus, the de�nition formalizes the idea of coordinate

systems on abstract spaces, and transition maps allow one to switch between coordinate

systems in a consistent way. This would, for example, allow us to de�ne spheres in a

way that solves the problem of locating points: One simply speci�es a chart and a point,

provided the appropriate charts have been constructed.

Implementation of manifolds in Scheme

The implementation of charts as computational objects is straightforward; it is accomplished

through the procedure make-simple-chart. Make-simple-chart expects �ve arguments:

5Technically, manifolds must also satisfy the \second countability axiom" and be \Hausdor� spaces."

These are rather technical condition and are not crucial for the purposes of our discussion, though some of

the theorems quoted in later sections depend on manifolds being second-countable Hausdor� spaces.

13



Dim, the dimension of the chart; in-domain?, a procedure that takes a point as argument

and returns #t or #f depending on whether the given point is in the chart; in-range?, the

analogous procedure for coordinate vectors in the range of the coordinate map; coord-map,

a computational representation of the function � that maps points in the manifold to co-

ordinate vectors in Rn; and its inverse, inverse-map. The constructor simply packages up

these procedures and provides auxiliary procedures for accessing these methods.

Similarly, the procedure make-manifold constructs manifolds. It takes four arguments:

Dim, the dimension of the manifold; general-find-chart, a procedure that takes a point

p and a list of predicates, and returns a chart C containing p such that every predicate

in the list returns #t when called with C; find-minimizing-chart, which takes a point

p and a real-valued function f on charts, and returns the chart C that contains p and

minimizes f ;6 and get-local-atlas, a function that takes a point p and returns the list

of all charts containing p. Note that, since lists in Scheme must necessarily be �nite, this

means any atlas constructed this way is locally �nite; that is, every point p is contained in

only �nitely many charts.7 However, the fact that everything is implemented procedurally

allows for the possibility that the atlas itself is potentially in�nite. For convenience, there

is also a constructor charts->manifold which takes a �nite list of charts and constructs

the procedures general-find-chart, etc., by searching through this �nite list.

2.1.3 Some examples

One obvious class of examples of di�erentiable manifolds is the Euclidean space Rn. Here,

the atlas consists of a single chart, (Rn
; R

n
; idRn), where idRn is the identity map on Rn.

We can express this example in Scheme as follows:

(define (make-euclidean-space dim)

;; Just need one big happy chart:

;; (test v) = #t iff v is a real vector of length dim:

(let* ((test (make-euclidean-test dim))

(chart (make-simple-chart dim test test identity identity)))

(charts->manifold (list chart))))

Another example is the circle, where two charts are now required (see Figure 2-3):

Removing the point (1; 0) from the circle gives a smooth bijection between the rest of the

6For example, the function f can be a measure of how poorly the chart behaves at p, such as how close

the procedure � � ��1 comes to being the identity map at p and so on. This can be useful in integrating

ODEs on manifolds.
7Note that this is only a restriction on our computational representations of manifolds, not on di�er-

entiable manifolds in general. A manifold, in theory, can have an in�nite number of charts covering a

given point. One should be careful to distinguish between di�erentiable manifolds, which are theoretical

constructs, and their computational representations.

14



Charts

Figure 2-3: The circle as a manifold.

circle and the interval (0; 2�), using the usual angular parametrization. Similarly, removing

the point (�1; 0) gives a correspondence between the rest of the circle and the interval

(��; �). These two charts su�ce to cover the circle.

We can, in fact, generalize such coordinate systems to higher-dimensional spheres. In

dimensions higher than 1, though, no single choice of charts is completely natural. We

could use cylindrical coordinates or spherical coordinates or some other coordinate system.

Each choice has its advantage. However, it is not hard to see that we can always choose

enough charts to cover all of the sphere. Rather than implementing the circle described

above as a special case, here is some code that implements the n-dimensional sphere using

stereographic projection (see Figure 2-4):

;;; Make a chart for the sphere using stereographic projection:

(define (make-stereographic-chart dim pole-dim pole-dir)

(let* ((ubound 5)

(dim+1 (+ dim 1))

(pole (vector:basis dim+1 pole-dim pole-dir)))

(letrec

((in-domain?

(let ((sphere? (make-imbedded-sphere-test dim)))

15



x

p

q

Figure 2-4: Stereographic projection.

(lambda (v)

(and (sphere? v)

(not (almost-equal? (vector:distance^2 v pole) 0))

(< (- (/ 4 (vector:magnitude^2 (vector:- v pole))) 1)

ubound)))))

(in-range?

(let ((euclidean? (make-euclidean-test dim)))

(lambda (v)

(and (euclidean? v)

(< (vector:magnitude^2 v) ubound)))))

(map

(lambda (x)

(let* ((d (vector:- x pole))

(y (vector:* (/ 2 (vector:magnitude^2 d)) d)))

(vector:drop-coord (vector:+ y pole) pole-dim))))

(inverse

(lambda (x)

(let* ((d (vector:- (vector:add-coord x pole-dim) pole))

(y (vector:* (/ 2 (vector:magnitude^2 d)) d)))

(vector:+ y pole)))))

(let ((chart (make-simple-chart dim in-domain? in-range? map inverse)))

(make-spherical-range chart (make-vector dim 0) (sqrt ubound))

chart))))

;;; Construct the sphere:

(define (make-sphere dim)

(charts->manifold (list (make-stereographic-chart dim 0 1.)

(make-stereographic-chart dim 0 -1.))))

Stereographic projection works as follows: Let i be an integer between 1 and n, and let

p be a vector of the form �ei, where ei is the ith canonical basis vector of Rn. Then each

point q on the sphere is mapped to the plane fxi = 0g by de�ning x to be the point where

the straight line joining p and q intersects the plane. This creates a bijection between the

set Sn � fpg and the plane fxi = 0g, which can be identi�ed with Rn�1 by dropping the

ith coordinate. This de�nes a chart. The relevant formulae are easy to derive and are left

as an exercise for the reader. In the program above, the variable pole-dim represents the

16



U

v

V

p

φ

x

Figure 2-5: A local tangent vector.

index i; it is the dimension singled out for de�ning the point p (which is the vector pole).

Pole-dir speci�es whether p is +ei or �ei.
Notice that it took quite a bit of work to de�ne such a simple manifold; the implemen-

tation of spherical coordinates is even more involved. However, the manifold abstraction

lets us separate the de�nition of the actual space from operations we would like to perform

on the abstract space, such as integrating a di�erential equation. It makes these tasks

independent of each other.

2.1.4 Tangent vectors

The manifold construction described above only provides a way for specifying positions of

the pendulum. In order to completely capture the dynamical state of the problem, we also

need a way to describe the velocity of the point mass.

Consider the evolution of the pendulum: As time goes on, the point mass traces a path

on its con�guration space, the 2-sphere. We can describe the position at each instant t

by a 3-vector (t) whose distance from the origin is the constant l. The velocity is then

the derivative _. Since the path is imbedded in the 2-sphere, _(t) must be tangent to the

sphere itself. Conversely, if a vector v is tangent to the 2-sphere at some point p, then there

exists a smooth path  lying entirely in the sphere such that (t) = p and _(t) = v for

some t, so that every vector tangent to the 2-sphere describes the velocity of some possible

path of the pendulum. Velocities, then, are naturally described by vectors tangent to the

con�guration manifold, and we can de�ne velocities for arbitrary con�guration spaces by

generalizing tangent vectors to manifolds.

We can arrive at a general de�nition of tangent vectors on manifolds as follows: First,

17



note that if we are given a chart C = (U; V; �), then locally a tangent vector at p 2 U can

be represented by a vector v \anchored" to the coordinate vector x = �(p) in the chart (see

Figure 2-5). We call the object (C; p; v) a local tangent vector. Now, in order for tangent

vectors to be coordinate-independent, there must be a consistent way of transforming them

between charts, and locally they must always behave like the derivatives of paths. That

is, if C1, C2, and C3 are overlapping charts, and  is a path on M , then there should be

locally-de�ned transformations Tij such that �j � = Tij ��i�, and such that the derivative
of �i �  in Ci is carried to the derivative of �j �  in Cj . This requires that applying T12

to some vector v, followed by T23, yields the same result as applying T13 directly. In view

of the chain rule, the transformation Tij must be the transformation represented by the

Jacobian matrix D(�j � ��1i ) of the transition map. Thus, we can say two local tangent

vectors (C1; p; v1) and (C2; p; v2) at p are equivalent if D(�2 � ��11 )(x) � v1 = v2, where

x = �1(p). The tangent vector corresponding to a given local tangent vector (C; p; v) can

then be de�ned as the set of all local tangent vectors equivalent to (C; p; v). The space of

all tangent vectors at a given point p is the tangent space of M at p, denoted by TpM . The

union of all tangent spaces is denoted by TM and is called the tangent bundle.

This construction de�nes tangent vectors as equivalence classes. Now, each of these

equivalence classes, and hence each tangent vector, can be in fact a rather large set of local

tangent vectors.8 While this may seem too abstract to be useful, one should realize here

that any local tangent vector in the equivalence class can be used to represent the tangent

vector, and the important thing is that there is a consistent rule for transforming local

tangent vectors between charts. Similarly, the intrinsic structure of the manifold arises

from the way charts overlap, and whether or not the manifold happens to be a subspace

of Euclidean space is of secondary importance. In fact, as stated before, there are many

important examples of manifolds that are most naturally de�ned in ways that make them

hard to describe as subsets of Euclidean spaces, although in principle this can always be

done.9

One last remark: A manifold as we have de�ned it has an intrinsic notion of smoothness,

but has no intrinsic notions of distance or size. The property of smoothness is stronger than

that of continuity, but not as strong as having a metric for measuring the distance between

points. Thus, our constructions in this section have shown that the idea of tangent spaces

8In theory, these equivalence classes can potentially be uncountably in�nite sets. However, the local

�niteness requirement in x2.1.2 forces such equivalence classes to be �nite, and hence they are representable

computationally. These can still be rather large sets, though, if many charts cover a given point.
9The result that every abstract n-manifold can be imbedded as a subspace of some Euclidean space RN

is known as the Whitney imbedding theorem. Whitney also showed that there always exists an imbedding

such that N � 2n. However, the proof of this theorem requires some rather complicated constructions and

hence such imbeddings almost never provide much insight into how one could visualize manifolds.

18



is really a property of the di�erentiable structure of the manifold (i.e. its atlas), and not

a metric property. A manifold where a particular metric is de�ned is called a Riemannian

manifold; the de�nition of such a metric relies on de�ning inner products in a smooth way

on the tangent spaces of a manifold, using the same methods that we have been using. They

are important in applications of di�erential geometry to physics, but will not be needed in

this chapter.

Tangent vectors in Scheme

The implementation of tangent vectors is easy. The constructor make-tangent simply

packages up the structures for de�ning a local tangent vector into a convenient Scheme

object:

(define (make-tangent chart p v)

;; p is the (abstract) point to which v is tangent, and v is the *coordinate

;; representation* of the tangent vector in the coordinates provided by the

;; given chart.

(vector 'tangent chart p v))

Though it is not necessary for later work, it is instructive to consider the tangent space

as a vector space. For example, how does one de�ne addition on the tangent space TpM?

One can de�ne vector addition for tangent vectors as follows:

;;; Add two tangent vectors:

(define (tangent:+ v w)

(let ((p (tangent:get-anchor v))

(q (tangent:get-anchor w)))

(if (equal? p q)

(let ((chart (tangent:get-chart v)))

(make-tangent chart

p

(vector:+ (tangent:get-coords v)

(chart:push-forward w chart))))

(error "Cannot add vectors tangent to different points."))))

;;; Push a tangent vector along a chart:

(define (chart:push-forward tv chart)

(let ((other (tangent:get-chart tv))

(v (tangent:get-coords tv)))

(if (eq? chart other)

v

(push-forward-in-coords

(chart:make-transition-map other chart)

(chart:point->coords (tangent:get-anchor tv) other)

v))))

(define (push-forward-in-coords f x v)

(((diff f) x) v))

19



The expression (chart:push-forward w chart) computes the image of the tangent

vector w under the transition map �2 � ��11 , and (((diff f) x) v) applies the Jacobian

matrix of f at x to the vector v. The procedure tangent:get-anchor extracts the point p,

which we call the anchor of the tangent vector, from the local tangent vector (C; p; v). Other

operations on tangent vectors can be de�ned in a similar fashion, and scalar multiplication

is even simpler:

(define (tangent* a v)

(make-tangent (tangent:get-chart v)

(tangent:get-anchor v)

(vector:* a (tangent:get-coords v))))

2.1.5 Smooth maps and di�erentials

Having de�ned di�erentiable manifolds, the next natural step is to see how of the usual

notions of the calculus carry over. For the sake of simplicity, only the concepts of di�erential

calculus are discussed in this section; a discussion of integration on manifolds would take

us too far a�eld and is thus postponed until the next chapter, where integration becomes a

necessary tool.

Recall that in the de�nition of tangent vectors, charts were used to make the manifold

look locally like Euclidean space, where tangent vectors are well-de�ned. We can de�ne

di�erentiable functions analogously. Let M and N be two di�erentiable manifolds, and let

f be a function from M to N . Let p be any point of M and q = f(p) 2 N . Then f is

smooth or di�erentiable if for every chart (U; V; �) containing p and every chart (U 0; V 0; �0)

containing q, the function �0 � f � ��1 mapping V to V 0 is smooth; that is, if �0 � f � ��1,
as a mapping from one subset of an Euclidean space into another, has all orders of partial

derivatives. By extension, f is a real-valued smooth function on M if it is smooth as a

map from M into the manifold R, where R is given the canonical atlas f(R;R; idR)g, and
smoothness is de�ned as above. It is easy to verify that when M is Rn, this de�nition of

smoothness is equivalent to the usual one.

Let us now consider the idea of derivatives. As we saw in the discussion of tangent

vectors in 2.1.4, derivatives of transition maps provide a natural way to transform tangent

vectors from one coordinate system to another. Generalizing this observation, we can say

that derivatives of smooth maps between manifolds should transport tangent vectors from

one tangent space to another. This is, in fact, not that di�erent from the use of gradients

in vector calculus: The directional derivative of a real-valued function is the dot product

of its gradient and a unit vector in some given direction. Furthermore, if v is the value of

the gradient of a function at some point, and w is a vector, then mapping w by the linear

transformation A to the vector Aw while keeping v � w an invariant quantity requires that

v be mapped to vA�1. Thus, coordinate representations of gradients actually change by a

20



transformation opposite that of vectors. This shows that derivatives evaluated at a given

point are not vectors, but are linear functionals. This is exactly the kind of duality captured

by the use of row and column vectors in elementary calculus.

More formally, let M and N be di�erentiable manifolds, and let f be a smooth function

from M to N . Let p be any point in M , and let q = f(p). Consider the map that takes a

local tangent vector (C; p; v), C = (U; V; �), to (C 0; q; w), C 0 = (U 0; V 0; �0), where

w = D(�0 � f � ��1)(�(p)) � v: (2.1)

One can easily check that if two local tangent vectors represent the same tangent vector

in TpM , then their images under this map also represent the same tangent vector in TqN .

Thus, the mapping can be used to de�ne a map dfp from the tangent space TpM to TqN .

Furthermore, one could see from the de�nition that the map is linear on local tangent

vectors in the same chart, and hence dfp is a linear transformation between tangent spaces

as well. The function df that assigns to each point p the linear transformation dfp is the

di�erential of f .

Note that, in this notation, the chain rule can be stated very simply:

d(g � f)p = dgq � dfp; (2.2)

where q = f(p). This simply restates the usual chain rule while making the role of the

di�erential as a mapping between tangent spaces explicit.

Computing di�erentials of smooth maps

The implementation of smooth maps is complicated by the implementation of di�erentia-

tion in Scheme.10 As a result, the constructor make-smooth-map takes four arguments: A

10The problem is that the di�erentiation of functions in our Scheme system depends not only on the values

of the function over its domain, but also on the procedures that compute the function. In particular, the

procedure to be di�erentiated must be a compsosition of elementary functions, such as sin, cos, and exp.

Di�culties arise, then, in situations where a smooth map is \di�erentiated twice."

More precisely, let M and N be di�erentiable manifolds, and let f be a smooth map from M to N . We

can de�ne the function Tf from TM to TN by:

Tf(p; v) = (p; dfp(v)); (2.3)

where we have used the short-hand (p; v) to denote a tangent vector v in TpM and its anchor p.

Since tangent vectors are computationally represented by local tangent vectors, the procedure that com-

putes Tf(p; v) needs to �rst �nd a chart of N containing f(p). When computing Tf , the function must

choose a chart in the range of f before it could di�erentiate the transition function �0 � f � ��1 (where � is

a coordinate map on M and �0 a coordinate map on N). Thus, the procedure computing Tf is no longer a

composition of primitive procedures because of this need to choose a chart in N , and the system encounters

errors when attempting to compute T (Tf) directly. One must therefore take care in forming transition

functions using smooth maps.

21



manifold, domain; another manifold, range; a procedure that actually computes the func-

tion, point-function; and a procedure that constructs transition maps, make-transition.

However, for most purposes, smooth maps can be constructed using make-simple-map,

which only needs the �rst three arguments and requires that point-function is a com-

position of primitive Scheme functions. Another procedure, make-real-map, is also pro-

vided for convenience; it packages a real-valued function on a manifold into a smooth-map

structure. Smooth maps cannot be called directly as functions, but may be applied using

apply-smooth-map.

Here are some examples that will become useful when we discuss Lagrangian mechanics:

;;; Euclidean 3-space...

(define R^3 (make-euclidean-space 3))

;;; And its tangent bundle.

(define TR^3 (make-tangent-bundle R^3))

;;; The Lagrangian for a particle traveling in a uniform graviational field.

;;; It's just the difference between the kinetic energy, 1/2*|v|^2, and the

;;; potential energy, z, where v is the velocity and p = (x,y,z) is the

;;; position (in 3-space) of the point mass (assume m = l = 1).

(define falling-lagrangian

(make-real-map

TR^3 (lambda (p)

(- (* 1/2 (vector:magnitude^2 (tangent:get-coords p)))

(vector-third (tangent:get-anchor p))))))

;;; This restricts the Lagrangian above to the unit sphere, effectively forming

;;; a Lagrangian for the spherical pendulum.

(define S^2 (make-sphere 2))

;;; Define the identity map from the 2-sphere into 3-space, then differentiate

;;; it to extend the function to the tangent bundle.

(define spherical-inclusion

(smooth-map:diff (make-simple-map S^2 R^3 identity)))

;;; This composition restricts the domain of the Lagrangian to the 2-sphere.

(define spherical-lagrangian

(smooth-map:compose falling-lagrangian spherical-inclusion))

Here's an example of how the function can be used:

;;; The tangent bundle of the sphere is the state space of the spherical

;;; pendulum:

(define TS^2 (make-tangent-bundle S^2))

22



;;; Define the south pole of the sphere.

(define p (vector 0 0 -1))

;Value: p

;;; Find a chart.

(define chart (manifold:find-chart S^2 p))

;Value: chart

;;; Make a tangent vector.

(define v (make-tangent chart p (vector 0 1)))

;Value: v

;;; Compute the Lagrangian. Note that, because Euclidean spaces are all

;;; constructed using a single procedure, elements of R^1 are actually vectors

;;; containing a single element, *not* real numbers (as is customary).

(apply-smooth-map spherical-lagrangian v)

;Value 61: #(1.5)

;;; Find a chart for the tangent vector itself in the tangent bundle.

(define another-chart (manifold:find-chart TS^2 v))

;Value: another-chart

;;; Make a tangent vector (this object lives in T(TS^2)).

(define w (make-tangent another-chart v (vector 0 0 1 0)))

;Value: w

;;; Apply the differential of the Lagrangian:

(define u (apply-smooth-map (smooth-map:diff spherical-lagrangian) w))

;Value: u

;;; u should be an object in TR. Its anchor is the value of the Lagrangian at

;;; v.

(tangent:get-anchor u)

;Value 67: #(1.5)

(tangent:get-coords u)

;Value 68: #(0.)

2.1.6 Tangent bundles

A useful thing to notice, at this point, is that the tangent bundle is itself a di�erentiable

manifold. More precisely, if M is an n-manifold, then TM is an 2n-dimensional manifold.

To see this, suppose C = (U; V; �) is a chart on M . Then we can de�ne the chart TC =

(TU; V � R
n
;  ), where TU (by an abuse of notation) denotes the union of the tangent

spaces TpM for which p 2 U , and is hence an open subset of TM , and  is the map de�ned

23



by:

 (C; p; v) = (�(p); d�p(v)); (2.4)

where (C; p; v) is a local tangent vector in C. The expression d�p(v) makes sense because

V is an open subset of Rn, and we can thus treat � as a smooth map between manifolds

and compute its di�erential. Furthermore, the tangent space of V is trivially equal to Rn

at each point, so the dimension of TM is twice the dimension of M . The chart TC is called

a tangent chart, and the tangent bundle TM is given the atlas consisting of the set of all

tangent charts.

Implementation in Scheme

The construction of tangent bundles builds on tangent vectors, and the most important

part is the construction of tangent charts:

;;; Construct a tangent chart:

(define (make-new-tangent-chart chart)

;; First, extract some useful information from CHART:

(let* ((dim (chart:dimension chart))

(2*dim (* 2 dim))

(in-M-domain? (chart:get-membership-test chart))

(in-M-range? (chart:get-range-test chart))

(M-map (chart:get-coord-map chart))

(M-inverse (chart:get-inverse-map chart))

(dim-vector? (make-euclidean-test dim))

(2*dim-vector? (make-euclidean-test 2*dim)))

(letrec

((in-domain?

(lambda (v)

(and (in-M-domain? (tangent:get-anchor v))

(dim-vector? (tangent:get-coords v)))))

(in-range?

(lambda (v)

(and (2*dim-vector? v)

(in-M-range? (vector-head v dim)))))

(coord-map

(lambda (v)

(vector-append (M-map (tangent:get-anchor v))

(chart:push-forward v chart))))

(inverse-map

(lambda (x)

24



(make-tangent chart

(M-inverse (vector-head x dim))

(vector-end x dim))))

(transition

(lambda (Tother)

(let* ((other (chart:get-base-chart Tother))

(f (chart:make-transition-map chart other)))

(lambda (x)

(let ((anchor (vector-head x dim))

(tangent (vector-end x dim)))

(vector-append (f anchor)

(push-forward-in-coords

f anchor tangent))))))))

(let ((new-chart (make-chart 2*dim in-domain? in-range?

coord-map inverse-map transition)))

;; Some auxiliary information:

(chart:install-extra new-chart 'base-chart (delay chart))

(chart:install-extra chart 'tangent-chart (delay new-chart))

new-chart))))

This procedure can then be used to construct tangent bundles.

2.1.7 Making new manifolds

As noted in the previous section, the tangent bundle of a manifold is also manifold. This

gives us a way to construct new manifolds out of old ones. In this section, we will take a

look at a few other ways of constructing new manifolds out of existing ones.

Product manifolds. First, consider two manifoldsM and N . Let (U; V; �) be a chart on

M , and let (U 0; V 0
; �

0) be a chart on N . The product chart associated with the two charts

is the chart (U � U
0
; V � V

0
; � � �

0), where U � U
0 is the Cartesian product f(x; y) : x 2

U; y 2 U
0g, V � V

0 is similarly de�ned, and � � �
0 is the map taking (x; y) 2 U � U

0 to

(�(x); �0(y)) 2 V � V
0. The product manifold M � N , then, is the manifold whose space

is the Cartesian product of the spaces M and N , and whose atlas is given by the set of

all product charts. If the dimension of M is m and that of N is n, then the dimension of

M � N is m + n. For example, the Euclidean space Rn, n > 1, may be constructed as

a product manifold Rn�1 � R, and the torus can be thought of as the product manifold

S
1 � S

1 (where Sn denotes the n-dimensional sphere, and hence S1 is the circle).

Cotangent bundles. Recall now that every vector space has a dual space of linear func-

tionals. Thus, to every tangent space TpM , we can �nd its dual vector space T �
p
M . It turns

out that the union T �M of all dual spaces T �
p
M is also a di�erentiable manifold, by using a

construction similar to that of the tangent bundle. The space T �M is called the cotangent

bundle of the manifold, and is just as important geometrically as the tangent bundle, if not

25



more so. In classical mechanics, the cotangent bundle of a con�guration space is called its

phase space. Whereas the state space describes a system by its position and velocity, the

phase space describes a system by its position and generalized momentum.

The inverse function theorem. Finally, there is a method of constructing manifolds

that is very useful theoretically, but practically useless for computation: The inverse func-

tion theorem. Briey, it states that if f is a smooth map fromM into N , the dimension of N

is less than the dimension of M , and for some point q 2 N , every p 2M such that f(p) = q

has a surjective di�erential dfp, then the inverse image f�1(q) = fp 2 M : f(p) = qg is a

smooth manifold. Furthermore, if the dimension of M is m and that of N is n, then the

dimension of this new manifold is m�n. For theoretical purposes, this is a very useful way

of constructing manifolds, especially for describing constraints in mechanical systems. For

example, the con�guration space for a free particle is R3, and if one were to enforce the

constraint that the particle must stay at a constant distance l from the origin, this theorem

immediately tells us that the resulting space (the sphere, in this case) is a di�erentiable

manifold. However, the proof of this theorem involves some non-constructive arguments,

and hence it cannot be used directly for computation. The e�cient computation of general

inverses of functions is, at the present, not possible.

Since most of these constructions (except the cotangent bundle) will not be used directly

in later sections, their implementation will not be discussed here. The cotangent bundle

will appear again when we discuss the Hamiltonian approach to mechanics.

2.1.8 Boundaries

Our de�nition of manifolds does not allow for spaces with boundaries. For example, notice

that the unit disc

f(x; y) 2 R2 : x2 + y
2 � 1g (2.5)

is not a manifold by our de�nition, because the points (x; y) for which x2 + y
2 = 1 (that is,

those lying on the boundary of the disc) do not have neighborhoods that \look like" open

subsets of R2. However, it locally have the structure of an Euclidean half-space (see Figure

2-6). Since boundaries are often useful in applying partial di�erential equations to model

physical systems, this section takes a closer look at this concept.

In order to describe manifolds with boundaries, a new type of chart is necessary. First,

some de�nitions: Given an Euclidean space Rn, let Rn

+ be the half-space

R
n

+ = fx 2 Rn : xn � 0g; (2.6)

26



p x

Figure 2-6: A boundary chart.

where xn denotes the nth component of the n-vector x. A boundary chart, depicted in Figure

2-6, is then a triple (U; V; �), where U is a subset of M , V is the (non-empty) intersection

of some open subset V 0 of Rn with the half-space Rn

+, and � is a bijection between U and

V . The usual de�nition of compatibility between charts still applies to boundary charts,

although what it means to be di�erentiable at the boundary fxn = 0g requires more careful

analysis (omitted here).

Now supposeM is an arbitrary set, and extend the de�nition of atlases to allow boundary

charts. A set M is a manifold with boundary if it has an atlas A with mutually compatible

charts and boundary charts. If a point p has the property that for some boundary chart

(U; V; �), xn = 0, where x = �(p), then p is said to lie on the boundary of the manifoldM .11

The boundary of a manifold M is usually denoted by @M , and consists of the set of points

that lie on the boundary of some boundary chart. It is easy to verify that the boundary of

a manifold is itself a manifold without boundary.12

The computational implementation of boundaries is not used in the rest of this chapter,

so its discussion is postponed until it is needed in the next chapter on partial di�erential

equations and boundary value problems.

2.2 Vector �elds and di�erential equations

2.2.1 Smooth vector �elds

The tangent bundle construction actually facilitates the de�nition of smooth vector �elds:

Let � denote the projection map from TM into M , de�ned by:

11It is easy to verify that if p lies on the boundary according to one chart, then it must lie on the boundary

according to all the charts.
12Manifolds with boundaries introduce some problems into the theory. For example, the class of di�eren-

tiable manifolds with boundary is not closed under the product manifold construction: Consider the unit

interval I = [0; 1]. It is a di�erentiable manifold with boundary, and yet the product manifold I � I is not a

di�erentiable manifold with boundary|Transition maps will fail to be smooth at the corners of the square.

27



�(p; v) = p: (2.7)

That is, the projection map � extracts the \anchor" of the tangent vector, much like the

procedure tangent:get-anchor. A smooth vector �eld on M is then a smooth map v from

M into TM , such that for every point p 2M , the equation �(v(p)) = p holds.

It is easy to verify that, over each chart, a smooth vector �eld as de�ned here corresponds

to what one usually means by a smooth vector �eld. Thus, the usual local existence and

uniquness theorems apply. This abstraction lets one de�ne systems of �rst-order ordinary

di�erential equations, and higher-order equations are typically handled by using the tangent

bundle construction. A second-order equation, for example, can be thought of as a vector

�eld on the tangent bundle, and so on. This is why mathematical descriptions of mechanics

problems involve vector �elds (�rst-order equations) on tangent or cotangent bundles of

manifolds.

2.2.2 Flows generated by smooth vector �elds

How can we integrate ODEs on manifolds? Since within each chart (U; V; �), the manifold

\looks like" Euclidean space, the obvious thing to try is to use the coordinate map � to

\push" vector �eld onto the Euclidean subspace V . More precisely, suppose we are given

a tangent vector that is represented by the local tangent vector (C 0; p; v0), and wish to

map this local tangent vector over to the chart in which we are integrating the equations,

C = (U; V; �). Then we can simply apply the Jacobian of the transition map, to obtain

(C; p; v), where v is de�ned by:

v = D(� � �0�1)(�0(p)) � v0: (2.8)

This consistently transforms the local tangent vector to the other chart. Thus, a smooth

vector �eld on M can always be turned into a local vector �eld on the open subset V of

Euclidean n-space, for which there exist numerous methods of integration.

The computational implementation of ODE integrators on manifolds, however, requires

that we consider a few more issues. For example, for the sake of exibility and e�ciency,

it is easier to implement vector �elds directly as procedures which return local vector �elds

when given a chart, rather than a procedure that actually returns a local tangent vector

representation of some tangent vector every time whenever it is given a point on the man-

ifold. This is because, in some situations, it may be easier for procedures that compute

vector �elds to use internal representations that are not in the form of local tangent vec-

tors. If the procedure must convert its internal representation to a local tangent vector,

28



Chart 2
Chart 1

Figure 2-7: When should the ODE integrator switch charts?

as the integrator requires, it might as well directly convert it to the current chart. This

structure gives procedures this exibility, as will be demonstrated in later examples.

A more serious issue is that of switching between charts (see Figure 2-7): As the integra-

tor moves along in one chart, taking discrete steps forward in time, it will eventually step

o� the chart. One solution is to always watch where the next step \lands" before actually

committing to it, and to switch charts if the next step is outside the current chart. This

approach has the problem that when switching charts, one needs to keep track of which

charts have already been visited so that the integrator does not enter an in�nite loop, idly

switching from one chart to another without making progress. However, this introduces

quite a bit of complexity into the integrator, and did not seem to be the best design for a

�rst attempt.

There is, in fact, a more elegant solution to the problem of switching charts: Simply

evolve the trajectory in all possible charts! This solution requires that the atlas be locally

�nite|For every point p, there must be only �nitely many charts in A that contain p. This

is not an overly restrictive requirement, and in general it is easy for the user to control the

amount of overlap between charts when constructing them, so that there is not too much

overhead in the multiple evaluation. This is the strategy �nally chosen, and the main idea

is expressed in the code below:13

;;; This is a simple description of the integration algorithm for ODEs on

;;; manifolds:

(define (v.field->flow manifold make-local-field next-step error-est)

;; Integrate the ODE starting at p0, with time index running from t0 to t1:

13This is not the �nal version of code used, but expresses the main ideas.

29



(lambda (p0 t0 t1)

(let loop ((p p0) (t t0))

(if (<= t t1)

;; Compute the possible next steps, then choose the one that

;; minimizes the error estimator, ERROR-EST.

(let* ((charts (manifold:get-local-atlas manifold p))

(p1 (minimize-function-over-list

(compose error-est integrator:get-new-x)

(map (lambda (chart)

(next-step (chart:point->coords p chart)

(make-local-field chart)))

charts)

charts)))

;; If the local integrator can step forward in at least one chart,

;; then we can continue:

(if p1

(loop (integrator:get-new-x p1) (+ t (integrator:get-dt p1)))

(error "Ran out of charts!")))))))

Notice a few things about this code: First, it takes four arguments: Manifold is just the

domain of the ODE; make-local-field is the local vector �eld constructor, as described

before; next-step is a local ODE integrator, a procedure that knows nothing about the

manifold but can numerically solve a given ODE in Euclidean coordinates to produce a new

coordinate vector; and error-est, a function for estimating the local numerical error.

Notice, �rst, that the integrator has no built-in notions of step size. It simply relies

on the local integrator to supply both a new step and a step size. This facilitates the

use of variable-step-size integrators, which can be more e�cient and numerically robust.

Second, it requires an error estimator that helps it choose from among the guesses supplied

by the di�erent charts. This is an advantage of this method: Because of truncation and

round-o� errors, numerical computations are not actually coordinate-independent. Thus,

this integrator allows local error analysis, which improves accuracy greatly, especially in the

presence of coordinate singularities (discussed in x2.3.3).

2.2.3 Manifolds and classical mechanics

There are several reasons why the manifold abstraction is especially suited to dealing with

ordinary di�erential equations. First, notice that a classical n-particle system is described by

the con�guration space R3n, since each particle has three coordinates. Nontrivial manifolds

arise in classical mechanics from constraints, such as the constraint that a point mass lies

at a constant distance l from the origin (which yields the spherical pendulum). Now,

as noted in x2.1.1, in the traditional approach of modeling the manifold as a subset of

a larger Euclidean space and integrating the ODEs in the larger space, trajectories can

30



sometimes go o� the manifold because of the accumulation of round-o� and truncation

errors. Thus, physical constraints are not enforced faithfully in this classical approach,

whereas the manifold abstraction helps minimize this kind of error. Second, in generating

local vector �elds, it is useful to have explicit formulas. It is rather tedious, in general, to

derive di�erential equations that describe complex physical systems in di�erent coordinate

systems. However, in classical mechanics, one could always use variational methods to

derive the equations of motion in di�erent coordinate systems with the aid of computer

algebra, which is often easier than transforming second-order equations between coordinate

systems.14

Furthermore, in classical mechanical systems, the error-est function above can be

implemented rather easily: Instead of checking the local numerical properties of the chart,

one can exploit the existence of conserved quantities, such as energy and momentum. This

has the advantage that these quantities are often easy to compute, and systems in classical

mechanics usually have a su�cient number of such conserved quantities that one could

simply check their deviations from initial values as time marches forward to determine how

well the integrator is doing.15

14Variational (or Lagrangian) mechanics di�ers from Newtonian mechanics in the following way: Instead

of describing how systems change from moment to moment, as did Newton, one looks at the space of all

possible paths through the con�guration space that begin at some initial point x1 at some time t1 and ends

up in some place x2 at some time t2. To every such possible path , one assigns to it a number (called the

action) S(). Then the path actually taken by a particle is the one that is a stationary point (in a sense that

can be made mathematically precise) of the action S. This is known as the principle of least action because

for many cases, S is actually minimized by the real path . S() is generally computed as the integral of

some function L, called the Lagrangian, along paths; Hamilton's principle of least action then states that

the \correct" Lagrangian for many situations is the di�erence between kinetic and potential energies.

Since the principle of least action is formulated in terms of integrals of real-valued functions over time

intervals, it is coordinate-independent. Furthermore, one can derive the equations of motion in terms of the

Lagrangian:

D(@ _xL � ) = @xL � ; (2.9)

where @ _x denotes di�erentiation with respect to the velocity part of the Lagrangian, @x denotes di�erentiation

with respect to the position part of the Lagrangian, and D is the operator that di�erentiates real-valued

functions of one real variable (in this case time). Equation (2.9) is known as the Euler-Lagrange equation,

and gives a system of second-order equations that determine the stationary path. It can be deduced by

using the same technique as in the derivation of Equation (4.19).

This provides an easy way to change coordinate systems: Simply substitute the new coordinates into

the Lagrangian, simplify the resulting expression, and derive the Euler-Lagrange equations for the new

coordinate system. For more information on this topic, see Arnold [4].
15It is also possible to enforce the conservation laws as constraints, so that one integrates the equations of

motion on submanifolds of the state space. While this would ensure that the conservation laws are satis�ed

exactly (up to round-o� error), it also makes checking the accuracy of solutions a little harder|Because the

conservation laws were \used up" as constraints, one would now need to perform numerical error analysis

to estimate the accuracy of the numerical integration.

31



Lagrangian mechanics

Although it is extremely ine�cient, one can in fact implement Lagrangian mechanics directly

using our Scheme system:

;;; The Lagrangian should be a smooth map from the tangent bundle of some

;;; manifold into the real line.

;;; This is very slow, as every evaluation of the field involves a matrix

;;; inversion. Which is why Hamiltonians are *better*, even for comuptational

;;; purposes!

(define (lagrangian->v.field L)

(let ((TM (smooth-map:get-domain L))

(R (smooth-map:get-range L)))

(lambda (p)

(let ((U

(if (tangent? p)

(make-tangent-chart (tangent:get-chart p))

(manifold:find-best-chart TM p))))

(let ((f (smooth-map:make-transition

L U (car (manifold:get-finite-atlas R))))

(x (chart:point->coords p U)))

(let ((v (vector-tail x (/ (vector-length x) 2))))

(let ((E-L (euler-lagrange-in-coords f x)))

(let ((A (car E-L))

(B (cadr E-L))

(c (caddr E-L)))

(let ((accel (matrix:solve-linear-system

A

(vector:+ (apply-linear-transformation B v) c))))

(make-tangent U p (vector-append v accel)))))))))))

;;; Derive the Euler-Lagrange equations for f at x (in coordinates) in the form

;;; A*xdotdot = B*xdot + c.

(define (euler-lagrange-in-coords f x)

(let* ((n (/ (vector-length x) 2))

(A (make-matrix n n))

(B (make-matrix n n))

(c (make-vector n 0)))

(do ((i n (+ i 1))

(p 0 (+ p 1)))

((>= p n))

;; First, compute the hessian of f with respect to the velocity part of

;; the independent variable:

(matrix-set! A p p (vector-first (((pdiff i) ((pdiff i) f)) x)))

(do ((j (+ i 1) (+ j 1))

(q (+ p 1) (+ q 1)))

((>= q n))

(let ((val (vector-first (((pdiff j) ((pdiff i) f)) x))))

(matrix-set! A p q val)

(matrix-set! A q p val)))

32



;; Next, compute the rest of the terms involving the partials of the

;; Lagrangian with respect to the positions (note the minus sign):

(do ((j 0 (+ j 1)))

((>= j n))

(let ((val (- (vector-first (((pdiff j) ((pdiff i) f)) x)))))

(matrix-set! B p j val)))

;; And then there's the term due to the derivative of the Lagrangian with

;; respect to the position variables:

(vector-set! c p (vector-first (((pdiff p) f) x))))

(list A B c)))

;;; In many mechanics problems, it's natural to check conservation laws:

(define (check-vector-conservation-law quantity ref-point)

(let ((ref (quantity ref-point)))

(lambda (chart tangent)

(vector:distance (quantity (tangent:get-anchor tangent)) ref))))

The cost of inverting the matrix (when matrix:solve-linear-system is called) makes

this a prohibitively slow way to compute vector �elds, but it does work.

Hamiltonian mechanics

A slightly more e�cient form of automatically generating vector �elds is provided by the

Hamiltonian point of view.16 It can be implemented much more directly:

;;; The Hamiltonian should be a smooth map from the cotangent bundle of some

;;; manifold into the real line.

(define (hamiltonian->v.field H)

(let ((T*M (smooth-map:get-domain H))

(R (smooth-map:get-range H)))

(lambda (p)

(let ((U (manifold:find-best-chart T*M p)))

(make-tangent U p

(hamilton-in-coords

(smooth-map:make-transition

16The Hamiltonian formulation describes mechanics using position and momenta, instead of position and

velocity. The space of states here is the cotangent bundle of the con�guration space, not its tangent bundle.

And, �nally, the dynamics is described by the Hamiltonian, which is a function that in many cases agrees with

the energy function. As with Lagrangian mechanics, Hamiltonian mechanics also lets us change coordinates

easily; the analogous equations of motion for a given Hamiltonian H are:

_q = @pH;

_p = �@qH;
(2.10)

where q denotes position, p denotes momentum, and @p and @q denote the corresponding di�erential oper-

ators. These are Hamilton's equations. Notice that they are antisymmetric, and do not require a matrix

inversion to isolate the highest-order derivatives.

33



H U (car (manifold:get-finite-atlas R)))

(chart:point->coords p U)))))))

;;; Derive Hamilton's equations for f at x (in coordinates):

(define (hamilton-in-coords f x)

(let* ((2n (vector-length x))

(v (make-vector 2n))

(n (/ 2n 2)))

(do ((i n (+ i 1))

(j 0 (+ j 1)))

((>= j n) v)

(vector-set! v i (- (vector-first (((pdiff j) f) x))))

(vector-set! v j (vector-first (((pdiff i) f) x))))))

However, this is still rather ine�cient due to the evaluation of the partial derivatives.

In the numerical experiments that follow, the appropriate vector �elds are pre-computed

for each chart in the relevant manifold.

2.3 Numerical experiments

Finally, this section presents the results of three numerical experiments.

2.3.1 The circle �eld

The �rst example is a simple integration around a circle. The vector �eld simply consists of

unit vectors going counter-clockwise around the circle, and the trajectories of this system

of equations are simply unit-velocity curves around the circle:

(�) = (cos(� � �0); sin(� � �0)); (2.11)

where the phase shift �0 comes from the initial condition.

This can be implemented easily as follows:

;;; First, construct the circle:

(define circle (make-sphere 1))

;;; Here's a trivial vector field on the circle:

(define (circle-field p)

(let ((x (vector-ref p 0))

(y (vector-ref p 1)))

;; IMBEDDING->TANGENT takes an imbedded tangent vector to the tangent

;; bundle of the given (imbedded) manifold.

34



(imbedding->tangent circle p (vector (- y) x))))

;;; Integrate the ODE:

(define circle-path

(v.field->flow circle

(v.field->local-field-maker circle-field)

(make-rk4-integrator (* 2 pi 1e-3))

;; LOCAL-DISTORTION checks the numerical error in the current

;; chart.

local-distortion))

;;; The real answer (with no phase shift):

(define (real-circ t)

(vector (cos t) (sin t)))

;;; Here is a test run: After 2*pi seconds, the path should end up where it

;;; started. Let's compare the results of using the manifold and using the

;;; tranditional approach:

(define result (circle-path (vector 1 0) (* 2 pi)))

;Value: result

;;; RESULT is a list of pairs of the form (time-index position), sorted in

;;; *descending* order by time index. Thus, (CAAR RESULT) returns the final

;;; time index, and (CADAR RESULT) returns the final position.

;;; The difference in time index:

(abs (- (caar result) (* 2 pi)))

;Value: 1.127986593019159e-13

;;; The difference in position:

(vector:distance (cadar result) (vector 1 0))

;Value: 4.447015332496363e-14

;;; Here is the more tranditional approach: Simply embed the circle in the

;;; plane, and integrate in two real variables (and hope the trajectory

;;; actually stays on the circle):

(define (traditional-circle-field p)

(let ((x (vector-ref p 0))

(y (vector-ref p 1)))

(vector (- y) x))

;Value: traditional-circle-field

(define traditional-result

(let ((next-step (make-rk4-integrator (* 2pi 1e-3))))

(let loop ((t 0) (x (vector 1 0)) (result '()))

(if (<= t 2pi)

(let* ((new (next-step x traditional-circle-field (lambda () #f)))

(dt (integrator:get-dt new))

35



(new-x (integrator:get-new-x new)))

(loop (+ t dt) new-x (cons (list t x) result)))

result))))

;Value: traditional-result

;;; The error in time index is the same:

(abs (- (caar traditional-result) 2pi))

;Value: 1.127986593019159e-13

;;; The error in position is actually larger: This is because, as stated

;;; before, the traditional method allows the trajectory to veer off the

;;; circle, whereas the manifold approach enforces the constraint strictly.

(vector:distance (cadar traditional-result) (vector 1 0))

;Value: 8.16059276567945e-11

Notice that the manifold approach actually produced a more accurate \walk" around

the circle!

2.3.2 The spherical pendulum

The next example is the one we started out with: The spherical pendulum. As opposed

to our previous example, this one actually comes from a physical problem. Furthermore,

this particular problem can be understood analytically, so that the motion generated by the

integrator can be checked closely for consistency with the actual physical situation.

For this integration, the integration is done on the phase space (the cotangent bundle

of the sphere). The vector �eld could very well have been generated using the following

Hamiltonian:

;;; The phase space:

(define T*R^3 (make-cotangent-bundle R^3))

;;; The Hamiltonian for a point mass in a uniform gravitational field:

(define falling-hamiltonian

(make-real-map

T*R^3 (lambda (p)

(+ (* 1/2 (vector:magnitude^2 (cotangent:get-coords p)))

(vector-third (cotangent:get-anchor p))))))

;;; Define the Hamiltonian:

(define T*S^2 (make-cotangent-bundle S^2))

(define spherical-inclusion*

(let* ((chart (car (manifold:get-finite-atlas R^3)))

(f (lambda (v)

(apply make-cotangent

36



(cons chart (cotangent->imbedding S^2 v))))))

(make-simple-map T*S^2 T*R^3 f)))

(define spherical-hamiltonian

(smooth-map:compose falling-hamiltonian spherical-inclusion*))

;;; We can even generate the vector field from the Hamiltonian directly:

(define spherical-field

(hamiltonian->v.field spherical-hamiltonian))

(define spherical-init

(imbedding->cotangent S^2 (vector 1 0 0) (vector 0 1 .5)))

(define spherical-path

(v.field->flow T*S^2

(v.field->local-field-maker spherical-field)

(make-rk4-integrator 1e-3)

(check-vector-conservation-law

(smooth-map:get-point-function spherical-hamiltonian)

spherical-init)))

;;; Try to integrate a few time steps:

(define result

(show-time

(lambda ()

(spherical-path spherical-init .01))))

process time: 122020 (95550 RUN + 26470 GC); real time: 135198

;Value: result

(/ 135198 1000. 60) ;; 135198 msec. = 2.25 minutes.

;Value: 2.2533000000000003

(length result)

;Value: 10

(for-each

(compose write-line

(smooth-map:get-point-function spherical-hamiltonian)

cadr)

result)

#(.6250000000009046)

#(.6250000000008399)

#(.6250000000008247)

#(.6250000000008603)

#(.6249999999981802)

#(.6249999999053644)

#(.6249999999049425)

#(.6249999999039165)

#(.6249999999048136)

#(.625)

;No value

As seen above, this approach produces reasonable answers: For a short integration,

37



the Hamiltonian (which equals energy, in this case) is conserved, as expected. However,

this approach is very ine�cient. Instead, one could derive Hamilton's equations for this

Hamiltonian over some atlas of the 2-sphere, and carry these local vector �elds to other

charts.

(define make-spherical-pendulum

(let* ((C1 (make-cotangent-chart (make-spherical-chart 2 '(2 0 1) 0)))

(C2 (make-cotangent-chart (make-spherical-chart 2 '(1 0 2) pi)))

(T*S^2 (charts->manifold (list C1 C2))))

(lambda (g mass length)

(let ((k1 (/ (* mass (square length))))

(k2 (* mass g length)))

(lambda (p)

(let* ((chart (manifold:find-best-chart T*S^2 p))

(x (chart:point->coords p chart))

(phi (vector-ref x 0))

(theta (vector-ref x 1))

(p_phi (vector-ref x 2))

(p_theta (vector-ref x 3)))

(make-tangent chart

p

(if (eq? chart C1)

(vector (* k1 p_phi)

(* (/ k1 (square (sin phi))) p_theta)

(+ (* k1 (square p_theta)

(/ (* (square (sin phi))

(tan phi))))

(* k2 (sin phi)))

0)

(vector (* k1 p_phi)

(* (/ k1 (square (sin phi))) p_theta)

(+ (* k1 (square p_theta)

(/ (* (square (sin phi))

(tan phi))))

(* k2 (cos phi) (sin theta)))

(* k2 (sin phi) (cos theta)))))))))))

This way of de�ning vector �elds requires a bit more work, and tends to produce rather

unreadable programs. However, it is su�ciently fast to generate some real data. The local

integrator used is a simple 4th-order Runge-Kutta with a �xed step size of 1 � 10�3, and

the constants are normalized so that l = g = m = 1. The initial condition, in these units,

is q = (1; 0; 0); p = (0; 1; 0:5).

Figure 2-8 shows the relative error in energy conservation, and Figure 2-9 shows the

relative error in angular momentum conservation.

Notice that in the code for the integration, check-vector-conservation-law was only

asked to minimize the error in energy conservation. Hence, in Figure 2-8, the relative

error in energy conservation has been kept rather constant. However, the error in angular

momentum makes a few large jumps, probably at the occasions when the integrator decides

to switch charts. This indicates that in order to obtain the most accuracy, perhaps one

38



0 0.5 1 1.5 2

x 10
4

−3

−2

−1

0

1

2

3

4
x 10

−13

time index

re
la

tiv
e 

er
ro

r

Figure 2-8: Relative error in energy conservation for the spherical pendulum.

39



0 0.5 1 1.5 2

x 10
4

−2

0

2

4

6

8

10

12

14
x 10

−13

time index

re
la

tiv
e 

er
ro

r

Figure 2-9: Relative error in angular momentum conservation for the spherical pendulum.

40



−1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

z coordinate

z 
m

om
en

tu
m

Figure 2-10: A contour of the reduced Hamiltonian for the spherical pendulum.

should try to minimize the error in a number of conservation laws. This is what is done

with the example of rigid body motion.

Finally, Figure 2-10 shows more evidence that this integrator has found the correct

solution: Since angular momentum is conserved for the spherical pendulum, we know that

the angular motion (about the vertical axis) of the pendulum may be decoupled from its

vertical motion, and the system may be reduced to one with a lower degree of freedom. In

this �gure, the z vs. pz plot shows that the trajectory of the reduced system is a closed curve.

This is because energy is also conserved in the reduced system, and hence trajectories of

the reduced system must follow equipotential curves of the reduced Hamiltonian.

2.3.3 Rigid body motion and coordinate singularities

Our last example, and the most important, is rigid body motion. Its importance stems

from the fact that, although the vector �elds describing its motion are perfectly smooth,

the coordinate systems traditionally used to describe it contain coordinate singularities, so

that usual integrations of rigid body motion can produce inaccuracies near those coordinate

singularities.

41



ψ

θ

ϕ

z

x

Figure 2-11: Euler angles for a rigid body.

Furthermore, the con�guration space for the rotational motion of rigid bodies is the

space of all orientations of a rigid body, or equivalently the space of all rotation matrices

in three dimensions.17 The manifold structure of this space is rather abstract, and since it

is really a 3-manifold imbedded in the 9-dimensional space of all 3� 3 matrices, we can no

longer rely on our geometric intuition to approach this problem. This is one of the most

important examples of an abstract manifold.

Traditionally, orientations of rigid bodies are described by Euler angles, depicted in Fig-

ure 2-11. As hinted at earlier, this coordinate system has the problem that the coordinates

\blow up" (the Jacobian of the coordinate map becomes singular) when the rigid body is

standing vertically, as a bit of analysis will show. This is known as a coordinate singularity

because the singularity is part of the coordinate system, not a feature of the dynamics.

The traditional approach to this problem is to work entirely in Euler angles. This

works well so long as the trajectory does not come near the coordinate singularity. But

when it does, the singularity can have a serious e�ect on numerical accuracy, which is

often reected in uctuations in the conserved quantities. In this example, the results of

a numerical integration of rigid body motion is presented using the traditional and the

17This space is commonly denoted as SO3, the special orthogonal group. It is an example of a Lie group,

which are manifolds that also happen to be groups, and where the group operations are smooth as maps on

manifolds.

42



0 2000 4000 6000 8000 10000
−8

−6

−4

−2

0

2

4

6

8

10
x 10

−14

time index

re
la

tiv
e 

er
ro

r

Figure 2-12: Relative error in energy conservation for rigid body motion in Euler angles.

manifold method. The principal moments of inertia of the rigid body are 1,
p
2, and 2,

with mass set to m = 1. The initial conditions, in Euler angles, are � = 0, � = 1,  = 0,

_� = �0:01, _� = �0:1, and _ = �0:01; these initial conditions have been chosen to take

the trajectory close to the coordinate singularity in Euler angles, so that the e�ects of the

singularity on conserved quantities can be observed. The integration was performed using

a time step of 0.01, for 100.0 time units (which equals 10,000 time steps). The integration

in Euler angles used a Bulirsch-Stoer integrator, which the manifold integrator also used as

its local integrator.

Figure 2-12 shows the relative error in energy conservation for a trajectory that comes

relatively near the singularity. Figure 2-13 shows the analogous plot for the manifold

method.

In Figure 2-12, the maximum absolute value is 8:43194301271212 � 10�14, and the

corresponding average is 2:6428202894715013 � 10�14. In contrast, in Figure 2-13, the

maximum absolute value of the error is 1:394387463191693�10�14 , and the average absolute
value of the error is 4:31070783106112 � 10�15. Thus, the manifold approach actually

conserves energy better: In terms of relative error, it outperforms the traditional approach

43



0 2000 4000 6000 8000 10000
−1.5

−1

−0.5

0

0.5

1
x 10

−14

time index

re
la

tiv
e 

er
ro

r

Figure 2-13: Relative error in energy conservation for rigid body motion using the manifold

approach.

44



0 2000 4000 6000 8000 10000
−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−14

time index

re
la

tiv
e 

er
ro

r

Figure 2-14: Relative error in conserving the x component of the angular momen-

tum for rigid body motion using Euler angles. The maximum absolute value of the

error is 4:163336342344337 � 10�14, while the average absolute value of the error is

1:9975479603751012 � 10�14.

by about six times.

Note that in Figure 2-12, the curve has a rather sharp peak at time index 4000. That is

a consequence of a close encounter between the trajectory and the coordinate singularity.

Such a peak can be seen in all of the following plots that were generated using the Euler

angles (Figures 2-14, 2-16, and 2-18), and are absent from the plots generated by using the

manifold integrator (Figures 2-13, 2-15, 2-17, and 2-19).

Similar comparisons can be made using the components of the angular momentum, as

shown in Figures 2-14 through 2-19.

In contrast to the spherical pendulum, in this example all the components of angular

momentum (as computed from the inertial frame), as well as the energy function, are used in

the integration. Thus, the manifold integrator attempts to minimize deviations from initial

values of conserved quantities, which improves their conservation at the cost of making it

harder to check how well the system does.

45



0 2000 4000 6000 8000 10000
−3

−2

−1

0

1

2

3

4
x 10

−15

time index

re
la

tiv
e 

er
ro

r

Figure 2-15: Relative error in conserving the x component of the angular momentum

for rigid body motion using the manifold approach. The maximum absolute value of

the error is 2:7755575615628914 � 10�15, while the average absolute value of the error

is 3:8748171338198744 � 10�16.

46



0 2000 4000 6000 8000 10000
−2

−1

0

1

2

3

4

5
x 10

−13

time index

re
la

tiv
e 

er
ro

r

Figure 2-16: Relative error in conserving the y component of the angular momentum

for rigid body motion using Euler angles. The maximum absolute value of the er-

ror is 4:3375450673823944 � 10�13, while the average absolute value of the error is

8:348734810181229 � 10�14.

47



0 2000 4000 6000 8000 10000
−2

−1

0

1

2
x 10

−14

time index

re
la

tiv
e 

er
ro

r

Figure 2-17: Relative error in conserving the y component of the angular momentum

for rigid body motion using the manifold approach. The maximum absolute value of

the error is 1:7798707703661857 � 10�14, while the average absolute value of the error

is 2:1083459210375576 � 10�15.

48



0 2000 4000 6000 8000 10000
−3

−2

−1

0

1

2

3

4

5
x 10

−13

time index

re
la

tiv
e 

er
ro

r

Figure 2-18: Relative error in conserving the z component of the angular momen-

tum for rigid body motion using Euler angles. The maximum absolute value of the

error is 4:352060412667006 � 10�13, while the average absolute value of the error is

9:479992724704404 � 10�14.

49



0 2000 4000 6000 8000 10000
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−14

time index

re
la

tiv
e 

er
ro

r

Figure 2-19: Relative error in conserving the z component of the angular momentum

for rigid body motion using the manifold approach. The maximum absolute value of

the error is 1:1322645212381266 � 10�14, while the average absolute value of the error

is 1:5603516120091776 � 10�15.

50



2.4 Directions for future work

Clearly, in order for this to be useful, several improvements are required. Among these, the

most important is probably e�ciency: While the manifold integrator is, in many cases, more

accurate than traditional methods, the cost of integrating in several charts simultaneously

can make such integrators prohibitively slow. One solution is to integrate in one chart at a

time, and to have much more sophisticated methods for when and how to switch from one

chart to another. While not nearly as elegant as the current approach, this would probably

be much more e�cient.

Another problem is the di�culty in constructing manifolds. As shown by the example of

covering the sphere using stereographic projection, constructing a manifold can take quite

a bit of work (especially without the aid of the inverse function theorem). Thus, there need

to be better tools, or at any rate larger libraries, for constructing and combining manifolds.

It would be interesting to compare the e�ciency and accuracy of this approach to more

sophisticated techniques, such as symplectic integrators [29].

51



Chapter 3

Linear partial di�erential equations

This chapter describes the application of the manifold abstraction to the numerical solu-

tion of linear partial di�erential equations. For simplicity, the discussion is restricted to

scalar equations over two-dimensional manifolds. This is because some of the algorithms

described here depend on e�cient mesh generators, which are most easily constructed for

two dimensions.1 However, it should be noted that there exist much more powerful mesh

generators than the one used here, and hence the programs developed in this section should

generalize to higher dimensions without too much di�culty [6].

Appendix A briey describes some background material on partial di�erential equations,

including a brief treatment of �nite element methods and an even less complete description

of iterative solution methods for sparse linear systems of equations. Readers unfamiliar

with these topics may wish to take a look at Appendix A �rst, and to use Vichnevetsky [27]

as a more in-depth reference. Petersson [23] describes the solution of PDEs using multiple

coordinate systems in a more specialized and less abstract context, as do Chesshire and

Henshaw [7].

Note that this chapter focuses on elliptic boundary-value problems, although many of the

ideas extend to more general problems. Hyperbolic initial-value problems are considered

in the next chapter. The rest of this chapter begins with an exploration of theoretical

representations of partial di�erential operators on manifolds. Then x3.2 discusses di�erent

approaches to the discretization of PDEs on manifolds. These approaches are developed

and analyzed in more detail in later sections.

1It is even easier to do in one dimension, but such cases are too simple.

52



3.1 Partial di�erential operators on manifolds

In Chapter 2, �rst-order ordinary di�erential equations were rede�ned as smooth vector

�elds on di�erentiable manifolds. By using the tangent bundle construction, higher-order

ODEs also became representable in a coordinate-independent fashion. This approach pro-

vided a natural framework for representing ODEs using multiple coordinate systems, and

for developing these ideas into functional programs that improved the accuracy of numerical

integrations. The questions that naturally follow are: How can PDEs be represented in a

coordinate-independent fashion? And can similar improvements in accuracy be made?

We begin with a simple observation: Let M be a di�erentiable manifold, and let f be

a smooth real-valued function on M . Given a point p, dfp is a linear transformation from

TpM into Tf(p)R, by de�nition. But the tangent space to R at f(p) is just another copy of

R, so for any tangent vector v 2 TpM , the value of the di�erential of f at p on v, dfp(v), is

just another real number. By de�nition, this corresponds to the directional derivative of f

in the direction v in local coordinates, scaled by the length of v.2 Since this gives us a way

to de�ne the directional derivative of f in the direction v in a coordinate-independent way,

we can turn the argument around and say that the vector v operates on the function f .

More precisely, let v be a smooth vector �eld on M , and de�ne vp(f) to be dfp(vp),

where vp is the value of the vector �eld at p. Furthermore, de�ne the function v[f ] by the

equation:

v[f ](p) = vp(f) = dfp(vp): (3.1)

Since v and f are smooth, so is v[f ]. Furthermore, v as an operator on functions is linear,

and satis�es the product rule:

v[f � g] = v[f ] � g + f � v[g]: (3.2)

As an operator, then, v has the properties of a di�erential operator. In fact, one can easily

check that, in local coordinates, this turns the vector �eld v into a linear �rst-order partial

di�erential operator. Conversely, let (U; V; �) be a chart. Then it is not di�cult to verify

that every �rst-order di�erential operator of the form

Lf(x) =

nX
i=1

ai(x)Dif(x); (3.3)

where f is a smooth function on the open subset V of Rn, uniquely generates a \local vector

2It makes sense to speak of the length of v because this is a directional derivative in a given chart. The

length of v is its magnitude according to the dot product with respect to the chart's coordinate maps.

53



�eld" on the corresponding subset U of the manifold via the mapping ��1. Hence, we can

de�ne �rst-order partial di�erential operators on manifolds to be smooth vector �elds. Since

vector �elds are already coordinate-independent objects, this means �rst-order operators

are also coordinate-independent. Furthermore, higher-order operators may be produced by

linear combinations and compositions of �rst-order operators, so linear partial di�erential

operators can be de�ned in a nicely coordinate-independent way on manifolds. A linear

PDE on a manifold then takes the form

Lf = g; (3.4)

where f and g are smooth functions on the domain M , and L is a linear partial di�erential

operator, as described above. Furthermore, if M is a manifold with boundary and h is

a smooth function on the boundary @M of M , then a function f is said to satisfy the

boundary value problem with boundary data h if Lf = g and f = h on @M .

Unfortunately, this de�nition of partial di�erential operators is too abstract to be useful

for practical implementations. In fact, it is very di�cult to develop a general representation

of di�erential operators that is e�cient for all numerical methods. Thus, each method in

this chapter uses a di�erent representation of operators, and programs are structured to

provide exibility with respect to the choice of representation. However, this theoretical

de�nition is still important for the logical framework it provides, and for demonstrating a

di�erent way to view vector �elds on manifolds. In practice, though, it is Equation (3.3)

and its higher-order generalizations that play a more important role in computation.

3.2 Approaches to discretization

General comments. Di�erential equations determine unknown functions. Thus, to facil-

itate numerical computation, it is often necessary to parametrize the set of possible solutions

using �nitely many variables, and to reduce the PDE itself to a system of algebraic equa-

tions that determine the values of these variables. This process of reducing a PDE into a

system of algebraic equations is called discretization.

In general, one can describe discretization in terms of two separate but interdependent

steps: First, one must choose a representation for the approximate solution, so that a �-

nite set of variables can be mapped to a function approximating the true solution. This

often involves series expansions, such as Fourier series, power series, or expansion in terms

of �nite element basis functions. For these cases, the �nite set of variables to which the

unknown function has been reduced are, respectively, the Fourier coe�cients, the Taylor

coe�cients, or values of the given function at speci�ed sample points. The choice of a rep-

54



resentation, informally, corresponds to the geometric part of discretization: In choosing a

representation for approximate solutions, one often needs to �rst discretize (i.e. represent

using a �nite number of parameters) the domain of the PDE. Of course, as �nite element

methods show, there is more to choosing representations than simply discretizing (or trian-

gulating) the domain|One must also choose the order of the basis functions and various

other parameters.

In contrast, the derivation of discrete algebraic equations can be said to discretize the

PDE itself. This step often involves either replacing the di�erential operator with �nite

di�erence operators, as in standard �nite di�erence schemes, or by invoking some other

formulation of physical problems, such as variational principles or Galerkin's orthogonality

condition.3 To some extent, this component of the discretization process can be performed

independently of the domain discretization in that one can often use the same discretized

domain to discretize di�erent PDEs that are de�ned over the same domain. However, the

method of discretizing the PDE, be it �nite elements or �nite di�erences, must work very

closely with the discretized domain. Thus, the two components are not truly independent,

although it is important to recognize the exibility and modularity in the structure of PDE

solvers.

In this report, the focus will be on �nite di�erence and �nite element methods, so the

domain discretization will involve choosing a discrete set of sample points and, for �nite

elements, generating the appropriate mesh.

Global methods versus local ones. The discussion above on discretization applies

unambiguously to the discretization of PDEs whose domains are regions in Euclidean spaces.

However, in the case of manifolds, we have a choice in the order in which the various steps

are carried out because of the existence of multiple coordinate systems: One choice is to

discretize the entire manifold �rst, and then discretize the PDE. For example, using �nite

elements, we would �rst triangulate the entire manifold before invoking variational principles

to derive the discretized equations. In this report, this type of discretization is called global

discretization.

On the other hand, we can �rst discretize the PDE locally, so that for each chart there

exists a set of discretized equations. These sets of discretized equations must then somehow

be combined to form a global system of equations that determine the approximate solution

everywhere. This is called local discretization.

Since �nite di�erence methods are inherently local, the distinction between global and

local discretization is very little when one uses �nite di�erence techniques. However, �nite

3In the case of spectral decomposition methods, the PDE discretization involves the Fourier transform.

55



element methods require triangulations, and the general problem of triangulating mani-

folds is a rather di�cult one in computational geometry. There appears to be no well-

documented way of performing such triangulations except for low dimensions.4 With im-

provements in computational-geometric algorithms, the global discretization approach may

become tractable someday, but it is too di�cult to use in general with currently available

tools. In contrast, local discretization methods do not su�er from such handicaps because we

can always choose charts with simple images in Rn, which simpli�es the local triangulation

process.5

Consequently, this chapter concentrates on local methods: Each chart is independently

discretized in the local discretization phase, and the resulting local equations are then com-

bined to form a global set of equations in the combination phase.6 x3.3 considers local

discretization using �nite di�erence techniques, where the primary problem is the formu-

lation of local equations and their solution. x3.4 then discusses the use of �nite element

methods, which require special attention to the combination phase; some simple ideas are

proposed and tested �rst, followed by a somewhat more e�cient and accurate algorithm.

Finally, x3.5 revisits the topic of mesh generation on manifolds and discusses some of the

di�culties involved.

There is much more work to be done in the application of the manifold abstraction to

the numerical solution of PDEs, and x3.6 suggests some of these possible directions.

3.3 Finite di�erences on manifolds

Recall that �nite di�erence techniques generally involve the use of di�erence quotients to

replace derivatives, thus transforming partial di�erential equations into linear algebraic

equations which can then be solved using a variety of numerical techniques. Approximate

solutions are represented by their values at some set of chosen sample points, often referred

to as nodes in this document,7 and algebraic equations are derived to relate the values at

these discrete sample points to each other.

4In particular, the triangulation of surfaces and solids in R3 has been extensively studied because of their

extensive engineering applications.
5One might well imagine triangulating each chart �rst, and then somehow combining these local meshes to

form a global mesh. This is, in fact, the strategy employed in proving that every manifold has a triangulation.

However, there are technical di�culties with a direct implementation of this idea, as discussed in x3.5.
6Please do not confuse the local discretization phase with local discretization methods: The former is part

of the latter. Since global discretization is not the focus of this report, this terminology should not be too

confusing.
7This terminology comes from imagining the use of these algorithms on massively-parallel computers,

where each processor, or node, represents a sample point. For example, Abelson, et. al., describe a novel

new approach to computing that may be able to exploit the locality inherent in �nite di�erence and �nite

element approximations to perform computations in parallel [1].

56



Chart 1
Chart 2

Figure 3-1: Copying nodes in the overlap between two charts to enforce constraints on

unknown values, thus combining local equations into a global system. In this �gure, the

triangular nodes belong to chart 1, while the circular nodes belong to chart 2.

There are several possibilities for applying �nite di�erence techniques to manifolds.

What follows is the pseudocode for one of the simplest methods:

;;; This is the pseudocode for a finite differences algorithm on manifolds.

;;; Actually, this can easily be turned into a working program, but since most

;;; of the following material has already been implemented in C for speed, the

;;; Scheme versions were never implemented.

(define (finite-difference-on-manifold M L g h)

;; M should be a manifold, L a linear differential operator, and G and H

;; should be smooth functions on M. The solution U is a function such that

;; (L U) = F over M, and where U = G on the boundary of M.

(let ((charts (manifold:get-finite-atlas M)))

;; Based on the local geometry of each chart, construct a collection of

;; sample points. Then for each node, compute its finite difference

;; coefficients with respect to its neighbors in each chart:

(for-each

(lambda (nodes)

(for-each

(lambda (node)

(node:set-fd-coefficients! (compute-fd-coefficients node nodes)))

nodes))

(process-node-lists (map make-nodes charts) charts))))

This program contains a number of auxiliary procedures: Make-nodes takes a chart and

constructs a list of nodes for that chart. Manifold:get-finite-atlas returns a �nite atlas

(i.e. a �nite list of charts) for the manifold, if such a thing exists. Process-node-lists is a

procedure that copies nodes between charts in overlapped regions (see Figure 3-1), so that

nodes that lie in the overlap of two charts will exist in both charts and agree on the value of

57



the approximate solution at that point. Finally, the procedure compute-fd-coefficients

locallly discretizes the PDE, and can use any method it prefers to derive the �nite di�erence

coe�cients of node with respect to its neighbors in chart.

Note that by copying nodes between lists in process-node-lists, we have implic-

itly constrained the system of equations to be consistent with each other on overlapped

regions between charts. Thus, two sample points x1 2 C1 and x2 2 C2 are guaran-

teed to have the same value if x1 and x2 really correspond to the same point p in M .

Process-node-lists thus performs all the necessary work for the combination phase. On

the other hand, compute-fd-coefficients is the part of the program that controls how in-

formation ows between di�erent parts of the discretized domain. For example, since many

physical systems arise from local interactions, this procedure can be written to consider

only those nodes in the list nodes that are physically close to the given node, node.

The combination phase of this local method, as described above, may seem trivial.

However, because nodes are copied between charts, it is in general impossible to guarantee

that nodes lie on regular grids. This causes two problems: First, local discretization becomes

more di�cult, since many standard methods depend on regular grids (we will see such a

method later). Second, it often turns out that in the irregular case, the resulting �nite

di�erence equations are not su�ciently structured to be solvable by iterative methods such

as relaxation.8 But the application of direct or semi-direct methods to large matrices can be

computationally intensive and numericaly undesirable, and hence the resulting set of linear

algebraic equations can become very di�cult to solve. The price we paid for simplicity in

the combination phase is that the local problem becomes more di�cult.

Chesshire and Henshaw avoid these di�culties by using a di�erent approach [7]: Their

method uses locally regular grids for local discretization, and instead of copying nodes (which

destroys the regularity of local grids in the method outlined above), the combination phase is

carried out by using interpolation functions between nodes. While this works well for some

problems, however, it relies on much more complicated procedures for the combination

phase and restricts the types of charts one could use. Thus, their method is not explored

in this section, although variations on their idea are explored later in the context of �nite

elements.

The rest of this section focuses on the local problem of obtaining and solving �nite dif-

ference approximations for PDEs because the problem is already non-trivial at that level,

and adding the complication of solving PDEs on manifolds probably would not help.9 Both

8Readers unfamiliar with relaxation and other iterative methods for solving large sparse linear systems

of equations are referred to Chapter 6 of Vichnevetsky [27]. Appendix A also contains a brief introduction

to the subject.
9Except that, perhaps, one could choose local coordinate systems to \regularize" the sample point ge-

58



Ω

Figure 3-2: The discrete Dirichlet problem.

the simple method described above and that of Chesshire and Henshaw involve more dif-

�culties, and thus in this section we only consider the application of �nite di�erences to

irregularly-distributed sample points over subsets of Euclidean space. This is an interesting

problem in its own right.

3.3.1 Generating coe�cients for irregular sample points

This section discusses the problem of local discretization using �nite di�erences. As such,

all domains are open subsets of Euclidean spaces unless otherwise stated.

The discrete Dirichlet's problem

As mentioned in x3.3, one of the primary problems encountered in implementing the al-

gorithm above is the formulation of �nite di�erence techniques using irregularly-distributed

sample points. Before tackling this more di�cult case, though, let us revisit the canoni-

cal example of �nite di�erences: Laplace's equation on a regular rectangular grid and the

discrete version of Dirichlet's problem (see Figure 3-2).

The basic idea is this: Let f be a real-valued di�erentiable function of one real variable.

By the de�nition of the derivative, we have:

f
0(x) � f(x+ h=2) � f(x� h=2)

h
: (3.5)

This is the central-di�erence approximation, and has nicer numerical properties than

the standard forward-di�erence approximation.

ometry to improve their numerical properties. But this turns out to be a rather di�cult problem. For more

details, Clark, et. al., present and analyze one possible way of carrying out this procedure, and describe its

application to image processing [8].

59



Applying this approximation twice to f at x, we have an estimate of the second derivative

of f :

f
00(x) � f(x+ h) + f(x� h)� 2f(x)

h2
: (3.6)

Now suppose we are interested in solving the boundary value problem for Laplace's

equation over some region 
 in Rn. Cover the space Rn by a lattice Lh = f(x1; :::; xn) :
xi = kih; ki 2 Zg with spacing h > 0, and choose h su�ciently small so that the domain 


may be approximated by a subset 
h of Lh. Applying the formula above, we obtain:

r2
u(x; y) � u(x+ h; y) + u(x� h; y) + u(x; y + h) + u(x; y � h)� 4u(x; y)

h2
: (3.7)

Upon rearrangement and setting the Laplacian of u to 0, this yields the familiar formula:

u(x; y) � u(x+ h; y) + u(x� h; y) + u(x; y + h) + u(x; y � h)

4
: (3.8)

This formula is su�cient to determine approximate solutions of Laplace's equation over

a regular lattice with reasonable accuracy for domains with su�ciently smooth boundaries

and boundary data.

Polynomial interpolation

However, we cannot generalize this method to other irregular sample points because we

made heavy use of the regularity of the grid in its derivation: The approximation formula

(3.6) was valid because the sample points are regularly spaced, and an approximation of the

Laplacian operator could be made because the lattice is generated by the orthogonal vectors

hx̂ and hŷ, which lets us take the appropriate derivatives for computing the Laplacian. Thus,

this method would not work if the sample points did not lie on a regular grid.

A di�erent approach to �nite di�erences is thus necessary. One natural idea is poly-

nomial interpolation
10 : In any �nite di�erence method, the primary goal is to express the

partial di�erential equation as a set of coupled �nite di�erence equations. Since we are only

concerned with linear operators here, it is natural to take these �nite di�erence equations

to be linear. In particular, let the ith sample point be pi, and let L be a linear di�erential

operator. Then for each sample point, we would like to �nd coe�cients aij such that:

Lu(pi) =
X
j

aiju(pj); (3.9)

10Special thanks to Thanos Siapas and Gerald Jay Sussman for telling me about this idea.

60



where the index j ranges over all other nodes. Furthermore, since many physical problems

involve only local interactions, and because of concerns for computational e�ciency on

parallel machines, the indices aij are chosen so that aij is non-zero only if pi and pj are

physically close. Deciding whether two sample points are close or not is, of course, a

parameter that needs to be chosen. Usually, one can call two sample points close if jpi�pjj <
R for some �xed radius R; in that case, pi and pj are called neighbors.

One way of computing the coe�cients aij for some �xed i is as follows: Suppose that

we would like to choose the coe�cients for some point pi with respect to its neighbors

pnik ; k = 1; :::; ni. For concreteness, let the domain be a subset of the plane. Then we can

require that the approximation (3.9) is exact on some set of test functions, �1; �2; :::; �mi
.

Substituting the basis functions into Equation (3.9), this gives:

L�j(pi) =

niX
k=1

ainik�j(pnik); j = 1; 2; :::;mi: (3.10)

Clearly, this is a set of mi linear equations in the ni variables ainik (recall that i is

�xed). If we have enough basis functions �j so that mi = ni, and if the basis functions

are chosen so that the L�j can be easily computed, then the equations (3.10) provide an

e�cient means of determining the unknown coe�cents ainik . Indeed, when this is applied

to the rectangular grid, where each grid point is given its immediate neighbors in the x̂ and

ŷ directions as neighbors, this process yields the approximation (3.8).

3.3.2 Solving linear algebraic equations

While this method gives reasonable approximations of the di�erential operator L, there is a

serious problem: The iterative methods usually used to solve the resulting linear algebraic

equations, such as successive overrelaxation, do not converge, while the use of direct or

semi-direct methods are often not possible for very large systems of equations.

One idea is to take advantage of the following well-known theorem: If A is a symmet-

ric positive-de�nite matrix, then successive overrelaxation converges for all overrelaxation

factors 0 < �! < 2. Now, suppose we wish to solve the linear system of equations Ax = b

for some non-singular matrix A. Then AT
Ax = A

T
b is equivalent to the original system of

equations. Furthermore, if A is nonsingular, then AT
A is positive-de�nite and the theorem

applies. Additionally, this computation can be carried out locally: Since the jth column

of A consists of the coe�cients anjkj ; k = 1; 2; :::; n, which are the coe�cients of pnjk with

respect to pj , two columns share a non-zero entry if and only if the corresponding sample

points are within two radii of each other (see Figure 3-3). Since the entries of AT
A are

actually the dot products of the columns of A, the computation of AT
A remains mostly

local, with the neighborhood radius of each node increasing from R to 2R.

61



R

R

Figure 3-3: The case of irregularly-distributed nodes: In performing the \transpose trick,"

two nodes have non-zero coe�cients for each other if and only if they are within two hops.

Unfortunately, this clever idea is not as magical as it may seem at �rst: First, by multi-

plying a matrix with its own transpose, the condition number of the matrix is approximately

squared.11 This tremendously worsens the numerical properties of the matrix. Furthermore,

the theorem quoted earlier states that the relevant spectral radius, �, is less than 1. How-

ever, it does not bound � away from 1. Thus, the actual spectral radius is often so near 1

that, in the presence of round-o� error, the method converges too slowly to be useful, and

we are forced to explore other methods.

3.3.3 Numerical examples

This sections presents the results of some numerical experiments using �nite di�erences.

Out of a desire to compute using a large number of nodes rather quickly, the programs have

been written in C. Thus, the source code will not be included here because they are not

very illuminating.

The problem in which we are interested is the rectangular slot problem: Consider the

unit square 
 = [0; 1] � [0; 1], depicted in Figure 3-4. Given the electric potential on the

boundary of 
 and the condition that there are no charges in the interior of 
, what is the

electric potential everywhere inside 
? From electrostatics, we know that the solution must

satisfy Laplace's equation. Furthermore, analytical solutions of this problem can be easily

11The reciprocal of the condition number of a matrix measures, in some sense, the distance of a matrix

to the set of singular matrices. Thus, the larger the condition number is, the closer the matrix is to being

singular, and it becomes increasingly di�cult to obtain numerically accurate solutions. For a more thorough

discussion of condition numbers, as well as a discussion of this particular problem, see [24].

62



0

0.5

1

0

0.5

1
1

1.5

2

Figure 3-4: Determining the electric potential in a rectangular slot, with boundary condi-

tions speci�ed by Equation (3.11). The plot is generated by dividing the unit square into

smaller squares, over which the nodal values are averaged. This reduces the number of

points that need to be plotted.

derived using Fourier methods, so that numerical answers can be checked against the true

solution.12

For our purposes, it is useful to just settle on boundary conditions whose corresponding

solution is easy to compute. One such example is:

h(x; y) =

8<
: 1 + sin(�x); y = 1

1; otherwise:

(3.11)

The exact solution for these boundary values is:

u(x; y) = 1 +
sinh(�y) � sin(�x)

sinh(�)
: (3.12)

Notice that practically every function involved has the constant 1 added to it. This bounds

solution values away from zero so that meaningful relative errors may be computed; it should

not add signi�cantly to the numerical error, since 1 is of the same order of magnitude as

the solution values.13

12For more information about this and other related problems, see Haus and Melcher [15].
13This is essentially the �rst term in the Fourier series expansion for the solution of the slot problem with

boundary values:

63



0

0.5

1

0

0.5

1
1

1.5

2

Figure 3-5: The electric potential in a rectangular slot, determined by �nite di�erence

computations on a regular rectangular grid. About 100,000 iterations (with �! = 1:9) were

run, so the solver may not have converged to the \true" approximate solution yet.

A note on graphics. It is vital to note that in this section, all plots of sample values

over the unit square are produced by dividing the unit square into rather coarse grids �rst,

and then averaging over the sample values. This simpli�es the task of plotting, but at the

risk of making the data appear more smooth than it is. So please take care not to be misled

by the apparent simplicity of the plots.

Regular grid. First, let us use the approximation (3.8) to approximate the solution on

a regular rectangular grid. The actual grid used consists of 10,000 nodes, placed at regular

intervals in the unit square 
 on a 100 � 100 grid. After applying Equation (3.8) to each

node for about 106 iterations,14 the resulting values are checked against the actual solution.

Figure 3-4 shows the shape of the electric potential arising from the boundary conditions

h(x; y) =

�
1; y = 1

0; otherwise:
(3.13)

While this boundary condition is much simpler than the one above, its corresponding solution requires the

computation of an in�nite series that converges rather slowly; the relevant Fourier series is that of the

unit-step funtion, where Gibbs' e�ect shows up.

Note that this boundary condition is also discontinuous, which makes accurate numerical solutions some-

what harder to obtain (especially near the corners). This is one of the many reasons why one may wish to

have the ability to use multiple coordinate systems when solving PDEs, thus concentrating computational

e�ort near discontinuities in the boundary data.
14Actually, the algorithm used is successive overrelaxation (SOR), with a relaxation factor of 1.9. This

helps accelerate the convergence rate; for more information, see Appenix A or Vichnevetsky [27].

64



0

0.5

1

0

0.5

1
0

1

2

3

x 10
−5

Figure 3-6: The absolute di�erence between the functions depicted in Figure 3-4 and Figure

3-5. The maximum absolute error is 0.0000291001797184, the minimum absolute error is

0.0000000157547926, and the average absolute error is 0.0000115848344767. The maximum

relative error, on the other hand, is 0.0000216438565018, the minimum relative error is

0.0000000157534190, and the average relative error is 0.0000093994479478.

speci�ed in Equation (3.11). Figure 3-5 shows the values obtained from the regular grid

approximation. Note that they are qualitatively alike.

In fact, one can plot the error between the two; this is shown in Figure 3-6. Notice that

the error reaches its maximum near the non-zero boundary values.

Randomly-distributed sample points and simple averaging. The next idea de-

pends on an alternative derivation of the approximation (3.8): Let u be a function over

some region 
. For every point p and any real r > 0, denote the closed ball of radius r

centered at p, fq : jp � qj � rg, by Bn
r (p), and denote its boundary (the n � 1-sphere) by

S
n�1
r

(p). Then, u is said to have the mean-value property if for every point p and radius r

such that Bn

r
(p) is contained in 
, u(p) =

R
S
n�1
r (p)

u dS (where dS denotes the appropriate

measure for a surface integral). A well-known theorem then states that u satis�es Laplace's

equation if and only if it has the mean value property.

The equivalence of Laplace's equation and the mean-value property has many important

consequences; Ahlfors [3] contains more details. For our part, it can be used to derive an-

other approach to Laplace's equation: One uses randomly-distributed nodes,15 but instead

15Actually, using uniformly distributed random numbers to place nodes uniformly in a rectangular region

65



0

0.5

1

0

0.5

1
1

1.5

2

Figure 3-7: The potential computed by simple averaging using randomly-distributed nodes.

As in previous �gures, this plot is generated by dividing the unit square into smaller squares,

over which the nodal values are averaged. So please keep in mind the comments at the

beginning of this section: This plot may appear to be more smooth than the actual data

because of the averaging procedure.

of trying to perform fancy derivations of �nite di�erence coe�cients, each node simply av-

erages the values of its neighbors within a given radius R and sets its own value to this

average. The validity of this approach follows from the mean-value property and a simple

volume integral over the closed ball of radius R centered at each point p.

Figure 3-7 shows the approximate solution constructed this way; the smooth surface

is generated by locally averaging nodal values. In this particular computation, there are

10,000 nodes in the rectangular slot, each having an average of 25 neighbors. Notice that

it is qualitatively similar to Figures 3-4 and 3-5. However, as Figure 3-8 shows, the error

distribution is much less smooth and is much larger.

Furthermore, we can examine the relationship between the average error and parameters

such as the radius R and the number of nodes. Figure 3-9 plots average absolute error

against the radius R for a domain having a �xed number of nodes. We see that as R

decreases, the error decreases as well. This can be understood in terms of a node's ability

to adapt to the approximate solution: Averaging over too large a neighborhood \sti�ens" the

approximate solution and makes convergence to solutions with large gradients di�cult. Also,

tends to create clusters of nodes because the law of large numbers does not give us a very tight bound on

the variance of the distribution from the mean, so it is necessary to enforce a minimum distance between

nodes to ensure a \uniform" distribution.

66



0

0.5

1

0

0.5

1
0

0.01

0.02

0.03

Figure 3-8: The error distribution for the averaging method. The maximum absolute error

is 0.0303547633666503, the minimum absolute error is 0.0000001458319725, and the average

absolute error is 0.0044948995201661. The maximum relative error, on the other hand, is

0.0246888943589139, the minimum relative error is 0.0000001448811931, and the average

relative error is 0.0035004079565252.

0.05 0.1 0.15 0.2 0.25
10

−2

10
−1

lo
g(

av
er

ag
e 

ab
so

lu
te

 e
rr

or

Figure 3-9: The average absolute error versus the radius R. The domain contains 1,000

nodes while the radius ranged from 0.2 to 0.05. Successive overrelaxation is performed on

each con�guration for 100,000 iterations, with �! = 1:7.

67



10
3

10
4

10
−3

10
−2

10
−1

log(total node count)

lo
g(

av
er

ag
e 

ab
so

lu
te

 e
rr

or
)

Figure 3-10: The average relative error versus total number of nodes. The number of

nodes varies from 1,000 to 5,000, and the radii are changed to keep the average number

of nodes per neighborhood at around 27 nodes. Successive overrelaxation is performed on

each con�guration for 100,000 iterations, with �! = 1:7.

the semi-log plot shows that the error decreases approximately exponentially for su�ciently

large R, though the curve tapers o� as R becomes smaller. However, the error cannot

be made arbitrarily small by decreasing R along, because nodes can become disconnected

from each other for su�ciently small R, and the boundary data would then have no way of

\propagating" to interior nodes.

Figure 3-10 shows the analogous plot for the average absolute error versus the total

number of nodes, with the density held constant by changing the radius. This log-log plot

demonstrates an approximate power law governing the relation between the total number

of nodes (given �xed density) and the average absolute error.

However, despite its simplicity and reasonable accuracy, the averaging method is limited

by its lack of generality: Because it uses properties speci�c to Laplace's equation, it is not

immediately applicable to other elliptic di�erential equations. This is one of the advantages

of generating �nite di�erence coe�cients using polynomial interpolation, as described in

x3.3.1.

68



0

0.5

1

0

0.5

1
1

1.5

2

Figure 3-11: The approximate solution generated by applying direct matrix inversion

to the system of equations generated by polynomial interpolation. The maximum ab-

solute error is 0.0081833977839731, the minimum absolute error is 0.0000000779550711,

and the average absolute error is 0.0004690292039753. The maximum relative error is

0.0076113517976692, the minimum relative error is 0.0000000745384821, and the average

relative error is 0.0004207582072576.

Randomly-distributed sample points and polynomial interpolation. Let us now

take a look at the �nite di�erence coe�cients generated using polynomial interpolation.

Unlike the case of regular grids, the iteration diverges rather quickly. For the ease of

computation, this section examines systems with smaller numbers of nodes | The tests

here use 300 interior nodes distributed uniformly in the unit square and 144 nodes spaced

evenly along the boundary, with the same boundary conditions (3.11).

For a system this size, one could explicitly compute the spectral radius for various

iteration methods.16 Indeed, for the example here, the spectral radius for Gauss-Seidel is

73.75932386604968, while that of Jacobi iteration is 6.69818594658326. Thus, both iteration

methods diverge for this system. However, as a test of the accuracy of the coe�cients

themselves, we can directly invert the matrix using LU decomposition.17 The result, shown

in Figure 3-11, demonstrates that polynomial interpolation actually produces fairly accurate

answers|If one had the ability to solve the resulting equations.

16The computations in this section are done using MATLABTM .
17This could be done because the system only has 300 interior nodes, and hence 300 unknowns. With

10,000 unknowns, there is no way to invert the matrix directly! Of course, from the view of error analysis,

one should be suspicious of directly inverting even a 300� 300 matrix...

69



0

0.5

1

0

0.5

1
1

1.5

2

Figure 3-12: The approximate solution generated by applying direct matrix inversion

to the system of equations generated by the \transpose trick." The maximum abso-

lute error is 0.0079623718237853, the minimum absolute error is 0.0000001702022259,

and the average absolute error is 0.0004585412757934. The maximum relative error is

0.0074057762673312, the minimum relative error is 0.0000001577217479, and the average

relative error is 0.0004110492850620.

The transpose trick. So what happens if we actually attempt to apply the \transpose

trick" described in x3.3.2? Does this really improve the stability of Gauss-Seidel iterations?

The answer is a lackluster a�rmative: The spectral radius for Gauss-Seidel iteration is

0.99999999123756, while that of Jacobi iteration is 7.52337630885650. Thus, Gauss-Seidel

(in theory) converges for this problem, even though the spectral radius is close enough to

1 that convergence is very slow. Furthermore, the condition number of the matrix before

multiplying by the transpose is 2:016135227435024 � 106, while after multiplying by the

transpose it becomes 2:382088963154271 � 1012|Roughly squared, as expected.

Thus, instead of applying iteration to these equations, LU decomposition is applied

directly as in Figure 3-11. The result is shown in Figure 3-12.

3.4 Finite elements on manifolds

An alternative to �nite di�erence techniques is to employ �nite element methods in local

discretization, which in general do not require regular grids to perform e�ciently (as do �nite

di�erence methods). However, the combination of local equations into a global system can

be more problematic for �nite elements than for �nite di�erences.

70



The basic idea of �nite elements on manifolds is simple: For each chart (U; V; �), one

can map the open set U onto the open subset V of Rn. Since V is an open subset of Rn,

one can generate a mesh that covers almost all of V in a number of ways: One way is to

always ensure that V is of a simple shape by choosing the appropriate mapping �; then it is

a easy to generate a regular grid over V . Another way is to generate a set of nodes that �ll

V \densely," and to triangulate them using a mesh generation algorithm such as quickhull

[6], which works for general n-dimensional convex polytopes. Having generated a mesh over

each chart, one can then apply standard �nite element methods, such as Rayleigh-Ritz or

Galerkin's method, to the open subset V of Rn. This yields locally discretized equations

for each chart.

The next step is to combine the equations. One straightforward proposal is to choose

a set of nodes in the overlap region between charts, and to constrain the unknown value

at each of those nodes to the interpolated value from the other chart, thus generating a

relation between unknown variables in di�erent charts. The nodes chosen to form these

constraints are called interpolation nodes, and choosing good ones turns out to be rather

tricky: Too few, and not enough information propagates between charts to generate a good

solution. Too many, and the resulting equations become overconstrained and cannot come

anywhere close to the real solution.

Before discussing these issues in detail, however, it is useful to devlelop a deeper under-

standing of what it means to integrate functions over manifolds.

3.4.1 Integration on manifolds

Integration is a very powerful tool in the study of partial di�erential equations, particularly

in the formulation of numerical methods. This is because integrals are much easier to

compute accurately and have a number of other nice properties, and can often be used to

reformulate PDEs in ways that simplify numerical solution methods. For example, �nite

element methods often rely on variational principles (as in the Rayleigh-Ritz method) or

orthogonality conditions (as in Galerkin's method) to discretize PDEs: In the former case,

the computation of the action functional to be minimized requires integration over the

domain of the PDE, and in the latter case, the evaluation of the inner product on the

function space of possible solutions again requires the integration of functions over the

domain.

While these ideas are all straightforward to de�ne on subsets of Euclidean space, it is

less obvious how one can arrive at a coordinate-independent de�nition of integration on

manifolds. Integration, as opposed to di�erentiation, is inherently a global operation, not a

local one, and thus the de�nition of integrals is more di�cult than that of di�erentials.

71



There is no unique way to de�ne the integral of a real-valued function on manifolds.

However, one could integrate real-valued functions over Riemannian manifolds (see x2.1.4),
where a \smoothly-varying" inner product is de�ned on each of tangent spaces. There is

another useful approach to integration that relies on \di�erential forms." Since this material

will not be needed for our purposes here, a discussion is postponed until Appendix B.

Partitions of unity

In view of the usefulness of tangent vectors on manifolds, which were de�ned using the

fact that manifolds locally \look like" Euclidean spaces, one natural idea would be to

reduce the problem of integrating a function over the whole manifold to the problem of

integrating a function over a chart. That is, the problem of integration can be divided into

two subproblems: The �rst is how to reduce the problem of integration to a local problem,

and the second is how to de�ne integration locally in a consistent way so that the integral of

a function over a small subset of the manifold is independent of the chart chosen to evaluate

that integral.

It turns out that the two approaches to integration mentioned above di�er only in how

they solve the second subproblem. The common solution to the �rst subproblem, called a

\partition of unity," is a simple but powerful idea.

Let f�ig be a set of smooth real-valued functions on a manifold M , let Ui denote the

interior of the support of �i, and let A be an atlas that is compatible with the atlas of M .

Then f�ig is a partition of unity subordinate to A if:

1. �i(x) � 0 for all x 2M .

2. For each i, there exists a chart (U; V; �) 2 A such that the support �Ui of �i is contained

in U . Furthermore, �Ui is compact.
18

3.
P

i
�i(x) = 1 for all x 2M .

4. Every point x 2 M has a neighborhood W such that W is contained in only �nitely

many of the sets Ui.

For any atlas on any manifold, there exists a partition of unity subordinate to it. For

a proof of this fact, see Munkres [21], Guillemin and Pollack [14], or Warner [28]. In this

discussion, the atlas to which a partition of unity is subordinate may not be mentioned

18For those who have not had exposure to point set topology, compactness in this context is equivalent

to saying that the image of �Ui under � is a closed and bounded subset of V . It is a topological property

independent of the chart.

72



explicitly; in such cases, the atlas of the manifold is assumed.19 Incidentally, �nite element

basis functions furnish a nice example of a partition of unity.

Suppose, now, that we have already found a nice way to de�ne an integral operator \
R
"

on real-valued functions over the manifoldM . What properties should it have? First of all,

integrals should be linear; that is, the integral of two functions f and g should satisfy

Z
M

(af + bg) = a

Z
M

f + b

Z
M

g (3.14)

for real constants a and b. Now note that for any function f and any partition of unity

f�ig, the following equation holds for all x 2M :

f(x) =
X
i

�i(x)f(x): (3.15)

This expression is well-de�ned, because even though the collection f�ig may be in�nite,

axiom 4 shows that for each x, only �nitely many of the numbers �i(x) is non-zero. Thus,

this potentially in�nite series is actually a �nite sum for each x, and the expression is

well-de�ned. The equation then follows from the fact that the �i sum to 1.

Combining this with the linearity of integrals, we obtain:

Z
M

f =

Z
M

X
i

�if (3.16)

=
X
i

Z
M

�if (3.17)

But each of the functions �if has compact support. Furthermore, the support of �if

must be a subset of the support of �i, which is contained entirely in some chart.

Conversely, suppose that we have a way of integrating functions whose supports lie

entirely within a chart. It is easy to show that the choice of a partition of unity to combine

these integrals does not a�ect the �nal outcome: Let f�0
j
g be another partition of unity

subordinate to the atlas A0 = fU 0
j
g. Then:

X
i

Z
Ui

�if =
X
i;j

Z
Ui\U

0

j

�i�
0

j
f =

X
j

Z
U
0

j

�
0

j
f: (3.18)

We have thus reduced the problem of �nding a reasonable de�nition of integrals of

functions on manifolds to a local problem: How can we integrate functions whose supports

lie entirely in a given chart?

19In most treatments of partitions of unity, axiom 2 is stated using open covers, not atlases. However, for

our purposes, partitions of unity are most useful when the open cover is an atlas.

73



Integration on Riemannian manifolds

Consider now open subsets V1 and V2 of Euclidean n-space. Suppose f is a smooth bounded

real-valued function on V2 (boundedness is generally required to ensure that the integral is

�nite), and that there exists a smooth bijective map � from V1 to V2. Using the change of

variables theorem, we know that the integral of f over V2 can be written in two ways:

Z
y2V2

f(y)dy =

Z
x2V1

f(�(x))jdetD�(x)jdx; (3.19)

where traditional notation, rather than functional notation, was used for the sake of clarity.

As stated in x3.4.1, one major aspect of de�ning integration on manifolds is �nding a

consistent de�nition of local integrals. In view of Equation (3.19), this amounts to �gur-

ing out what geometric information is necessary to construct objects that transform like

determinants, so that integrals of functions over \small" subsets of the manifold are the

same no matter what chart is used. The approach here is to relate determinants to a local

measure of volume in tangent spaces of the manifold, so that the function analogous to the

determinant can be de�ned geometrically.20

The geometry of determinants. Let us begin with the geometric interpretation of the

determinant: Let S be a set of n vectors B = fv1; v2; :::; vng in Euclidean n-space. Every

such set S de�nes a parallelpiped:

fv 2 Rn : v =

nX
i=

aivi;

nX
i=0

ai � 1; ai � 0g; (3.20)

where v0 =
P

n

i=1 vi. This generates a convex polyhedron with vertices at the origin, each

of the points vi, and the point v0 =
P
vi; in the case n = 2, this is just the de�nition of a

parallelogram. The n-dimensional volume of this geometric object is then jdetAj, where A
is the matrix whose columns are the vectors v1; v2; :::; vn.

Now, this de�nition of volume implicitly used the structure of Euclidean space. The

determinant depends on the components of the matrix A, which in turn depend on the

particular basis chosen. In the Euclidean case, there is a standard basis, but general vector

spaces do not have special bases singled out for them, and hence the determinants of linear

transformations are not well-de�ned. However, for inner product spaces, the determinant

is well-de�ned, up to a sign:

Let V andW be n-dimensional inner product spaces, and let L be a linear transformation

20As discussed in Appendix B, the other approach is to somehow associate determinants to functions, so

that instead of integrating real-valued functions, one integrates functions called di�erential forms, whose

values are \determinant-like" functions.

74



from V to W . Choosing bases BV and BW for V and W , respectively, we can write L as

a matrix with real components. Its determinant is then well-de�ned with respect to these

bases. In particular, let BV;1 and BV;2 be orthonormal bases for V , and let BW;1 and BW;2

be orthonormal bases for W . If we let Li be the matrix representation of L with respect to

the bases BV;i and BW;i, then elementary linear algebra shows that:

L2 = A
�1
W
� L1 � AV ; (3.21)

where AV is the matrix representation of the basis BV;2 with respect to the basis BV;1, and

AW is the matrix representation of the basis BW;2 with respect to the basis BW;1. But the

bases BV;i and BW;i are chosen to be orthonormal for i = 1; 2, so the matrices AV and AW

are orthogonal, and their determinants are �1. Thus, detL2 = �1 detL1, and we see that

for inner product spaces, one can de�ne the determinant in a consistent way up to a factor

of �1.
We can therefore make the following de�nition: Let L be a linear transformation from

an inner product space V to another inner product space W , both of dimension n. Then

the function jdetLj is de�ned to be the absolute value of the determinant of L with respect

to any orthonormal bases for V and W . By the argument above, this is well-de�ned.

Furthermore, like ordinary determinants, this has the following properties: jdet Ij = 1

for the identity operator I, and given inner product spaces V1, V2, and V3, and linear

transformations L1 : V1 ! V2 and L2 : V2 ! V3, where the dimensions of the Vi are all n,

jdetL2L1j = jdetL2j � jdetL1j.

Integrals on compact Riemannian manifolds. Let M be a Riemannian manifold,

and for each point x 2 M , let gx denote the inner product on the tangent space TxM .

Suppose f is a smooth real-valued function on M whose support is a compact subset of U

for some chart (U; V; �). De�ne the integral of f on U by:

Z
U

f =

Z
V

f � ��1jdet d��1j: (3.22)

Since the tangent spaces of M are inner product spaces (recall that M is a Riemannian

manifold), and V as a subset of Rn has a canonical inner product, the expression jdet d��1j
is well-de�ned.21 Furthermore, suppose the support of f is contained in both U1 and U2 for

some charts (U1; V1; �1) and (U2; V2; �2). Let U be the intersection of U1 and U2, and let

Wi = �i(U). Then f is also supported in U , and:

21The di�erential d��1 is well-de�ned because ��1 is a smooth map from the open subset V , which is a

manifold itself, into the manifold M .

75



Z
U1

f =

Z
U

f (3.23)

=

Z
W1

f � ��11 jdet d��11 j (3.24)

=

Z
W2

(f � ��11 � (�1 � ��12 ))jdet d��11 j � jdet (d(�1 � ��12 ))j (3.25)

=

Z
W2

f � ��12 jdet d��12 j (3.26)

=

Z
U2

f; (3.27)

and the integral
R
U
f is well-de�ned. But by our earlier argument using partitions of unity

in x3.4.1, this means the integral is well-de�ned on manifolds.

One last note: This discussion actually skirts the issue of convergence. While each local

integral
R
�if is well-de�ned because �if � ��1 has compact support in V , there is nothing

that guarantees that the sum
R
f =

P
i

R
�if converges. In general, it does not always

converge, and one often requires that the partition of unity be �nite. A manifold for which

there exists a �nite partition of unity must be compact.22

Implementation in Scheme

Having gone to such lengths to discuss integration on manifolds, the reader might suspect

that one could build an elaborate computational scheme for computing integrals of real-

valued functions over Riemannian manifolds. However, in practice it often happens that

the manifold in question is an open subspace of Rn (or, in cases where boundary conditions

are necessary, closures of open subspaces of Rn). In such cases, it su�ces to use the

Euclidean structure directly to de�ne integrals, and the code for manipulating �nite element

basis functions implement the ideas in the previous section automatically. As a complete

implementation of these ideas is not necessary for testing the use of multiple coordinate

systems to solve PDEs, such routines have not been implemented at this time. The purpose

of this treatment of integration has primarily been for the theoretical insight it provides;

like partial di�erential operators in x3.1, the code used in this chapter can seem ad-hoc and

confusing without a proper framework in mind.

22A good introduction to general topology and such concepts as compactness, connectedness, and conti-

nuity for general topological spaces is Munkres [19].

76



Figure 3-13: A boundary chart for the solid disc in the plane.

3.4.2 More about boundaries

This section picks up where x2.1.8 left o�: In order to discuss the computational solution

of elliptic boundary-value problems on manifolds, it is necessary to build a computational

framework for working with boundary charts and manifolds with boundaries. This section

discusses the implementation of manifolds with boundaries in Scheme.

Add-boundary-to-chart and make-boundary-chart are the primary procedures for

computing with boundaries of manifolds. Add-boundary-to-chart takes as arguments a

chart (U; V; �), an index i, and an optional argument level L, and declares the subset

fp 2 U : xi = L; x = �(p)g of V the boundary of the chart. This creates boundary charts

for the original manifold. While this is a slight deviation from the de�nition of boundary

charts in x2.1.8, it is clearly equivalent and slightly simpli�es programming with these

abstractions. Make-boundary-chart23 then constructs a chart for the boundary manifold

out of a boundary chart for the original manifold.

The actual construction of a manifold with boundary can be rather messy, so the code

is omitted here. Figures 3-13 through 3-15 show three charts that cover the solid disc

fx 2 R2 : jxj � 1g, the �rst two being boundary charts and the third covering the center of

the disc. Figure 3-16 shows how these charts overlap.

3.4.3 Computing with �nite elements on manifolds

The previous sections, together with Appendix A, contain the material necessary for de-

veloping �nite elements on manifolds. Since the subject of partial di�erential equations is

su�ciently vast and complicated that many issues of theoretical and computational impor-

tance need to be resolved in very di�erent fashions in di�erent cases, the programs have

23This procedure is a bit of a misnomer, since boundary charts, as de�ned, are really charts of the manifold

M , not charts of the boundary manifold @M .

77



Figure 3-14: Another boundary chart for the solid disc in the plane.

Figure 3-15: A third chart for the solid disc in the plane; this one covers only the interior

and does not intersect the boundary.

Figure 3-16: All three charts together, covering the unit disc.

78



been designed to provide only a logical skeleton into which all the components �t, and

the individual components, such as the �nite element basis functions and their integraton

over domains, are very exible. Consequently, the best way to understand the algorithms

and representations used for these computations is to examine how it works for a concrete

example; otherwise the program can seem excessively abstract.

The main program is divided into three parts: The �rst is a �nite element program

(FEM) that performs the local �nite element assembly, etc., and has no knowledge of

manifolds. Indeed, this portion stands on its own as a �nite element PDE solver over

Euclidean spaces. The second part is a set of additions to the manifold code developed in

the Chapter 2 that help manage geometric structures such as boundaries for the sake of

setting boundary values and solving PDEs. Finally, the third part is a set of tools that

oversee the �nite element assembly process on manifolds, and has various routines that

combine local equations into global ones in di�erent ways.

The primary example in this section, as in Appendix A, is the boundary value problem

for Laplace's equation. The domain of solution is the unit disc (see Figure 3-16), which

was given the structure of a manifold with three charts (see Figures 3-13 through 3-15). As

stated before, this is a natural problem because of its simplicity and importance in physical

problems. Furthermore, one can easily derive analytical solutions for simple boundary

values, and for more complicated boundary values traditional �nite element methods (over

subspaces of Euclidean space) are known to perform reasonably well.

3.4.4 Local �nite-elements

First, let us discuss the local �nite element program. It depends on explicit computational

representations of nodes and elements and uses these abstractions to isolate di�erent stages

in the �nite element assembly process and to clarify the interdependence of di�erent com-

ponents. In this discussion, unless explicitly stated, all objects exist in Euclidean spaces.

In this system, nodes are objects that have coordinates, carry values, and have some

extra �elds (such as various ID numbers that identify them from other nodes in the ensem-

ble), and ags that identify them as boundary nodes. Since each element object also keeps

track of the nodes that they contain, each node is also assigned a local ID by the element.

Conversely, each node must also keep track of the elements to which they belong.

In terms of elements and nodes, then, the �nite element assembly process can be ex-

pressed rather concisely as follows:

(define (assemble-equations source nodes)

;; SOURCE is a function from R^2 to R, and NODES is expected to be a vector.

(let* ((ncount (vector-length nodes))

79



(bcount 0)

(index-map (make-vector ncount)))

;; First, assign each node an index and count the number of boundary nodes.

(do ((i 0 (+ i 1)))

((>= i ncount))

(node:set-id! (vector-ref nodes i) i)

(if (node:boundary? (vector-ref nodes i))

(set! bcount (+ bcount 1))))

;; Next, create a mapping from node indices into matrix row number. (The

;; matrix has one row per interior node.)

(let loop ((i 0) (row 0))

(if (< i ncount)

(if (node:boundary? (vector-ref nodes i))

(begin

(vector-set! index-map i #f)

(loop (+ i 1) row))

(begin

(vector-set! index-map i row)

(loop (+ i 1) (+ row 1))))))

;; Loop over the nodes to create row entries:

(let* ((icount (- ncount bcount))

(big-matrix (make-sparse-matrix icount (1+ icount))))

(do ((i 0 (+ i 1)))

((>= i ncount))

(if (not (node:boundary? (vector-ref nodes i)))

(let ((row (vector-ref index-map i)))

;; Compute the source term for this row:

(sparse-matrix-set! big-matrix row icount

(node:compute-source (vector-ref nodes i)

source))

;; Combine boundary values:

(for-each

(lambda (pair)

(let ((id (car pair))

(val (cadr pair)))

(if (node:boundary? (vector-ref nodes id))

(sparse-matrix-set!

big-matrix row icount

(- (sparse-matrix-ref big-matrix row icount)

(* val (node:get-value (vector-ref nodes id)))))

(sparse-matrix-set! big-matrix row

(vector-ref index-map id) val))))

(node:assemble (vector-ref nodes i))))))

big-matrix)))

80



Node i
E

Node j

Figure 3-17: As de�ned in Appendix A, each node corresponds to a vertex in a triangulation,

and to each node i there corresponds a �nite element basis function �i. The support of

�i is the union of all those elements adjacent to node i, and hence the intersection of the

supports of two basis functions �i and �j , i 6= j, consists of a union of elements as well.

Element:compute-integrals, when given an element E and an index i belonging to E,

returns the set of all integrals of the form
R
E
�i � L�j for all j that are neighbors of i.

Note that this FEM assembly program does not actually compute the integrals, but calls

node:assemble to recursively construct the appropriate coe�cients and combine them.

(define (node:assemble node)

(let ((l (append-map

(lambda (element index)

(element:compute-integrals element index))

(node:get-elements node)

(node:get-local-ids node))))

;; ELEMENT:COMPUTE-INTEGRALS returns a list of pairs, where each pair takes

;; the form (node-id . coefficient). MERGE-TERMS then sorts and adds up

;; coefficients that have the same ID.

(merge-terms l + (lambda (x y) (< (car x) (car y))))))

Node:assemble calls element:compute-integrals, which returns a list of pairs of the

form (node-index . integral), which represent the element's contribution to the �nite

element integrals involving the basis function centered at the given node. More precisely,

let i be the index of the current node, and let j denote the index of one of its neigh-

bors, and let E denote an element shared by these two nodes (see Figure 3-17).24 Then

element:compute-integrals and node:assemble compute and return a list of pairs of the

form:

24That is, E is part of the intersection of the supports of the basis functions �i and �j .

81



�
j;

Z
E

�i � L�j
�
: (3.28)

Merge-terms then adds up contributions corresponding to the same node index j.

This shows that all routines for integrating basis functions and dealing with the di�er-

ential operator can be isolated in the element abstraction: The FEM assembly program

and the nodes exist merely for \book-keeping" purposes, and all the information about the

geometry of the domain and the action of the di�erential operator are encapsulated in the

elements. The element abstraction thus isolates all the components that need to be changed

in order to modify the type of basis functions used and the method used to integrate them;

this simpli�es the method's application to manifolds.

Constructing elements and di�erential operators. The construction of elements is

much more complicated than the mere packaging of data. It takes as arguments three

procedures for constructing important data structures. The �rst of these, make-operator,

takes a list of nodes and returns a list of structures that represent the di�erential operator

(or an approximation thereof) over the element described by the given nodes. It is organized

in such a convoluted way because oftentimes it is useful to have the ability to approximate

di�erential operators with variable coe�cients with operators whose coe�cients are locally

constant. To facilitate this, operators need to \know" the element over which it is operating,

and hence we have the make-operator constructor.

To complicate matters even more, it is often useful to split a di�erential operator L into

three components: Anm-vector-valued di�erential operator Lleft, a second m-vector-valued

opreator Lright, and a bilinear form (on vectors in Rm) h; i, satisfying the equation
Z
hLleftf; Lrightfi =

Z
(f � Lf); (3.29)

where f is an arbitrary di�erentiable function of compact support, which, for example, can

be a basis function.25 The reason for this is that �nite element basis functions are often

piecewise polynomial functions, and hence are only di�erentiable �nitely many times. In

general, the more degree of di�erentiability one requires, the higher the order of the polyno-

mials. Since higher-order polynomials require more nodes, their storage and manipulation

require more computational resources. Conversely, one can often reduce the amount of

data needed by reducing the order of the polynomials. This is possible if one integrates by

25It should be clear what Lleft and Lright mean for functions on Euclidean spaces. In the context of

manifolds, think of the operators Lleft and Lright as m-tuples of partial di�erential operators as de�ned

earlier in x3.1, which would map real-valued functions f : M ! R on M to m-vector-valued functions

Lf :M ! Rm.

82



parts and split the di�erential operator into two parts. For example, the Laplacian is often

represented by the gradient operator Lleft = Lright = r, which when integrated by parts

to yield the (negative) Laplacian operator �r2; this allows the use of basis functions that

are continuous with piecewise-continuous �rst partials, such as piecewise-linear functions.26

Thus, make-operator returns left-op, right-op, and combine, which correspond to

Lleft, Lright, and h; i, respectively. This structure also allows the use of the usual repre-

sentation of di�erential operators: Just let right-op compute the di�erential operator, let

left-op be the identity operator, and replace combine with a function product operation.

The other two arguments of element-maker are simpler: Make-integrator takes as

argument a list of nodes and returns a procedure capable of integrating basis functions

over the element de�ned by those nodes, and make-basis-function creates a basis func-

tion data structure. Note that basis functions are generally abstract data structures that

represent mathematical functions, not computational procedures, and their representa-

tions are completely exible: The entire program works so long as make-integrator and

make-basis-function agreed a priori upon a consistent representation of basis functions.

In practice, as stated above, piecewise polynomial basis functions are often used because

their images under di�erential operators are easy to compute, as are their integrals.

;;; Note that this implicitly assumes that elements are the convex hull of

;;; their vertices.

;;; The (meta-)constructor for element-constructors:

(define (element-maker make-operator

make-integrator

make-basis-function)

;; MAKE-INTEGRATOR should take as argument a list of nodes, and returns a

;; procedure that takes a variable number of functions (at least 1) and

;; integrates their product over the domain specified implicitly as the

;; convex hull of the vertex nodes.

;; MAKE-BASIS-FUNCTION should take as argument a list of nodes and the index

;; of the node that is to be the center of the basis function, and return

;; some structure representing basis functions.

;; We place no restrictions on the representation of functions over elements,

;; so long as the particular instances of MAKE-BASIS-FUNCTION and

;; MAKE-INTEGRATOR agree a-priori on the representation.

;; MAKE-OPERATOR should take a list of nodes and return LEFT-OP, RIGHT-OP,

;; and COMBINE procedure, satisfying (INTEGRATE (COMBINE (LEFT-OP F)

;; (RIGHT-OP G))) = (INTEGRATE F (OP G)), i.e. implement integration by parts

;; so that basis functions can be less smooth.

26In the case of Laplace's equation, the symmetric positive semi-de�nite form �
R
h; i on the space of

di�erentiable functions is called the Dirichlet form.

83



;; The list of nodes facilitates the interpolation of variable coefficients

;; in the operator. This may not be a good interface, as it makes artificial

;; assumptions on the contract between basis functions and operators (as is

;; the explicit use of LEFT-OP and RIGHT-OP).

(define (make-element vertex-nodes other-nodes)

;; The first part stores the coefficients, the second part the source

;; terms. What about coefficients? Maybe we should incorporate the

;; source term into the differential operator.

(let* ((nodes (append vertex-nodes other-nodes))

(number-of-nodes (length nodes))

(n-choose-2 (choose (+ number-of-nodes 2) 2))

(element

(vector (make-vector n-choose-2 0)

(make-vector n-choose-2 0)

vertex-nodes

other-nodes

(make-vector number-of-nodes #f)))

(op (make-operator nodes)))

;; Add the element to the nodes:

(let loop ((nodes nodes) (i 0))

(if (not (null? nodes))

(begin

(node:add-element (car nodes) element i)

(loop (cdr nodes) (+ i 1)))))

;; Initiailize elements (and hiding the hair)...

(let ((integrate (make-integrator vertex-nodes))

(local-form (operator:get-local-form op)))

(do ((i 0 (+ i 1)))

((>= i number-of-nodes))

(element:set-basis-function!

element i (make-basis-function nodes i)))

(do ((i 0 (+ i 1)))

((>= i number-of-nodes))

(let ((f (element:get-basis-function element i)))

(do ((j i (+ j 1)))

((>= j number-of-nodes))

(let ((g (element:get-basis-function element j)))

(element:set-coeff! element i j

(integrate (local-form f g)))

(element:set-source! element i j (integrate f g)))))))

element))

make-element)

This also shows that, as a matter of e�ciency, elements can be called on to evaluate the

integrals �rst when one constructs the domain. One can then work with di�erent boundary

84



values (or source functions, in the case of Poisson's equation) without recomputing the �nite

element integrals.

3.4.5 Basic FEM algorithm on manifolds

There are two top-level programs that manage the computation of �nite element equations

on manifolds. The �rst program manages mesh generation and element construction, while

the second program uses these elements and the local �nite-element assembly program to

generate a sparse matrix that represents the discretized system of linear equations.

What follows is the main portion of the code for the �rst program:27

(define (pde:domain-maker generate-node-lists process-complex)

(lambda (M

make-vertices

make-extra-nodes

tesselate

. argl)

;; First, make the bounding nodes of the convex domain, and then

;; triangulate and make the extra nodes:

(let ((atlas (manifold:get-finite-atlas M)))

(if (not atlas)

(error "Error: Can only do FEM with finite atlases."))

(write-line '(tesselating domain...))

;; Do something more complicated here to reduce the overlap:

(let loop ((charts atlas)

(node-lists (generate-node-lists make-vertices atlas argl)))

(if (not (null? charts))

;; TESSELATE should return a list of lists, where each list

;; contains the elemental faces of a given dimension (in some given

;; polytope). In the planar case, this reverses the convention in

;; fem.scm: The list should be sorted by dimension in *descending*

;; order.

(let* ((chart (car charts))

(nodes (car node-lists))

(complex (process-complex (tesselate nodes) (cdr charts)))

(extra-nodes (make-extra-nodes complex)))

;; By default, use FEM-DISCRETIZE. Can replace with others.

27A little matter of terminology: Many procedures in this code manipulate data structures called \com-

plexes" (as in chart:get-complex). The term refers to simplicial complexes, which are spaces that can

be formed as the union of points, lines, triangles, tetrahedra, and their higher-dimensional generalizations

called simplices. Not only are simplicial complexes useful for �nite element computation, they are also very

important for studying the structure of topological spaces and form one of the starting points for algebraic

topology. For more details, see Munkres [20]. For our purposes, however, it is just a convenient way to

package data structures that describe triangulations on charts.

85



(make-pde-chart chart extra-nodes fem-discretize complex)

(loop (cdr charts) (cdr node-lists)))))

;; Construct elements. We don't need to explicitly mark boundaries

;; because manifolds should already have such structures defined.

(lambda (operator make-integrator make-basis-function)

(let ((element-maker (pde:element-maker operator

make-integrator

make-basis-function)))

(write-line '(constructing elements...))

(for-each

(lambda (chart)

;; Construct the elements:

(write-line

`(making ,(length (complex->faces (chart:get-complex chart)))

elements...))

(let* ((make-element (element-maker chart))

(new-elements (map make-element

(complex->faces

(chart:get-complex chart))

(chart:get-extra-nodes chart))))

(chart:set-elements! chart new-elements)))

atlas))))))

This program is a \meta-constructor" for domain constructors, and returns a procedure

that adds su�cient structure to a given manifold (such as nodes and local triangulations,

etc.) that �nite element analysis can be performed. It provides only a logical skeleton into

which other procedures �t; the real work is done by procedures like generate-node-lists,

process-complex, make-vertices, make-extra-nodes, and tesselate.

Given the appropriate procedures for constructing nodes and meshes on charts, the pro-

gram generates nodes and constructs meshes for each chart. Then, some of the nodes are

\pruned" away to control the size of the number of nodes shared between charts.28 The ex-

pression (make-pde-chart chart extra-nodes fem-discretize complex) attaches ex-

tra data structures to chart, so that in a later stage the information obtained here can

be used to construct the elements.29 Finally, yet another procedure is returned that takes

the information obtained above, as well as representations of the di�erential operator, con-

structors for basis functions, and integrators of basis functions, and actually constructs the

28This will be discussed in more detail in the next section.
29The procedure fem-discretize is stored away and called later for the local �nite element assembly

procedure. It provides a simple interface to the program of the previous section. It can always be replaced

by a di�erent FEM routine, of course.

86



elements.

Having constructed elements and prepared the domain of solution for �nite element

analysis, the second top-level program generates the discretized equations given boundary

data and a source function:

;;; Given a domain with constructed elements, a source function, and a boundary

;;; value function, produce the appropriate discretized equation. The nodes

;;; are left with indices that specify their corresponding row in the matrix.

(define (pde:equation-maker merge-equations)

(lambda (domain source boundary-value . extra-args)

;; EXTRA-ARGS gives us finer control over the discretization.

;; DOMAIN should be a manifold that already has PDE structures constructed.

;; Hence, it contains information about the operator (through the elements

;; in its discretized charts).

;; BOUNDARY-VALUE is irrelevant for domains without boundary. Just specify

;; anything (but do put in something).

(let* ((M domain)

(charts (manifold:get-finite-atlas M))

(nodes (list->vector (append-map chart:get-nodes charts)))

(ncount (vector-length nodes)))

;; CHART:DISCRETIZE-PDE should return a list of linear equations. First,

;; set the boundary values:

(write-line `(,ncount nodes generated...))

(write-line '(setting boundary values...))

(do ((i 0 (+ i 1)))

((>= i ncount))

(let ((node (vector-ref nodes i)))

(if (node:boundary? node)

(node:set-value! node (boundary-value node)))))

;; Next, compute the local equation systems:

(write-line `(computing ,(length charts) local systems of equations...))

(let ((equations (append-map

(lambda (chart)

(chart:discretize-pde chart source extra-args))

charts)))

;; Compute constraints:

(write-line '(merging local equations...))

(merge-equations domain equations)))))

Once again, this program only serves as a logical skeleton. All the major components

of the programs, such as the procedure merge-equations, are easily modi�able. This

facilitates the testing of di�erent methods for performing these tasks. Indeed, the fol-

87



n1

n2

n3

n4

n5

y

C1

C2

Figure 3-18: A point y in some chart, with its \neighbors" n1 through n5, which are the

nodes belonging to the element that contains y. (Since the elements of a triangulation

partition whatever chart they cover, each point lies in only one element except for points

lying in the boundaries of elements.) This �gure is drawn using the coordinate system of

C2, and it illustrates two charts, with the dotted lines outlining the element (of C1) to which

the point x = �1(p) belongs while the dashed line delineates the boundary of the image

�2(U1 \ U2) of C1 in this coordinate system. The dotted element has a curved boundary

because the entire image is seen in the coordinate system of C2.

lowing sections will explore a couple di�erent implementations of generate-node-lists,

process-complex, and merge-equations that control how much charts overlap and how

local equations are merged into a global set of equations.

3.4.6 Interpolation between charts

Finally, we come to the most delicate part of the problem: How does one actually combine

local equations into a global set of equations? This process is determined by the procedures

generate-node-lists, process-complex, and merge-equations, which are passed into

pde:domain-maker and pde:equation-maker as arguments.

As mentioned at the beginning of x3.4, one natural idea is the following: Let C1 =

(U1; V1; �1) and C2 = (U2; V2; �2) be charts on the manifold M . Suppose the ith node in

the discretized domain is at the point p 2 M , and that p lies in the intersection U1 \ U2.

Let x = �1(p) be the coordinate vector corresponding to p in V1, and let y = �2(p) be the

coordinate vector corresponding to p in V2. Then one could simply constrain the unknown

value at x, ai, to the value at the corresponding point y = �2(p), interpolated from basis

88



functions in C2. More precisely, let ni be the indices of the nodes in the element E containing

y in C2 (see Figure 3-18). Then the constraint we want is:

ai =
X
k

�nk(y)ank ; (3.30)

where aj denotes the sample value u(pj) of the approximate solution at the jth node,

with position pj. Since the expressions �ni(y) can be computed without reference to any

unknowns, we see that this is a linear equation relating unknown nodal values. Thus,

the constraints generated this way may simply be \appended" onto the system of locally-

discretized equations for each chart, each of which is also linear. Doing this for a su�ciently

large number of nodes that lie in the overlap of two charts should generate enough extra

equations to relate the local equations derived for each chart. It should be noted that

this process of appending constraints produces overdetermined systems, for which exact

solutions generally do not exist. Thus, a least-squares approximation is the best one could

do. This can be done by computing the normal equations, which �nds an approximate

solution to the overdetermined system Ax = b by minimizing the magnitude of the error

Ax� b with respect to the natural inner product of Euclidean space. As will be explained

later, however, the formation of the normal equations again runs the risk of producing an

ill-conditioned system.30

A program that implement a general procedure for combining equations and constraints

into a large matrix is shown below. It relies on make-constraints to construct the con-

straint equations, and the main body of the program performs the tedious task of construct-

ing the matrix row by row:

;;; This complicated-looking procedure performs the simple task of forming a

;;; sparse matrix out of locally-discretized equations and constraint

;;; equations. The constraints are generated with the help of

;;; MAKE-CONSTRAINTS.

(define (append-constraint-equations make-constraints)

(lambda (domain equations)

;; First, set IDs and clear hidden states:

(write-line '(setting node ids...))

(let loop ((id 0) (nodes (manifold:get-nodes domain)))

(if (not (null? nodes))

(let ((node (car nodes)))

(node:set-constraint! node #f)

(if (node:boundary? node)

(begin

(node:set-id! node 'boundary-node!)

30That is, a system of equations with a very large condition number.

89



(loop id (cdr nodes)))

(begin

(node:set-id! node id)

(loop (+ id 1) (cdr nodes)))))))

;; Next, generate constraints:

(write-line '(generating constraints...))

(with-values

(lambda () (make-constraints domain))

(lambda (c-count clists)

(let* ((eq-count (length equations))

(m (+ eq-count c-count))

(n (+ eq-count 1)))

(write-line `(constructing a matrix of dimension (,m ,n)...))

(let ((mat (make-sparse-matrix m n)))

;; First, copy the equations:

(write-line `(copying ,eq-count equations...))

(for-each

(lambda (eq)

(let ((i (equation:get-id eq)))

(sparse-matrix-set!

mat i eq-count (equation:get-constant eq))

(for-each

(lambda (term)

(sparse-matrix-set! mat i (term:get-id term)

(term:get-coeff term)))

(equation:get-terms eq))))

equations)

;; Next, copy the constraints:

(write-line `(copying ,c-count constraints...))

(let next-clist ((i eq-count) (clists clists))

(if (null? clists)

mat

(let next-constraint ((clist (car clists)) (i i))

(if (null? clist)

(next-clist i (cdr clists))

(let ((constraint (car clist)))

(sparse-matrix-set!

mat i eq-count (equation:get-constant constraint))

(for-each

(lambda (term)

(sparse-matrix-set! mat i (term:get-id term)

(term:get-coeff term)))

(equation:get-terms constraint))

(next-constraint (cdr clist) (+ i 1)))))))))))))

While the basic idea of interpolating unknown values from other charts is simple enough,

90



there are some unresolved details here: For one thing, what does it mean to create con-

straints for \a su�ciently large number of nodes"? Is it necessary to create constraints for

all nodes in the overlap, or just some specially-chosen interpolation nodes? Which ones

should we use? Furthermore, let C1, C2, and C3 be charts, let p 2M be a point contained

in all three charts, and let xi = �i(p) be the image of p in the chart Ci. Since there are

three charts, there are three di�erent constraints we can generate using the recipe above

by considering di�erent pairs of charts. Is it better to generate all three constraints, or to

generate only one or two of them? Since the basis functions and triangulations in di�erent

charts are by no means related to each other, one would expect that the constraints are

independent of each other, and hence this is a non-trivial question. Clearly, this problem

extends in general to any node that lies in more than two charts, and if not all possible

constraints are to be generated, then which ones should we use?

Since there are many possible choices here and no obvious candidate, it seems reasonable

to try a couple of di�erent ideas and see how well they perform:

1. Generate all constraints for all nodes in the overlaps between all pairs of charts.

2. Put the set of all charts in some linear ordering, and generate all constraints for all

nodes in the overlaps of adjacent charts (in the given ordering).

The following program, make-all-constraints, implements the �rst of the ideas enu-

merated above by generating all constraints between all pairs of charts:

(define (make-all-constraints domain)

(let ((constraints

(append-map

(lambda (pair)

(let ((chart-1 (car pair))

(chart-2 (cadr pair)))

(append (constrain-all-nodes chart-1 chart-2)

(constrain-all-nodes chart-2 chart-1))))

(pairs (manifold:get-finite-atlas domain)))))

(values (length constraints) (list constraints))))

(define (constrain-all-nodes chart-1 chart-2)

(append-map

(lambda (node)

(if (node:boundary? node)

'()

(let ((eq (chart:pointwise-constraint node chart-2)))

(if eq

(list eq)

'()))))

(chart:get-nodes chart-1)))

(define (pairs l)

(let loop ((l l) (result '()))

(if (null? l)

91



result

(loop (cdr l)

(let ((a (car l)))

(let loop ((l (cdr l)) (result result))

(if (null? l)

result

(loop (cdr l) (cons (list a (car l)) result)))))))))

It can be passed into append-constraint-equations to construct the constraints. This

program is rather straightforward: For all pairs of distinct charts, generate all possible

constraints from nodes in the overlap between these two charts.

The next program implements the second idea, which involves ordering the charts. Since

atlases are represented by Scheme lists, the implicit ordering of lists is used to linearly order

the charts.

(define make-all-ordered-constraints

(let ((exists? (lambda (node) #t)))

(lambda (domain)

(let* ((charts (manifold:get-finite-atlas domain))

(result-1 (charts->constraints charts exists?))

(result-2 (charts->constraints (reverse charts) exists?)))

(values (+ (car result-1) (car result-2))

(append (cadr result-1) (cadr result-2)))))))

;;; The charts come in a ordered list, so that implicit ordering is used as the

;;; linear ordering we need.

(define (charts->constraints charts good-node?)

;; The predicate GOOD-NODE? lets the calling procedure control which nodes to

;; use. In this case, it simply uses all non-boundary nodes

(let next-chart ((charts charts)

(count 0)

(clists '()))

(if (null? charts)

(list count clists)

;; Go through each node in the chart and check for constraints:

(let ((chart (car charts)))

(let next-node ((nodes (chart:get-nodes chart))

(count count)

(clist '()))

(if (null? nodes)

(next-chart (cdr charts) count (cons clist clists))

(let ((node (car nodes)))

;; We only want to create constraints for nodes that do not

;; already have a constraint:

(if (and (good-node? node)

(not (node:get-constraint node))

(not (node:boundary? node)))

92



(let ((eq (make-constraint node (cdr charts))))

(if eq

(next-node (cdr nodes) (+ count 1) (cons eq clist))

(next-node (cdr nodes) count clist)))

(next-node (cdr nodes) count clist)))))))))

(define (make-constraint node charts)

(let loop ((charts charts))

(if (null? charts)

#f

(let ((eq (chart:pointwise-constraint node (car charts))))

(if eq

eq

(loop (cdr charts)))))))

This program is a bit more complicated: Charts->constraints takes a list of charts

and produces a list of constraints, such that a node n in a chart Ci is constrained to a

chart Cj if and only if j is the least integer greater than i such that Cj contains n. The

same procedure is then called again to construct constraints in the reverse direction, so that

constraints exist for charts adjacent in this linear ordering (or as close to being adjacent as

possible).

Both of the programs above call chart:pointwise-constraint, which can be imple-

mented thusly:

(define (chart:pointwise-constraint node chart)

;; The coefficients of a linear constraint for some node x should simply be

;; the value at p of the basis function centered at x. This linearity

;; depends only on the fact that the solution is approximated by a linear

;; combination of basis functions.

(if (chart:member? (node:get-point node) chart)

(let* ((x (chart:point->coords (node:get-point node) chart))

(element (chart:coords->any-element x chart)))

(if element

(let loop ((nodes (element:get-nodes element))

(i 0)

(const 0)

(terms (list (make-term node -1))))

(if (null? nodes)

(begin

(node:set-constraint! node chart)

(make-equation node const terms))

(let ((neighbor (car nodes))

(coeff (evaluate-basis-function

(element:get-basis-function element i) x)))

(if (node:boundary? neighbor)

(loop (cdr nodes)

(+ i 1)

(- const (* (node:get-value neighbor) coeff))

terms)

(loop (cdr nodes)

(+ i 1)

const

93



(cons (make-term neighbor coeff) terms))))))

#f))

#f))

It simply �nds an element of chart to which node belongs, and loops through the nodes

of the given element to evaluate the basis functions and compute the coe�cients.

3.4.7 Some numerical results.

To test the ideas above, we should perform some numerical experiments. The canonical

problem on which every FEM program should cut its teeth is the boundary value problem

for Laplace's equation. For us, the domain will be the unit disc f(x; y) 2 R2 : x2 + y
2 � 1g

in the plane (see Figure 3-16), with the boundary value

f(�) = cos(2�): (3.31)

Using the angle addition formula for cosines, one �nds that f(�) = cos2 � � sin2 �. But the

function g(x; y) = x
2� y2 satis�es Laplace's equation everywhere, and g(cos �; sin �) = f(�)

for all �, so g must be the true solution corresponding to the boundary data f . This gives

us a convenient problem on which to test the ideas above and an exact solution against

which to compare answers.

So far we have only seen how to implement the auxiliary procedure merge-equations:

The constructor append-constraint-equations, given either make-all-constraints or

make-all-ordered-constraints, should return a procedure that constructs constraint

equations for pde:equation-maker. But we also need to implement the auxiliary procedures

for pde:domain-maker. To do this, we need the procedures make-nodes-for-each-chart

and do-nothing-to-complex, which, as their names suggest, are very simple procedures.

We will need more complicated auxiliary procedures later on, but these simple programs

su�ce for now.

The de�nitions of key data structures are shown below:

;;; The procedure that prepares the domain for the PDE solver:

(define pde:make-simple-domain

(pde:domain-maker make-nodes-for-each-chart do-nothing-to-complex))

;;; Two different ways for generating constraints:

(define combine-equations-with-overlap1

(pde:equation-maker

(append-constraint-equations make-all-constraints)))

(define combine-equations-with-overlap2

(pde:equation-maker

94



(append-constraint-equations make-all-ordered-constraints)))

;;; Construct the domain of the PDE:

(define disc

(make-ball 2 make-spherical-sphere))

;;; Construct the Laplacian. Note that OPERATOR:IMBEDDED-POLY-OP simply

;;; packages the operators left-op, right-op, and combine. This splits the

;;; Laplacian into two parts through integration by parts.

(define imbedded-poly-laplacian

(make-operator

disc

(operator:imbedded-poly-op

poly-gradient

poly-gradient

(lambda (v w) (basis:scalar* -1 (basis:dot v w))))))

;;; The true solution of Laplace's equation that we're trying to approximate:

(define (test-function node)

(let ((x (x-coord-map node))

(y (y-coord-map node)))

(- (square x) (square y))))

Having de�ned the necessary auxiliary procedures, we can now try to compute the

solution of Laplace's equation:

;;; Prepare the domain for FEM:

(define make-test-domain

(pde:make-simple-domain disc ;; The domain.

make-mesh ;; A generic vertex generator.

make-no-extra-nodes ;; No edge nodes, just vertices.

planar-triangulate ;; A generic mesh generator.

;; Some extra parameters:

'(rectangular 10 5)

'(spherical 5 10)))

(tesselating domain...)

;Value: make-test-domain

;;; Construct the elements and initialize finite element integrals:

(make-test-domain

;; The Laplacian we just constructed.

imbedded-poly-laplacian

;; Integrates directly in Euclidean space -- It cheats!

make-triangular-imbedded-integrator

;; Make some generic piecewise-polynomial basis functions.

pde:make-imbedded-poly-basis-function)

95



(constructing elements...)

(making 72 elements...)

process time: 4880 (4470 RUN + 410 GC); real time: 5744

(making 72 elements...)

process time: 4960 (4540 RUN + 420 GC); real time: 5761

(making 70 elements...)

process time: 4810 (4370 RUN + 440 GC); real time: 5616

;No value

;;; Assemble the equations, generate constraints, and build the matrix

;;; equation:

(define mat1

(combine-equations-with-overlap1 disc ;; The domain again.

0-function ;; No source term.

test-function)) ;; The true solution.

(141 nodes generated...)

(setting boundary values...)

(computing 3 local systems of equations...)

(40 equations generated for 50 nodes.)

(40 equations generated for 50 nodes.)

(41 equations generated for 41 nodes.)

(merging local equations...)

(setting node ids...)

(generating constraints...)

(constructing a matrix of dimension (267 122) ...)

(copying 121 equations...)

(copying 146 constraints...)

process time: 13560 (12180 RUN + 1380 GC); real time: 20325

;Value: mat1

;;; Try the other method:

(define mat2

(combine-equations-with-overlap2 disc 0-function test-function))

(141 nodes generated...)

(setting boundary values...)

(computing 3 local systems of equations...)

(40 equations generated for 50 nodes.)

(40 equations generated for 50 nodes.)

(41 equations generated for 41 nodes.)

(merging local equations...)

(setting node ids...)

(generating constraints...)

(constructing a matrix of dimension (235 122) ...)

(copying 121 equations...)

(copying 114 constraints...)

process time: 9800 (8860 RUN + 940 GC); real time: 14915

;Value: mat2

;;; Neither matrices are square, of course, because of the constraint

;;; equations:

(sparse-matrix-size mat1)

;Value 62: (267 122)

96



Total number Absolute error Relative error

of nodes Maximum Minimum Average Maximum Minimum

121 0.186186 0.000346268 0.0321264 3.04321 -1.98107

253 0.174211 5.49186e-05 0.0296698 18.854 -79.1678

433 0.170829 3.3609e-05 0.0299808 11.44 -14.8512

661 0.167295 0.00010959 0.0310626 30.1526 -16.9254

937 0.163327 1.76278e-05 0.031479 38.7539 -44.89

1261 0.160884 3.38679e-06 0.0323654 53.2708 -52.5735

1633 0.160982 4.98298e-06 0.0327103 76.6556 -64.7096

2053 0.162743 7.24373e-06 0.0334327 102.64 -83.955

2521 0.163858 1.6586e-05 0.0342905 109.606 -131.524

3037 0.163727 8.36536e-06 0.0352394 153.382 -154.745

3601 0.165879 1.22342e-05 0.0365282 200.408 -188.901

Table 3.1: Statics of the results generated by make-all-constraints.

(sparse-matrix-size mat2)

;Value 63: (235 122)

;;; Use least-squares to solve these guys:

(define mat1 (sparse-normal-equations mat1))

;Value: mat1

(define v1 (sor mat1 1000 1.9 ))

(residual: 5.731092683758376e-16)

;Value: v1

(define mat2 (sparse-normal-equations mat2))

;Value: mat2

(define v2 (sor mat2 1000 1.9))

(residual: 7.216449660063518e-16)

;Value: v2

Note that we tested both constraint-generation systems without having to recompute the

�nite element integrals. This is one of the principal advantages of structuring the program

to exploit the modularity of the �nite element method.

The numerical experiments consist of a series of 11 tests, with the number of nodes

ranging from 63 to 3,601; note that because some methods discard unnecessary nodes, the

actual number used for computation may change between methods. The code used to run

the numerical experiments themselves are very similar to what is shown above, and hence

will not be listed separately. Table 3.4.7 shows the statistics based on results generated using

make-all-constraints, while Table 3.4.7 shows the statistics for the results generated

using the other method.

97



Total number Absolute error Relative error

of nodes Maximum Minimum Average Maximum Minimum

121 0.192343 0.000764133 0.0337441 2.17113 -1.65951

253 0.180941 5.30935e-06 0.029554 27.2596 -68.7197

433 0.166176 9.66714e-06 0.0281985 13.4546 -8.88716

661 0.16295 5.27949e-05 0.0291729 18.9087 -19.8467

937 0.15868 4.36369e-07 0.0294747 34.479 -23.4737

1261 0.158527 2.13021e-05 0.0300879 39.5776 -43.8798

1633 0.159253 4.22971e-06 0.0305563 58.4892 -56.2954

2053 0.157801 1.44311e-05 0.030769 62.5005 -86.9364

2521 0.159835 1.02857e-06 0.031765 108.839 -90.1434

3037 0.161139 1.10304e-05 0.032667 123.56 -132.926

3601 0.163639 1.53283e-06 0.033938 165.795 -163.194

Table 3.2: Statistics of the results generated by make-all-orderd-constraints.

Note that in both tables, the maximum absolute error remains fairly constant. This

may hint at a deeper reason for the method's failure. Such issues are discussed in the next

section, where this situation is analyzed a little more closely.

Figure 3-19 plots the average absolute error against the number of nodes using the data

from Table 3.4.7, while Figure 3-20 does the same for Table 3.4.7.

Figure 3-21 plots the true solution, while Figure 3-22 plots one solution obtained by

make-all-constraints. As one can see, they are qualitatively similar, even though nu-

merically the solution is fairly far o�.

3.4.8 The problem with interpolation

As can be seen from the data in the previous section, neither of the methods work very well,

even though they employed relatively straightforward algorithms and obtained qualitatively

reasonable results.

The main problem appears to be that the interpolation approach produces more equa-

tions than unknowns, which in general yields overdetermined systems of equations. There

are two consequences of this overdetermination: First, geometrically speaking, the basis

functions become too rigid. Becuase these methods enforced too many constraints on nodal

values in overlaps, the basis functions in di�erent charts become very tightly dependent on

each other, and the approximate solution itself (which consists of linear combinations of

basis functions) becomes too \sti�" to conform to the real solution (see Figure 3-23). As a

result, much of the numerical accuracy is lost.

A second problem may be that in order to solve a large system of overdetermined system

98



0 1000 2000 3000 4000
0.028

0.03

0.032

0.034

0.036

0.038

av
er

ag
e 

ab
so

lu
te

 e
rr

or

Figure 3-19: Average absolute error versus number of nodes. The results were generated

using make-all-constraints.

0 1000 2000 3000 4000
0.028

0.029

0.03

0.031

0.032

0.033

0.034

0.035

av
er

ag
e 

ab
so

lu
te

 e
rr

or

Figure 3-20: Average absolute error versus number of nodes. The results were generated

using make-all-ordered-constraints.

99



0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

Figure 3-21: The true solution to the disc problem. Note that this plot is generated in a

fashion similar to Figures 3-5 through 3-12: The domain is divided into a simple square

grid, over which the sample values are averaged. This reduces the number of points to be

plotted. The surface generated is a hyperbolic paraboloid of one sheet, as expected.

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

Figure 3-22: The sample solution generated by using all possible constraints.

100



No constraints.

Too many constraints.

Figure 3-23: Enforcing too many constraints causes basis functions to become too dependent

on each other.

of equations,

Ax = b; (3.32)

where the number of rows of A far exceeds its number of columns, one would normally have

to compute the normal equations:31

A
T
A = A

T
b: (3.33)

Now, this should look somewhat familiar. It is, in fact, our friend from x3.3.2, where the
\transpose trick" was used in an attempt to make relaxation converge for a class of sparse

matrices. In this case, however, more than convergence is at stake: If A is not square, it

simply does not make sense to apply relaxation! But in multiplying A by AT , we have once

again made the system of equation even more ill-conditioned. Furthermore, the resulting

Gauss-Seidel iteration matrix again has a spectral radius close to 1, making convergence

extremely slow.

31This is what the procedure sparse-normal-equations does. While there exist much better methods

for producing least-squares solutions to overdetermined systems, such as singular value decomposition (also

known as SVD; see [24]), they do not apply easily to large systems of equations. In order to use iterative

solution methods, the normal equations are the easiest way to facilitate the use of iterative solution methods

like relaxation on overdetermined systems.

101



Constrain

Figure 3-24: Only nodes near the edge in their own charts are allowed to become interpo-

lation nodes. This reduces the amount of \rigidity" in the approximate solution.

3.4.9 Other approaches to FEM on manifolds

How can we avoid the problems associated with overdetermined systems of equations?

There are a few alternatives. First, we can use more sophisticated methods of generating

constraint equations and choosing interpolation nodes, such as the methods proposed in

Chesshire and Henshaw [7] or Petersson [23]. While this will not avoid the necessity of

computing the normal equations, it does hold the hope of minimizing the e�ects of the

rigidity problem.

Improving interpolation methods

For the sake of completeness, let us take a brief look at how well these variations on inter-

polation methods work. The basic algorithms tested here are:

1. The idea of Chesshire and Henshaw, CMPGRD.

2. Same as make-all-ordered-constraints, except nodes in overlap regions are al-

lowed to become interpolation nodes if and only if they are near the chart's edge.

The second idea above attempts to create an interpolation geometry depicted in Figure

3-24. Contrast this with Figure 3-23, and one sees that this should help make the system

of equations less overdetermined while still propagating enough information to arrive at a

reasonable solution.

Figure 3-25 shows the result of the Chesshire-Henshaw algorithm, while 3-25 shows the

results of using the second idea. The accuracy should have improved slightly. However,

relaxation converges su�ciently slowly that the improvement in accuracy, if any at all, is

probably lost in the noise.

A method that works

This section describes a method that actually works fairly well compared to the interpolation

methods of earlier sections. It avoids the problem of generating overdetermined systems of

equations, and the global matrix of equations it generates is guaranteed to be symmetric

102



0 1000 2000 3000 4000
0.075

0.08

0.085

0.09

0.095

0.1

number of nodes

av
er

ag
e 

ab
so

lu
te

 e
rr

or

Figure 3-25: The results generated using Chesshire and Henshaw's CMPGRD algorithm.

0 1000 2000 3000 4000
0.028

0.03

0.032

0.034

0.036

av
er

ag
e 

ab
so

lu
te

 e
rr

or

Figure 3-26: The results generated using the idea depicted in Figure 3-24.

103



1 C2C
n

Figure 3-27: The idealized case, where charts do not overlap but intersect nicely along a

common edge.

positive-de�nite, and thus solvable by relaxation without having to worry about normal

equations and condition numbers. This method involves \pretending" as if the mesh were

global, even if it were not, and for this reason it is referred to as the \semi-local method"

here, even though by our earlier de�nition this is a strictly local discretization method.

The basic idea is simple: Suppose that charts, instead of overlapping, �t together like

jigsaw puzzle on the manifold along well-de�ned boundaries (see Figure 3-27).32

Suppose now that the ith node lies on the boundary between these two \charts." From

C1 the node obtains an equation of the form

ui =
X
j

aijuj + b; (3.34)

where the uj are the unknowns sample values, and the aij are the �nite element coe�cients.

Similarly, from C2 the node obtains:

u
0

i =
X
j

a
0

iju
0

j + b
0
: (3.35)

Now, consider what the constraint approach actually does: In this idealized case, the

node in question does not lie inside an element, but rather is also a node of the other chart.

Thus, the constraint approach must append the equation

u
0

i
� ui = 0: (3.36)

32Actually, images of charts on manifolds are generally open sets, so they cannot intersect along a boundary

in the way described here. However, their closures can behave this way.

104



This is equivalent to the system of two equations:33

ui =
1
2

�P
j
aijuj +

P
ja
0

ij
u
0

j
+ b+ b

0

�
;

ui =
1
2

�P
j
aijuj �

P
ja
0

ij
u
0

j
+ b� b

0

�
:

(3.37)

But consider the �nite element integrals in Equation (A.28) of xA.2.3: In order to

obtain the correct �nite element equation over the whole mesh, the correct equation is the

top equation, which is the sum of the two contributions from the charts. In the context of

�nite elements, the bottom equation makes no sense at all.34 Thus, the constraint approach

overdetermines the discretized system of equations, and the addition of this extra equation

destroys the accuracy of the approximation method in this idealized case.

This is a fairly clear indication that we should add the equations corresponding to the

same node in di�erent charts. Furthermore, this generates one equation for each interior

node, instead of two as in the interpolation case. And, because of the form of the �nite

element integrals in Equation (A.28), the matrix is guaranteed to be symmetric positive

semi-de�nite; invertibility then guarantees positive-de�niteness.

Now, in general, charts willl not cover the manifold this nicely. However, we can always

try to make the overlap as small as possible (in terms of nodes shared by charts), and then

pretend as if we are in the idealized case and apply the equations above.

More formally, the following is the semi-local algorithm. Note that fCig is a given list

of charts.

1. Construct a set of nodes Ni for each chart Ci.

2. For each node n in Ni and for each chart Cj with j > i, check if n belongs to Cj . If so,

remove n from Ni. This completely removes the overlap (in terms of sample points)

between charts.

3. For each remaining node n in Ni and each chart Cj with j < i, check if n belongs to

Cj . If so, make a copy of n and add it to Nj . This restores some overlap. Furthermore,

while this cannot guarantee that local meshes agree in intersections of charts, it does

guarantee that all charts share all nodes in overlap regions.

4. Triangulate and initialize elements; perform local FEM computation. The previous

step may have restored too much overlap, so the meshes may have to be \trimmed."

33These equations are obtained by identifying the variables ui and u0i, and then taking the sum and the

di�erence of the two resulting equations contributed by the two charts.
34This can come about if the elements had opposite orientations, so that the integrals pick up an extra

minus sign.

105



1 C2C3

After:

C1

C3

C2

Trim &
paste

C

Before:

Figure 3-28: The closer a chart is to the bottom of the \stack," the more likely it will keep

its nodes. The lower nodes are then copied to the top charts. Intuitively, think of this as

cutting holes from the top charts, and then \pasting" them downwards onto lower charts.

5. For each node n0 of chart C 0, if it is a copy of some node n in another chart C,

then add the equation of n0 in C 0 to the equation of n in C, and remove the variable

corresponding to n0.

Figure 3-28 depicts what the semi-local algorithm does to the overlap between charts.

Steps 2 and 3 above are carried out by the following implementation of the auxiliary pro-

cedures generate-node-lists:

;;; Generate lists of nodes for each chart, and then reduce the overlap:

(define (generate-node-lists make-nodes charts argl)

;; Generate a list of nodes for each chart, then loop over the charts. Note

;; that the earlier a chart is in the list, the less likely its nodes are to

;; survive.

(let next-chart ((charts charts)

(lists (make-nodes-for-each-chart make-nodes charts argl))

(result '())

(reversed '())

(count 0))

(if (null? charts)

106



(copy-overlap-nodes count result reversed)

(next-chart (cdr charts)

(cdr lists)

(cons (remove-overlap-nodes (car lists) (cdr charts))

result)

(cons (car charts) reversed)

(+ count 1)))))

(define (make-nodes-for-each-chart make-nodes charts extra-args)

(map (lambda (chart) (apply make-nodes (cons chart extra-args))) charts))

;;; Take out all nodes in NODES that belong to any of the charts in CHARTS.

(define (remove-overlap-nodes nodes charts)

(let next-node ((nodes nodes) (result '()))

(if (null? nodes)

result

(let* ((node (car nodes))

(p (node:get-point node)))

(let next-chart ((charts charts))

(if (null? charts)

(next-node (cdr nodes) (cons node result))

(if (chart:member? p (car charts))

(next-node (cdr nodes) result)

(next-chart (cdr charts)))))))))

;;; For each node list in LISTS, take each node and see if it's in one of the

;;; charts that come after the node's own chart in list-order. If so, make a

;;; copy of that node and put it in the corresponding chart. Note that the

;;; order of node lists is reversed.

(define (copy-overlap-nodes count lists charts)

(let ((v (make-vector count '())))

(let next-list ((lists lists) (charts charts) (i 0) (result '()))

(if (null? lists)

result

(let next-node ((nodes (car lists)))

(if (null? nodes)

(next-list (cdr lists) (cdr charts) (+ i 1)

(cons (append (vector-ref v i) (car lists)) result))

(let ((node (car nodes)))

(if (or (node:local-boundary? node)

(node:boundary? node))

(let ((p (node:get-point node)))

(let next-chart ((charts (cdr charts))

(j (+ i 1))

(l (cdr lists)))

(if (null? charts)

(next-node (cdr nodes))

(let ((chart (car charts)))

(if (chart:member? p chart)

(let ((other (close-node p (car l))))

(if other

(node:set-constraint! other node)

(vector-set! v j

(cons

(node:copy node chart)

107



(vector-ref v j))))))

(next-chart (cdr charts) (+ j 1) (cdr l))))))

(next-node (cdr nodes))))))))))

;;; A kluge to make sure nodes do not become too close to each other:

(define close-node

(let* ((close-enuf? (make-comparator .01))

(too-close? (lambda (p q)

(close-enuf? (vector:distance p q) 0))))

(lambda (p l)

(let loop ((l l))

(if (null? l)

#f

(if (too-close? p (node:get-point (car l)))

(car l)

(loop (cdr l))))))))

After this stage, the amount of overlap between charts (in terms of how many nodes are

shared) should have been reduced. But more importantly, the fact that nodes are shared

will help us construct the equations later.35 However, the amount of overlapping after this

stage may still be too much, so after triangulation it is necessary to \trim" the mesh a

bit. This is accomplished through the following implementation of the auxiliary procedure

process-complex:

;;; After filtering out nodes, local boundary information becomes useless...

(define (exact-overlap complex charts)

(kill-extra-nodes complex charts)

(resurrect-only-connected-nodes complex charts)

(keep-only-live-nodes complex charts))

(define (kill-extra-nodes complex charts)

;; Figure out which nodes to keep by looking at the overlaps:

(write-line `(processing ,(length (complex->vertices complex)) nodes...))

(let next-node ((nodes (complex->vertices complex)))

(if (not (null? nodes))

(let ((node (car nodes)))

(let ((p (node:get-point node)))

(let next-chart ((charts charts))

(if (null? charts)

(next-node (cdr nodes))

(let ((chart (car charts)))

(if (chart:member? p chart)

(let ((node (car nodes)))

(node:kill! node)

(node:set-local-boundary! node #f)

35Nodes are shared in the sense that if n belongs to a chart C1, and its location on the manifold also

places it in the chart C2, then a node at exactly the same location exists in C2, and hence the two nodes

can be identi�ed later on.

108



(next-node (cdr nodes)))

(next-chart (cdr charts)))))))))))

(define (resurrect-only-connected-nodes complex charts)

;; Only keep nodes that are connected to live ones:

(write-line '(figuring out overlaps...))

(let loop ((faces (complex->faces complex)) (keep '()))

(if (null? faces)

(for-each

(lambda (face)

(for-each

(lambda (node)

(if (not (node:active? node))

(begin

(node:set-local-boundary! node #t)

(node:resurrect! node))))

face))

keep)

(if (at-least-one-live-node? (car faces) charts)

(loop (cdr faces) (cons (car faces) keep))

(loop (cdr faces) keep)))))

(define (keep-only-live-nodes complex charts)

;; Figure out which faces/edges/etc. to keep:

(write-line '(processing complex...))

(let loop ((complex complex) (result '()))

(if (null? complex)

(reverse result)

(let inner-loop ((faces (car complex)) (okay-faces '()))

(if (null? faces)

(loop (cdr complex) (cons okay-faces result))

(let* ((face (car faces))

(list? (list? face)))

(if (or (and list? (not (memq #f (map node:active? face))))

(and (not list?) (node:active? face)))

(inner-loop (cdr faces) (cons face okay-faces))

(inner-loop (cdr faces) okay-faces))))))))

(define (at-least-one-live-node? face charts)

(memq #t (map node:active? face)))

This works much like the earlier routines: It removes all possible overlap, then \grows"

the mesh back a little bit. But because this stage occurs after the triangulation, the structure

of the mesh can be used to control how much overlap there is. And because the earlier stage

ensured that intersecting charts share nodes in overlap regions, this guarantees that this

geometric con�guration is as close to the ideal situation in Figure 3-27 as possible.

The following de�nitions then combine the local equations into a global system of equa-

tions, and construct the top-level programs:

109



;;; Generate the sparse matrix by adding appropriate equations together:

(define (merge-equations domain equations)

(let ((nodes (manifold:get-nodes domain))

(count 0)

(mat #f))

;; First, assign IDs to nodes, and create the matrix:

(write-line '(creating matrix...))

(let loop ((nodes nodes) (i 0))

(if (null? nodes)

(begin

(set! count i)

(set! mat (make-sparse-matrix count (+ count 1))))

(let ((node (car nodes)))

(cond ((node:boundary? node)

(node:set-id! node 'boundary-node!)

(loop (cdr nodes) i))

((node:get-constraint node)

(node:set-id! node 'constrained-node!)

(loop (cdr nodes) i))

(else

(node:set-id! node i)

(loop (cdr nodes) (+ i 1)))))))

;; Next, start filling in equations while keeping track of constraints:

(write-line '(copying equations...))

(let next-eq ((equations equations))

(if (null? equations)

(begin

(write-line '(done!))

mat)

(let* ((eq (car equations))

(i (node:get-real-id (equation:get-node eq))))

(sparse-matrix-set! mat i count

(+ (equation:get-constant eq)

(sparse-matrix-ref mat i count)))

(let next-term ((terms (equation:get-terms eq)))

(if (null? terms)

(next-eq (cdr equations))

(let* ((term (car terms))

(j (node:get-real-id (term:get-node term)))

(val (term:get-coeff term)))

(sparse-matrix-set! mat i j (+ (sparse-matrix-ref mat i j)

val))

(next-term (cdr terms))))))))))

;;; Construct the top-level programs:

(define combine-equations-without-overlap

(pde:equation-maker merge-equations))

110



Total number Absolute error Relative error

of nodes Maximum Minimum Average Maximum Minimum

63 0.105298 0.000442996 0.0131643 0.547058 -1.19462

130 0.0745854 0.000150227 0.00777591 2.99789 -10.7455

225 0.049322 0.00010038 0.00369715 0.991634 -2.70366

337 0.0532307 1.88416e-06 0.0067024 5.5545 -1.92022

485 0.0762939 1.29948e-06 0.00677602 22.5097 -7.5364

655 0.0420157 4.13828e-06 0.00207558 2.01222 -0.65778

843 0.0232905 1.88216e-07 0.00137413 5.82382 -1.90627

1062 0.0270354 7.00353e-07 0.0012742 2.89441 -0.983369

1297 0.0233997 4.69356e-06 0.00224749 3.20791 -9.62969

1562 0.0187541 1.03235e-07 0.00139054 0.542516 -1.62893

1862 0.0172077 7.19112e-07 0.000983776 6.20396 -2.05861

Table 3.3: Statistics of the results generated by the \semi-local method."

(define pde:make-domain-without-overlaps

(pde:domain-maker generate-node-lists exact-overlap))

Like append-constraint-equations, this program mostly performs the tedious task

of matrix construction. Overlaps between elements from di�erent charts are a source of

error for this method. However, the algorithm very carefully reduces the amount of overlap

between charts to the minimum required for the merging process.

Table 3.4.9 shows the results generated by this method, while Figure 3-29 shows an

approximate solution generated this way.

What is more interesting is a plot of the relative error in Figure 3-30: By a compari-

son with Figure 3-16, one sees that the the areas with the highest relative error are very

much correlated with chart boundaries, which is where we would expect the errors to be

maximized.

Figure 3-31 shows a plot of the average absolute error versus the number of nodes,

which should be convincing evidence that this method, while not extremely accurate, does

converge to the true solution at a reasonable rate as the number of nodes is increased.

Why it works

The success of the method described in the previous section depends very much on the fact

that Laplace's equation comes from a variational principle. That is, solutions of Laplace's

equation minimize an action integral with respect to a simple Lagrangian density function

we can construct. In general, �nite element methods owe their success to the existence

of variational principles and the relative smoothness of solutions, and in problems where

111



0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

Figure 3-29: An approximate solution of the boundary value problem generated by the

semi-local method.

0

0.5

1

0

0.5

1
−0.1

0

0.1

0.2

0.3

Figure 3-30: The relative error for the solution plotted in Figure 3-29.

112



0 500 1000 1500 2000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

av
er

ag
e 

ab
so

lu
te

 e
rr

or

Figure 3-31: The average absolute error versus the number of nodes. The data is generated

using the semi-local methods, with the same parameters as earlier experiments.

such principles are unavailable (for example, in many problems involving the dissipation of

energy) or where the solutions contain singularities and shocks, �nite element methods are

not nearly as e�ective.

For such problems, then, �nite di�erence methods are much more general and are some-

times the only available tools. In those cases, the algorithm outlined in the previous section

cannot be expected to work, and we must resort to more sophisticated methods, like that

of Chesshire and Henshaw.

3.5 Some comments on mesh generation

This section contains a few brief comments regarding the di�culty of triangulating man-

ifolds, and hence using global discretization methods, for integrating PDEs on manifolds.

In particular, a standard theorem of di�erential topology states that every manifold can be

covered by a mesh of \triangular" elements.36 More precisely, Munkres [18] presents a proof

that every manifold has the structure of a simplicial complex. The proof is constructive and

works by �rst triangulating each chart locally (in Euclidean space), and then re�ning the

triangulations on overlapped regions between charts so that they can be \pasted together."

While this construction is very suggestive from a computational viewpoint, there is a catch:

36In three dimensions, triangles become tetrahedrons, and in even higher dimensions they are called

simplices. A space that is formed by \pasting" together simplices is known as a simplicial complex.

113



The proof requires the computation of the interesections between a large number of sim-

plicies. While this mostly involves only linear equations, and is in principle computable, in

practice this can be extremely expensive in terms of computational resources. Thus, the

mathematical proof does not actually supply a solution to the computational problem of

triangulating a manifold.

In fact, the merging of local meshes into global ones is the main bottleneck of the entire

process. As shown by the quickhull algorithm [6], one can always e�ciently triangulate

convex subsets of Euclidean spaces. Thus, the only major problem is the merging of local

meshes into global ones.

One possible solution is to use abstractions other than manifolds to describe spaces with

complex geometries. For example, instead of building local coordinate systems that overlap

arbitrarily, one could imagine building complex spaces by deforming and \pasting" lines and

squares and cubes and other such topological objects. One can indeed build a large class

of spaces this way (in theory), and such spaces are called CW complexes. Di�erentiable

manifolds are all examples of CW complexes, so in principle one could use this abstraction

to do local triangulation and, because the pieces �t along the boundary exactly (instead of

in some hard-to-determine overlap), one could merge the meshes more easily.

One important thing to note is that, in the end, a decision on how spaces are con-

structed should be driven by actual applications because it is almost impossible to arrive at

a general computational framework for any class of numerical problems without a context.

For example, even though many computational geometry algorithms are restricted to low-

dimensions (2 or 3), for most structural engineering problems this is su�cient to generate

reasonable models. Furthermore, in uid problems, the spatial dimension is often low, and

while the geometry of the domain is a signi�cant part of the di�culty of simulating uid

ows, it is not the only di�culty. The abstract manifold approach developed in this report

are probably most suited to solving problems from mathematical physics, where abstract

mathematical spaces are perhaps more commonly encountered.

3.6 Directions for future work

There are a number of alternatives that may help surmount the di�culties described in

earlier sections.

3.6.1 Improvements to �nite di�erences

There are a few directions in which �nite di�erence methods may be improved. One is to

develop better algorithms for solving large sparse systems of linear equations, so that the

114



unstable coe�cients generated by �nite di�erence techniques using irregular sample points

would become solvable.

A distinctly di�erent approach would be to simply do �nite di�erences on regular grids,

and to basically follow the Chesshire-Henshaw idea. While their idea works well for some

special problems, however, there are cases when their idea produces less reasonable answers.

For a discussion of this, see [23].

3.6.2 Improvements to �nite elements

To improve the performance of �nite element methods on manifolds, on the other hand,

probably requires more work. While FEMs work admirably well with irregular sampling

geometry, the complexity of the geometric problem of combining local equations into a

global system can be rather daunting, as was shown in this section. Clearly, much more

work needs to be done in this domain, and there are many variations on these ideas. Part

of the di�culty of this problem is that, in view of the variational formulation of Laplace's

equation, the problem of combining local equations is that of a constrained minimization

problem, which are often non-trivial. On the other hand, perhaps a standard technique like

Lagrange multipliers would work nicely for this case. There are many other things to try.

On the other hand, one of the di�culties that arises with the semi-local method is that it

gives charts little control over the geometry of their local meshes because nodes are copied

between charts. Thus, while the method produces reasonably good results and has nice

convergence properties, it does accumulate quite a bit of truncation error due to geometric

defects. It would be very useful to generalize the idea in a way that still allows regular local

grids, so as to minimize the e�ects of geometry on accuracy.

3.6.3 Other methods

Finally, there could be breakthroughs in mesh generation on arbitrary n-manifolds. Al-

though most current work have focused on low-dimensional problems because of their po-

tential applications in engineering and computer graphics, this is a rather active research

area and much is being discovered. A global �nite element method should work rather

nicely on a manifold.

Or one could exploit the meshless methods developed by Duarte and Oden [11], which

explicitly build partitions of unity using discrete sample points without �rst generating a

mesh. This has the advantage that one does not need to think about combining meshes to

use these methods on manifolds. Furthermore, their method can utilize essentially Rayleigh-

Ritz or Galerkin approximations, so that the resulting linear equations are solvable by

iterative methods.

115



Chapter 4

Hyperbolic equations

This topic of this chapter is the numerical solution of partial di�erential equations that

describe how certain physical systems evolve in time. Again, as in the solution of ellip-

tic boundary value problems on manifolds, it is possible to break this problem into two

components: First, we must have a way of locally integrating the PDE; and second, the

local solutions must be combined to form a global solution. It is also possible, of course,

to discretize the entire manifold �rst before solving the equations, but it will turn out that

the di�culties one must overcome in global methods are not all that di�erent from those of

local methods. Because of the nontrivial nature of solving such equations even in the case

where the domain has trivial geometry, this chapter focuses on the local problem.

Standard PDE solvers generally perform �nite element or �nite di�erence approxima-

tions in space �rst, so as to compute the time derivative, and then step forward uniformly

in time at regular intervals|As one would with ordinary di�erential equations.1 While this

approach works well enough for many problems, it is rather unsatisfactory philosophically:

We have good reason to believe that physical reality does not distinguish among time-like

directions, and that any time axis is just as fundamental and just as arbitrary as any

other. Thus, a coordinate-independent description of fundamental physical processes and

the equations that govern them should not depend on the existence of a unique time axis.

More pragmatically, there exist physical problems for which it is helpful to use di�erent

frames of reference, and a properly coordinate-independent formulation of PDEs should not

be restricted to advancing along an arbitrarily chosen time axis. The use of regular time

steps implicitly gives the time coordinate a special status, which complicates any attempt

at coordinate-independent representations and solutions.

1A notable exception occurs in numerical general relativity, where the use of Regge calculus suggests

some interesting ideas for the work at hand. Einstein's �eld equations are very much beyond the scope of

this report, though, and will not be discussed here. For more information on Regge calculus, see Sorkin [26].

For a good introduction to general relativity, see Schutz [25].

116



One natural solution to this dilemma is the following: Instead of discretizing the spatial

dimensions and stepping forward in time, one simply discretizes the equation over spacetime2

and solve for the unknown solution over the entire spacetime region of interest in one step.

One might expect, for example, that standard �nite element techniques may be applied

directly to the entire spacetime domain, and that the unknown solution can be solved over

all spacetime events by solving one very large system of algebraic equations.

Perhaps not too surprisingly, this simple idea does not work, even though there are

no obvious problems in the derivation. One reason for this failure is proposed in the next

section, and, in view of this proposal, various ways for improving the accuracy are suggested

in x4.3. x4.4 discusses some of the di�culties that arise in these improved methods, and

also presents some problems that spacetime methods must, in general, overcome. Finally,

possible directions for future research in this area are suggested in x4.5.
This chapter is more about open questions than solutions to well-posed problems, and

as such may be seem less coherent than earlier chapters. However, it is hoped that the

questions asked here will lead to other questions whose answers will some day shed light on

the mathematical, physical, and computational structures involved in understanding partial

di�erential equations. Also, because everything here is performed in subsets of Euclidean

space, explicit programs probably do not aid in understanding, and are thus omitted in this

chapter.

As in earlier chapters, the focus here will be on the simplest possible example that

exhibits interesting behavior, which in this case is the linear wave equation.

4.1 The linear wave equation

While Laplace's equation is arguably one of the most important PDEs, there are other

important equations that have fundamentally di�erent behavior. One of these is the linear

wave equation. This equation describes, for example, the propagation of electromagnetic

waves in free space. It is therefore useful to identify one of the variables as time in some

frame of reference, and to de�ne Dt = Dn+1 so that time and space derivatives can be more

easily distinguished. The wave equation in (n + 1) dimensions (n space dimensions plus

time) is then:

(D2
t � c

2�)u = 0; (4.1)

where c > 0 is a real constant and � = r2 =
P

n

i=1D
2
i
is the Laplacian operator over the

space variables. For concreteness, this discussion will be restricted to the case n = 1. In

2Spacetime is simply the set of all spatial positions of our space along with time indices. Points in

spacetime are often called events, and Figure 4-1 would be an example of a spacetime diagram.

117



this case, the wave equation also describes the behavior of a vibrating string with small

oscillations. For convenience, let us de�ne Dx = D1 so that � = D
2
x
.

In constrast to Laplace's equation, the boundary value problem for the wave equation

is ill-posed. That is, it does not always have solutions for arbitrary boundary conditions,

and even when such solutions exist, they are often not unique. However, in the case when

n = 1 and 
 is the unit square f(x; t) 2 R
2j0 � x � 1; 0 � t � 1g, one can specify initial

conditions

u(x; 0) = f(x); Dtu(x; 0) = g(x); (4.2)

u(0; t) = h(t); u(1; t) = k(t); (4.3)

for some prescribed functions f , g, h, and k. Then the wave equation does have a unique

solution. This is called the initial value problem.3

It is tempting to apply the �nite element method directly to the initial value problem

for the wave equation. In particular, Galerkin's method may seem generally applicable.

However, there is good evidence that Galerkin's method, as presented in Appendix A, will

almost always do poorly for the linear wave equation. This does not, of course, imply that

�nite element methods cannot be somehow adapted for the wave equation. First, though,

let us take a closer look at why boundary value problems are ill-posed for the linear wave

equation.

4.2 Initial value problems and characteristics

As stated in in the previous section, boundary value problems are ill-posed for the wave

equation. The root of this problem is the existence of \characteristic manifolds," which

describe the \propagation" of initial data. In this section, these notions will be examined

a little more closely. However, a close analysis of the ill-posedness of the boundary value

problem for the wave equation in terms of these concepts can be fairly complicated and

involves many technical details.4 Thus, this discussion will instead focus on a simpler

example, from which we can derive some informal observations on the wave equation.

3Technically, this is known as a mixed initial-boundary value problem because it contains both initial data

in time (the top two equations) and boundary data in space (the bottom two).
4Speci�cally, this problem is ill-posed in that there is no generally applicable existence and uniqueness

theorem for such problems. On the other hand, for special cases of the wave equation over rectangular

regions, there are existence and uniqueness results for the boundary value problem. See Fox and Pucci [13]

and Payne [22].

118



4.2.1 Characteristic curves for a �rst-order equation

There are many equations for which the boundary value problem is ill-posed. Among these

are hyperbolic equations, for which initial value problems are well-posed.5 This is because

of the existence of characteristics, along which one cannot specify arbitrary values of the

solution and its derivatives of order less than m (where m is the order of the equation).

Equivalently, characteristics propagate data about values of the solution and its lower-order

partials, because the interdependence of the solution and its lower-order derivatives leads

to equations that determine the evolution of the solution along characteristics.

To illustrate, consider the �rst-order linear equation

(Dt + cDx)u = 0; (4.4)

with constant c > 0. De�ning the coordinate transformation f with inverse g by

f�(x; t) = x� ct; f� (x; t) = t; (4.5)

gx(�; �) = � + c�; gt(�; �) = �; (4.6)

we obtain the new equation

(Dt + cDx)u = (D�v � f)Dtf� + (D�v � f)Dtf�) +

c[(D� v � f)Dxf� + (D�v � f)Dxf�] (4.7)

= D�v � f � cD�v � f + cD�v � f (4.8)

= D�v � f (4.9)

= 0; (4.10)

where v(�; �) = u(gx(�; �); gt(�; �)). Thus, under this coordinate transformation, the equa-

tion becomesD�v = 0, so that v is constant in � and depends only on �. Thus, v(�; �) = F (�)

for some function F . Changing back to the old coordinates, this implies that a solution

u(x; t) of Equation (4.4) must take the form

u(x; t) = F (x� ct): (4.11)

Equivalently:

u(x; t) = u(x� ct; 0): (4.12)

5There exist equations, such as the di�usion equation (Dt � k�)u = 0, where neither initial value nor

boundary value problems are well-posed.

119



Conversely, any di�erentiable function in the form (4.11) satis�es the original equation. So

the solution is completely determined by its values along the line t = 0. The initial values

u(x; 0) are thus \propagated" along the lines x = ct, which are called characteristic curves

(or simply characteristics). As shown above, one cannot specify arbitrary values at two

distinct points along the same characteristic. Thus, the boundary value problem for the

�rst-order linear equation (4.4) is, in general, ill-posed: Every characteristic intersects the

boundary of any bounded spacetime region at least twice,6 and admissible boundary data

are thus severely constrained.

4.2.2 Characteristics for general equations

Now consider an mth-order partial di�erential equation over an (n+1)-dimensional domain


. Let S be an n-dimensional subspace of 
. In general, one can prescribe values for the

derivatives of order less than m on S, subject to some compatibility conditions|Partial

derivatives of orders less than m in directions tangent to S must satisfy the chain rule.7

These compatibility conditions, together with the di�erential equation, usually produce

enough equations to determine all derivatives D�
u of u with j�j � m, including the normal

derivatives with respect to S up to order m. If this is true everywhere on S, then S is

said to be non-characteristic. If the equations are singular everywhere on S, then S is

characteristic.

Intuitively, information on a characteristic subspace S does not determine how the

solution evolves outside of S. Since the coe�cients of linear equations8 formed by the com-

patibility conditions and the di�erential equation consist of combinations of the unknown

solution and their lower derivatives, the singularity of such a system of equations on a char-

acteristic manifold implies that the quantities are not independent of each other. These

constraints in turn determine derivatives tangential to the characteristic in terms of lower-

order normal derivatives and solution values, so that such data can be propagated along

6A \bounded spacetime region" is a subset of the spacetime domain that is bounded in spacetime, not

just bounded in space.
7Normal derivatives of order less than m can be speci�ed arbitrarily. For a more coherent and less vague

exposition of this material, see John [16].
8The general nonlinear partial di�erential equation can be transformed into a quasilinear equation by

di�erentiating with respect to its highest-order derivative. A quasilinear equation is one that is linear in the

highest-order derivatives, but the coe�cients may depend on the unknown solution and its lower derivatives.

Since the order of the equation is increased by this transformation, additional constraints can and must be

derived from the original data and appended to the new data. However, this allows us to de�ne characteristic

surfaces for all equations.

This also shows why nonlinear equations are complicated: The characteristics of linear equations depend

only on the coe�cients themselves, and thus are almost always well-de�ned. However, for nonlinear (quasi-

linear) equations, since the coe�cients themselves can depend on the unknown solution and its derivatives,

the characteristic manifolds (and hence the directions of information propagation) depend on the particular

solution, thus complicating the problem tremendously.

120



t

x

Domain of dependence

Characteristics

Figure 4-1: Characteristic lines of the wave equation. The interval on the initial line ft = 0g
bounded by characteristics is called the domain of dependence of the solution u at the given

point: The value of the solution at the \tip" of the triangular region bounded by the

characteristics (called an inverted light cone) can only depend on data in the domain of

dependence; nothing outside the interval can a�ect the solution at that point.

the characteristic via another di�erential equation.

For mth-order quasilinear partial di�erential equations L[u] = b, one can derive an

algebraic criterion for characteristics (only the result is stated here): Let L =
P
j�j�m

A�D
�,

where the A� are functions of spacetime events, values of the unknown solution, and its

derivatives of order strictly less than m. Then S is characteristic if and only if for every

point p on S and non-zero vector v normal to S at p, the equation
P
j�j=mA�v

�

p = 0 holds.

For example, in the case of the linear wave equation, v2t � c2v2x = 0 must hold, so if a vector

v = (vx; vt) is normal to characteristics, then it satis�es vt = cvx or vt = �cvx. Thus, the
characteristics for the linear wave equation are the lines x = ct and x = �ct (see Figure

4-1). Because solution values along characteristics cannot be completely independent, we

see that the boundary value problem for the wave equation cannot be well-posed in the

strictest sense.

4.2.3 Variational principles revisited

We will now examine variational principles more closely, and to develop some tools useful for

analyzing the application of �nite elements to the linear wave equation. It may be helpful

for the reader to review the material in Appendix A �rst, particularly the derivation of the

Rayleigh-Ritz method and its relation to Galerkin's method.

First, we need to derive a necessary condition for a function to minimize an action. Let

L : R5 ! R be a di�erentiable function, which is called the Lagrangian density, and for any

121



real-valued function u on 
 let u be the function de�ned by

u(x; y) = (u(x; y); D1u(x; y); D2u(x; y); x; y): (4.13)

Once again, de�ne the action by

S(u) =

Z


L � u; (4.14)

and note that if L is de�ned by

L(u; v; w; x; y) =
1

2
(v2 + w

2); (4.15)

then the action S above becomes the action de�ned in Equation (A.21).

At this point, it is important to note that in what follows, it will be necessary to

di�erentiate both the function L, which has a 5-dimensional domain, and u, which has a

2-dimensional domain. To avoid confusion, in the rest of this section, di�erential operators

on functions over R5 will be written as @i instead of Di; operators on functions over the

2-dimensional domain 
 will continue to be denoted by Di.

To determine a necessary condition for action-minimizing functions, it is helpful to

generalize the idea of directional derivatives. Let h be any real-valued function that vanishes

on the boundary @
 of 
. Consider the real-valued function of a real variable,

Vh(s) = S(u+ sh) =

Z


L � u+sh: (4.16)

As in the case when u and h belong to a �nite-dimensional vector space, Vh(s) computes

the function S along the one-dimensional subspace spanned by h. Hence, DVh(0) is the

directional derivative of S in the direction of h at u. If u is indeed a minimum of S, then

it follows that DVh(0) = 0 for all \directions" h. Di�erentiating Vh under the integral sign

yields

DVh(0) =

Z


(@1L � u) � h+ (@2L � u) � (D1h) + (@3L � u) � (D2h) = 0: (4.17)

Integrating by parts and noting that h vanishes on the boundary @
 gives us:

Z


(@1L � u �D1(@2L � u)�D2(@3L � u)) � h = 0: (4.18)

This equation holds for all functions h that vanish on the boundary of @
, so the following

equation must hold:

@1L � u = D1(@2L � u) +D2(@3L � u): (4.19)

122



With L de�ne as in Equation (4.15), this gives us Laplace's equation.9

Note that even though the equivalence of the variational principle with Equation (4.19)

has historically been called the principle of least action, the derivation above really �nds the

stationary points of the action functional. Thus, it is more appropriate to call it the principle

of stationary action, though in the case of Laplace's equation it really is a minimum action

principle.

4.2.4 Galerkin's method and the initial value problem

Let us now return to the question of applying Galerkin's method to the linear wave equation.

The main problem is that the wave equation arises from a variational principle, and that

Galerkin's method is equivalent to the Rayleigh-Ritz method. This would not be a problem

if one is interested in solving boundary value problems, for then the stationary points of the

action functional are solutions of the wave equation. But the boundary value problem for

the wave equation is ill-posed, as indicated in x4.2, and in most applications initial value

problems are more important. The di�erence between initial and boundary value problems

is that data are speci�ed at di�erent parts of the domain, and in the initial value problem

not all of the boundary of the domain has speci�ed values. This geometric di�erence is

where �nite element methods break down.

Speci�cally, let L be de�ned by

L(u; v; w; x; t) =
1

2
(w2 � c

2
v
2): (4.20)

Using Equation (4.19), this generates the wave equation (4.1). But recall now that in the

derivation of Equation (4.19), one of the crucial steps is integrating by parts and using

the fact that the perturbation h vanishes on the boundary to get rid of boundary terms.

But such perturbations were natural because we were solving boundary value problems.

However, if one is interested in the initial value problem, then the appropriate class of

perturbations h should vanish on the set fx = 0g [ fx = 1g [ ft = 0g, and furthermore

Dth should vanish on the initial line ft = 0g. The function h can now be nonzero along the

subset ft = 1g of the boundary, and hence integrating by parts would not yield Equation

9Equation (4.19) may seem a bit unwieldy in our notation, but consider how one would write this in

traditional notation: One is tempted to simply write

@L

@u
=

@

@x

�
@L

@ux

�
+

@

@y

�
@L

@uy

�
:

But both L and u have x and y as arguments, and the notation @
@x

does not distinguish between them. So

this equation is wrong! The correct way to write this in traditional notation requires writing out all the

arguments, which is an even bigger mess than Equation (4.19).

123



(4.18). Instead, it gives

Z


(@1L � u �Dx(@2L � u)�Dt(@3L � u))h +

Z
t=1

(@3L � u)h = 0: (4.21)

Supposing u is continuous and has continuous �rst derivatives, the boundary term in Equa-

tion (4.21) vanishes for all h only if D3L � u = 0 for t = 1, which in the case of the wave

equation means Dtu(x; 1) = 0 for 0 � x � 1. This cannot in general be true. Therefore,

the boundary term is almost always nonzero, which implies that the integrand in the �rst

term is also nonzero, and thus u cannot satisfy the wave equation.10

One can easily show that Galerkin's method for the wave equation is equivalent to �nding

the stationary points of the approximate action, using an argument almost identical to that

of xA.2.4. Thus, in the limit as the �nite element approximation becomes more exact,

the approximation constructed by Galerkin's method would converge to some stationary

point satisfying the initial conditions (if it converges at all). As shown above, this function

cannot satisfy the wave equation. In fact, one can derive lower bounds on the error using

the variational principle.

We can also strengthen the argument to show that if such a action-minimizing function

exists in the case of the initial value problem and has continuous �rst derivatives, then for

every point p = (x; 1) of the line ft = 1g such that Dtu(p) 6= 0, the residual D2
t
u� c

2
D

2
x
u

is unbounded in every neighborhood of p. Thus, u cannot even have continuous second

derivatives, and any solution that minimizes the action must contain singularities.

4.3 Variations on a theme of Lagrange

In view of the analysis above, there are a few natural variations on the Rayleigh-Ritz idea

that may help produce reasonable solutions to the wave equation. In particular, it is possible

to eliminate the boundary term from Equation (4.21), so that stationary points of the action

functional are indeed solutions of the wave equation. There are a few ways of accomplishing

this, and this section proposes two of them.11

4.3.1 Modifying the action principle

The �rst idea is to simply modify the Lagrangian density to change the form of Equation

(4.21), so that the boundary integral

Z
t=1

(@3L � u)h = 0 (4.22)

10That is, if such a stationary point u exists at all.
11Apologies are due to Professors Guillemin and Sternberg for borrowing the title of their book.

124



0

0.5

1

Figure 4-2: A typical cut-o� function.

vanishes. This allows the rest of the derivation of Equation (4.19) to be carried through,

so that the stationary points of the action do exist and correspond to solutions of the wave

equation (or so one would hope).

More speci�cally, consider the following Lagrangian:

L(u; v; w; x; t) =
1

2
(c2v2 � �(t)w2); (4.23)

where � is a cut-o� function, as depicated in Figure 4-2. Cut-o� functions provide a nice

way to change the behavior of the di�erential equation in di�erent regions of spacetime. In

this particular case, we wish to choose constants t1 and t2 such that �(t) = 1 for all t � t1

and �(t) = 0 for all t � t2. For our purposes, set t1 =
1
2
and t2 = 1. � then vanishes on the

�nal line ft = 1g.
We can apply Equation (4.19) to the Lagrangian density above, obtaining:

�(t)D2
t u(x; t) +D�(t) �Dtu(x; t) � c

2
D

2
xu(x; t) = 0: (4.24)

Thus, for t < 1
2
, the equation is just the linear wave equation. For 1

2
< t < 1, the

equation slowly changes until at t = 1, it becomes:

D
2
xu(x; t) = 0; (4.25)

which is obviously no longer well-posed because it says nothing about the behavior of u

over time. Time ceases to have any meaning in this modi�ed system after t = t2 = 1.

The boundary integral term that we wanted to eliminate becomes:

Z
t=1

(@3L � u)h =

Z
t=1

�(t)Dtu(x; t)dx = 0; (4.26)

because � was chosen to vanish on the line ft = 1g.
Note the characteristics are no longer straight lines, and hence the speed of the wave is

125



Figure 4-3: The characteristics of this modi�ed wave equation. The top boundary is where

\time ends."

also no longer constant (see Figure 4-3). The top boundary, ft = 1g, is where the meaning

of time breaks down. The speed of propagation at time t:

cp
�(t)

; (4.27)

Thus, the speed of the wave approaches in�nity as time approaches t2.

Causality

Note that there is something suspicious about this method. After all, we are hoping to ob-

tain, via this trick, accurate solutions of the wave equation in the spacetime region ft < 1=2g
by modifying the equation in the region ft > 1=2g. How can changes in the future a�ect the

accuracy of solution in the past? Has some notion of causality been violated? Indeed, even

though this trick does not provide accurate numerical solutions, it does generate symmetric

systems of linear algebraic equations, which implies that unknown data from the future

does somehow a�ect the past.

The \solution" to this apparent paradox is that the �nite element method really has

no built-in directionality. Thus, the Rayleigh-Ritz equations do not enforce any causal

structure in spacetime, but instead only gives correlations between sample points. In a

very informal sense, this can actually be advantageous: By correlating predications made

from past data with constraints imposed in the future, one might even hope to improve the

solution over the entire spacetime region of interest.

126



The Lorentz metric

The usual Lagrangian for the wave operator can be expressed in terms of the Lorentz

metric:12

L(u(x; t);Dxu(x; t);Dtu(x; t); x; t) =
1

2
[c2(Dxu(x; t))

2 � (Dtu(x; t))
2] (4.28)

=
1

2
g
�(du(x;t); du(x;t)); (4.29)

where g is the metric tensor, g� its dual metric on the dual space, and du(x;t) denotes, as in

Chapter 2, the di�erential of u at (x; t).

This has several consequences. First, it gives us a coordinate-independent way of de-

scribing the wave equation on arbitrary manifolds equipped with a Lorentz metric: Because

metric tensors and di�erentials are already coordinate-free objects on manifolds, Equation

(4.28) gives a coordinate-free way of describing the Lagrangian. Now, the variational prin-

ciple itself can also be stated in a coordinate-free way, since integration of scalar functions

can also be de�ned with respect to a Lorentz metric, as was done for Riemannian metrics in

x3.4.1.13 So using this Lagrangian and Equation (4.19) gives us a consistent way of gener-

alizing the wave equation to Lorentz manifolds.14 In the usual case of Euclidean spacetime

with the at metric, this gives us the usual wave equation.

Furthermore, this description also tells us what we are really doing when we put the

time-dependent factor � into the Lagrangian density: The metric itself is being made time-

dependent! Thus, spacetime is no longer at, and Equation (4.27) shows that the \speed of

light" becomes in�nite in a �nite amount of time in this coordinate system (see Figure 4-3.

This may seem problematic from a physical point of view, and it is. It introduces curvature

into spacetime and may even violate some conservation laws due to the coarseness of the

discretization. The numerical results of the next section show that this method does not

work very well.

12This section supposes some familiarity with relativistic concepts.
13Symmetric nondegenerate tensor �elds, such as Lorentz metrics, are known as pseudo-Riemannian met-

rics. Because they have orthogonal eigenvectors, the basic argument that de�ned integration on Riemannian

manifolds also works on any pseudo-Riemannian manifold: The key result is the fact that with respect to

a Lorentz metric, we can de�ne orthonormal bases, which are orthogonal basis vectors with magnitude �1.

Then the matrix representatio of bases are also orthogonal matrices, and their determinants are �1. Taking

absolute values de�nes local integrals consistently.
14Compactness is required for computing the action, but not for computing Equation (4.19) in local

coordinates.

127



Number Absolute error Relative error

of nodes Maximum Minimum Average Maximum Minimum

14 3.46339 0.00629682 1.36863 5.65633e+16 -4.27969e+15

27 17.2273 0.577482 7.74683 55.7488 -45.7939

44 7.10821 0.365194 3.23993 1.98809e+15 -9.46197e+16

65 4.34967 0.211686 2.05495 11.2617 -14.2968

90 2.5196 0.0978345 1.06008 1.5842e+15 -3.17402e+16

119 2.05826 0.034336 0.820245 9.95072 -10.4461

152 3.05573 0.0313615 1.13394 1.45998e+16 -2.40796e+16

189 8.72154 0.157251 3.54988 31.5282 -44.0292

230 3.31555 0.0326151 1.20425 4.68941e+15 -2.98963e+16

275 2.48151 0.0037325 0.881522 11.2937 -11.9207

324 2.22377 0.000174037 0.753538 5.73477e+14 -2.11547e+16

377 2.01804 0.00592493 0.675755 8.69369 -12.2134

434 1.99763 0.000252334 0.634148 3.13461e+14 -1.5434e+16

Table 4.1: Statics of the results generated by modifying the wave equation.

Numerical reults

In order to perform actual numerical experiments, it is necessary to choose a speci�c cut-o�

function. The actual � used is:

�(t) = �0

�
t� t1

t2 � t1

�
; (4.30)

where �0 is de�ned by:

�0(t) =

8>>><
>>>:

1; t < t1;

2t3 � 3t2 + 1; t1 � t � t2;

0; t2 < t:

(4.31)

The function � has the following properties (see Figure 4-2):

�(t1) = 1; �(t2) = 0;

D�(t1) = 0; D�(t2) = 0;
(4.32)

so that it provides a fairly smooth transition between the linear wave equation (in the range

t < t1) to the degenerate equation (4.25) (in the range t � t2).

Table 4.3.1 shows the data from numerical experiments performed using this method.

It is unclear why the relative error jumps between entries, but it may have to do with

accidental geometric con�gurations (i.e. the placement of nodes in the charts and how they

overlap), since these jumps also exist in Table 4.3.2. The statistics are only collected over

128



0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

av
er

ag
e 

ab
so

lu
te

 e
rr

or

Figure 4-4: Average absolute error versus number of nodes.

those nodes for which t < 1=2, i.e. in the region where the modi�ed equation agrees with

the wave equation. The true solution, in this case, is:

u(x; t) = cos(2�(x� t)); (4.33)

where c was set to 1 for convenience. The discretized equations are solved directly using

LU decomposition with partial pivoting.

Figure 4-4 plots some of the results of Table 4.3.1. Clearly, this method does not work

very well, although it does appear to slowly converge to the true solution.

Figure 4-5 plots the true solution of the wave equation over this square domain, while

Figure 4-6 plots the solution generated by this method. As one can see, this method

produces solutions that are only vaguely similar to the true solution in a qualitative sense.

Figure 4-7 shows the absolute error distribution, which is su�ciently structured to lead

one to suspect the existence of deeper causes of error and possible ways of improving the

performance of this method. However, what those causes should be is not entirely clear.15

A discussion of possible reasons for the poor performance of this method is postponed

until x4.4.1. First, let us take another look at a di�erent approach to eliminating the

troublesome boundary term in Equation (4.21).

15Noting the jumps in relative error in alternating entries of Table 4.3.1 and its similarity to Table 4.3.2,

the problem does seem to be related to the parity of the mesh used.

129



0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

Figure 4-5: The \true" solution to the wave equation given in Equation (4.33).

0

0.5

1

0

0.5

1
−2

−1

0

1

Figure 4-6: The approximate solution generated by this method.

130



0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

Figure 4-7: The absolute error. Note that this error is very structured, and hence hints at

a deeper cause.

4.3.2 Modifying the domain

The second idea depends on modifying the geometry of the domain so that the \�nal

line" ft = 1g does not exist at all (see Figure 4-8). More speci�cally, we extend and modify

the geometry of the domain by \attaching" a triangle to the original spacetime domain.

It is important to ensure that the triangular part of the domain has sides whose slopes

are greate than 1=c; this makes sure that the boundaries remain timelike, so that boundary

conditions can be imposed without making the problem ill-posed. With respect to Equation

(4.21), this means the boundary term would no longer exist because boundary data would

Figure 4-8: Attempting to eliminate the boundary term in equation (4.21) by changing the

shape of the domain.

131



be imposed over the entire boundary.

Geometry and metrics

At �rst glance, this method and that of the previous section may seem very di�erent: One

modi�es the wave equation but does not modify spacetime itself, while the other changes

the shape of the domain without modifying the equation. However, the two are really more

similar than they seem.

LetX1 be the rectangular spacetime of Figure 4-3, and letX2 denote the \house"-shaped

spacetime of Figure 4-8. Consider the comments of x4.3.1: The wave equation really arises

from the metric of spacetime, and the method of the previous section works by introducing

curvature into spacetime. On the other hand, the \geometric method" of this section seems

to have deformed the space without modifying the metric. But X1 and X2 are topologically

equivalent|i.e. One can be continuously mapped onto the other bijectively. Thus, we can

always map the oddly-shaped X2 onto X1 via a continuous transformation �.

Now, this mapping has an inverse ��1 : X1 ! X2 that is also smooth. By using its

di�erential16, we can \pull back" the at metric from X2 onto the space X1:

g
1
p(v; w) = g

2
q (d�

�1
q (v); d��1q (w)); (4.34)

where gi is the metric of Xi, p 2 X1, and q = �
�1(p) 2 X2. The \pulled-back" metric g1

then induces a dual metric (g1)�, which can be used to produce the modi�ed wave equation

on X1 that is equivalent to the \at" wave equation on X2, in the sense that:

u1(�(x; t)) = u2(x; t); (4.35)

where ui is the solution of the wave equation associated with the Lorentz metric gi on the

space Xi.

While X2 has a at metric g2, the metric g1 induced by � on X1 is in general not at,

because the transformation � is generally nonlinear. Thus, we see that this new method

really can be thought of as just another way to modify the metric of spacetime. The

modi�cation, of course, di�ers from that of the previous section, and generates much more

complicated characteristic curves.

One important thing to note is that one can only go so far in modifying the geometry

of a space by changing its metric|The topology of the manifold will always stay invariant if

the metric is smooth everywhere, even though the geometry changes. In order to generalize

16It should be clear the we can choose � so that it is continuous almost everywhere, except at the corners

on the boundary of X2. Similar comments apply to ��1.

132



Number Absolute error Relative error

of nodes Maximum Minimum Average Maximum Minimum

6 14.2485 1.74795 9.29633 1.35509e+17 -14.2485

20 3.89164 0.138369 1.95244 7.78328 -4.68721

42 0.627265 0.00518237 0.247108 1.02444e+16 -6.52581e+15

72 3.24599 0.00177442 1.1747 10.5042 -5.74983

110 0.289144 0.00082902 0.0979768 2.97096e+15 -7.02175e+14

156 0.318759 6.53735e-05 0.12427 1.18395 -1.43249

210 0.194245 0.000291551 0.084536 3.06143e+15 -4.19103e+14

272 0.0736915 0.000189996 0.0240319 0.286878 -0.300047

342 0.0496121 3.03278e-05 0.0153055 2.52581e+14 -1.80042e+14

420 0.149277 1.30728e-05 0.0369261 1.04892 -0.677157

506 0.0927114 0.000108788 0.0293263 5.23132e+14 -1.48843e+15

600 0.812075 0.000495892 0.320429 3.90818 -6.36069

702 0.0492277 5.3695e-07 0.0108849 1.4358e+14 -2.39808e+13

Table 4.2: Statics of the results generated by modifying the spacetime domain.

this particular idea of deforming the spacetime domain to equations on more complicated

manifolds, it may be necessary to apply topological transformations as well, so that this

method would no longer be simply a variant of the algorithm presented in the previous

section.

Numerical results

Table 4.3.2 shows the data collected using this method. The �rst few entries were ob-

tained using LU decomposition, but such direct methods fail for larger systems of equations,

so relaxation had to be used. Since the wave operator does not produce symmetric positive-

de�nite matrices (as does the Laplacian), it is necessary to generate the normal equations by

multiplying the matrix with its own transpose. Thus, the accuracy of the solution obtained

by relaxation is rather limited (see x3.3.2). However, despite these di�culties, this method

clearly outperforms our previous attempt.

Figure 4-9 plots the average absolute error against the number of nodes. As one can

see, this method works much better, although it still leaves much room for improvement.

Figure 4-10 shows the approximate solution generated this way, and Figure 4-11 shows

the absolute error between this solution and the solution shown in Figure 4-5. Note that

the solution in Figure 4-10 is at least qualitatively reminiscent of Figure 4-5.

For this particular method, there is one more parameter we can control: The only

constraint on the slope of the triangular \extension" to our domain is that its sides have

slope greater than 1=c. Thus, the slope of the sides can be varied, which a�ects the accuracy

133



0 200 400 600 800
10

−2

10
−1

10
0

10
1

lo
g(

av
er

ag
e 

ab
so

lu
te

 e
rr

or
)

Figure 4-9: Average absolute error versus number of nodes. Results are generated by

modifying the domain of solution.

0

0.5

1

0

0.5

1
−2

−1

0

1

2

Figure 4-10: Approximate solution generated by extending and changing the shape of the

domain.

134



0

0.5

1

0

0.5

1
0

0.02

0.04

0.06

Figure 4-11: The absolute error between Figure 4-5 and 4-10.

Boundary Absolute error Relative error

slope Maximum Minimum Average Maximum Minimum

2.0 0.0492277 5.3695e-07 0.0108849 1.4358e+14 -2.39808e+13

2.1 0.021287 8.38556e-06 0.00718122 1.62293e+14 -1.168e+14

2.2 0.104445 0.000264129 0.0333464 8.29833e+14 -7.40989e+14

2.3 0.204355 0.000355765 0.0454508 1.09504e+15 -8.71415e+14

2.4 0.0987477 6.25076e-05 0.0366781 1.18056e+15 -7.67629e+13

2.5 0.0390811 3.05883e-06 0.00954907 2.82624e+14 -2.05056e+14

2.6 0.0415744 1.61621e-05 0.0103743 4.5445e+13 -2.62967e+14

2.7 0.563769 0.000158676 0.22424 5.51249e+15 -3.11361e+14

2.8 0.738567 1.63661e-05 0.252891 7.57622e+15 -1.83677e+15

2.9 1.12121 0.000821135 0.309993 7.87134e+15 -6.65048e+15

3.0 0.858581 6.42513e-05 0.270326 6.98004e+15 -3.78587e+15

Table 4.3: Statistics obtained by varying the size of the triangular region added.

135



2 2.2 2.4 2.6 2.8 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

av
er

ag
e 

ab
so

lu
te

 e
rr

or

Figure 4-12: The relative error between Figure 4-5 and 4-10.

of solution. Table 4.3.2 shows this data.

Figure 4-12 plots this data. As one can see, there is no clear indication of how one

choose the slope to minimize the error.

4.4 Di�culties with the spacetime approach

This section o�ers some tentative explanations for the failure of the ideas from the previous

section. Furthermore, we will discuss some issues faced by spacetime methods in general.

4.4.1 Why the variations failed

It turns out that both of the methods described above probably fail for the same reason:

Numerical solvers for the wave equation (and all hyperbolic equations) seem to depend

rather sensitively on the geometry of characteristics. In particular, it is often necessary

to ensure that information is \propagated" in characteristic direction. Very informally, in

terms of �nite elements, this means that every node is connected to at least one neighbor in a

characteristic direction, so that at least some information is propagated along characteristic

lines.

Now, while this condition holds true for both methods over some regions of spacetime,

it fails for both methods after some time tcrit: For the �rst method, tcrit = t1 = 1=2 because

the slope of characteristic curves change after that time but the mesh stays the same. For

136



the second method, tcrit = 1 because after that, the mesh changes to match the shape of

the triangular region. Note that this indicates that we should try to choose the slope of the

extended triangular region in the second method to be as close to 1=c as possible, and also

o�ers a hint of why the second method performs better than the �rst.

One might wonder how changes in characteristics or mesh geometry after tcrit a�ects

the accuracy of the solution before tcrit. The answer is that the comments on causality in

x4.3.1 apply to both methods: Because the �nite element method has no built-in notion

of time and provides only correlations between past and future events, errors arising from

inconsistencies between the mesh and characteristics after tcrit naturally a�ect the accuracy

of solution before tcrit.

4.4.2 Other problems

Aside from that of accuracy, there are other problems associated with applying spacetime

methods to hyperbolic PDEs. One of the most serious is the computational resources

required: While standard �nite di�erence methods (or �nite element methods with regular

time steps) need only keep in memory the data associated with the current time step, plus

or minus a few neighboring steps, spacetime methods|by their very nature|require all of

the data over the spacetime domain. This can be costly in terms of storage requirements

if the domain is large. For example, if one needs to understand both the short-term and

long-term behavior of solutions, the spacetime region is likely to require a large number of

sample points to represent.

Yet another issue is the solution of the discretized equations. Unlike Laplace's equation

(or elliptic equations in general), hyperbolic equations almost never generate systems of

linear equations that are solvable by relaxation directly. It is for this reason that we were

forced to compute the normal equations before applying relaxation to produce Table 4.3.2.

While direct methods work fairly well, they are limited by the size of the system one can

solve, and in view of the comments above, one can see that spacetime methods can easily

generate very large systems of equations.

One last issue is the solution of \true" initial value problems: As stated before, the

particular version of the wave equation considered here is a mixed initial-boundary value

problem because space, in our case, has �nite extent, and both initial values in time and

boundary values in space are given. In simulating the propagation of electromagnetic waves

in free space, it would be necessary to understand how to simulate large space domains,

since �nite elements can only work for compact domains.17

17For such problems, it is necessary to consider absorbing boundary conditions, which help make space

\look" in�nite using a �nite number of spatial sample points. For more information, see Engquist and Majda

[12].

137



4.5 Directions for future work

Aside from the di�culties mentioned in the previous section, there are other issues of interest

here. For one thing, the derivation of Equation (4.19) from the variational principle makes

no reference to the initial data Dtu(x; 0) = g(x), only the boundary data. Furthermore,

the existence and importance of characteristics never arises, even though the variational

principle is an equivalent way of formulating the wave equation. One natural question, then,

is this: Is there a way to analyze the Lagrangian density itself, perhaps as a by-product of the

tools used to derive Equation (4.19), that clari�es the importance of characteristics? And

why does the initial time derivative not matter in the derivation? What is di�erent between

variational principles for PDEs and ODEs, such that the Euler-Lagrange equations hold for

ODEs, even though it is initial value problems that are of interest in classical mechanics?

Yet another interesting direction, though only tangentially related to this topic, is that of

information propagation. This idea has been mentioned informally throughout this chapter;

it would be very interesting to formalize it. In particular, can we compute how much

information is \propagated along characteristics"? Is there a way to understand the well-

posedness of initial value problems for the wave equation, as well as the ill-posedness of

boundary value problems, in terms of information propagation? What connections, if any,

exist between information propagation and the Lagrangian density? How is information

propagation in the PDE itself related to information propagation in the PDE solver, and

can we use such ideas to estimate numerical accuracy? Finally, how can we extend these

ideas to PDEs that do not arise from variational principles?

It is the author's hope to follow up on some of these questions, and that they may lead

to a deeper understanding of hyperbolic equations in general (both linear and nonlinear),

and the wave equation in particular.

138



Appendix A

Background Material on Partial

Di�erential Equations

Two general classes of numerical methods for solving partial di�erential equations are �nite

di�erence methods and �nite element methods. While other methods, such as spectral

decomposition methods, are very e�ective in special situations, they do not have the general

applicability of �nite di�erences and �nite elements.

Finite di�erence methods are very simple. They depend upon the approximation of

derivatives by di�erence quotients. For example, we know from di�erential calculus that

the forward di�erence

f(x+ h)� f(x)

h
(A.1)

approximates the derivative of f at x for su�ciently small h. Finite di�erence methods

are very popular because they are easy to understand and program, and generally run very

e�ciently on most computers. However, they often depend sensitively upon the particular

way in which the domain is discretized, and can easily become numerically unstable. As a

result, the literature is full of long, excruciating analyses of convergence criteria and error

estimates. The reader will not be subjected to such tortures here.

Instead, this appendix treats �nite elements in more depth. This will bring out several

important ideas in the theory of partial di�erential equations along the way.

A.1 Matrix inversion

Before all else, one should know that the numerical solution of partial di�erential equations

generally involves the solution of large systems of linear algebraic equations. Thus, it is

useful to �rst examine some of the more popular methods for solving such systems of

equations, and to keep these methods in mind throughout the rest of this appendix and

the report itself. The reader is assumed to have some knowledge of elementary linear

algebra, including familiarity with direct methods such as Gauss-Jordan elimination and LU

decomposition (which terminate after a �nite number of operations). This section describes

some basic iterative methods.

A.1.1 Iterative methods and relaxation

The basic problem is this: We wish to solve a system of linear equations:

139



Ax = b; (A.2)

where A is an n�nmatrix and x; b are n-vectors, and where n is a large positive integer. For

such problems, direct methods such as Gaussian elimination or LU-decomposition require

too much space and time to be useful.

One way of computing the solution x is by noting that x is the �xed point of the system

of �nite-di�erence equations:

xk+1 = (I �A)xk + b; k = 0; 1; 2; ::: (A.3)

Iterating the equation above generates a sequence of vectors fxk; k = 0; 1; 2; :::g. If

the sequence converges, then one would obtain a solution to the original linear system of

equations (A.2). Letting B = I �A in the above equation, it follows by induction that:

xk = B
k
x0 +

k�1X
i=0

B
i
b; (A.4)

where by convention
P
�1
i=0B

i = 0. B is called the iteration matrix, and the sequence fxkg
converges to the solution x for all initial conditions x0 if and only if limk!1B

k = 0 and

the in�nite series
P
1

i=0B
i converges. One could then show that this holds if and only if the

spectral radius �(B) is less than 1.1

A.1.2 Jacobi iteration

For general A, the iteration matrix B = I � A often has large eigenvalues, so the iteration

would not converge. However, there are some modi�cations that do produce convergent

iterations in many instances. These iterative methods, where a di�erence equation B is ob-

tained from the matrix A and then iterated, are called relaxation methods. In the following,

let L denote the o�-diagonal lower-triangular entries of A, let D denote the diagonal entries

of A, and let U denote the o�-diagonal upper-triangular entries of A, so that A = L+D+U .

The simplest among these methods, called Jacobi iteration, simply normalizes each row

of the matrix by the diagonal entries, so that instead of B = I �A, one has:

B = I �D
�1
A = �D�1(L+ U): (A.5)

In components, this is equivalent to:

xk+1(i) =
�Pn

j=1;j 6=i aijxk(j) +
P

n

j=1 aijbj

aii
: (A.6)

Thus, one could perform the iterations rather e�ciently if the matrix is sparse; i.e. has a

large number of zeros. This method, of course, does not always converge, and Vichnevetsky

contains a discussion of such issues [27].

1The spectral radius of a matrix A is the maximum among the absolute vaules of the eigenvalues of A.

Those familiar with some point set topology should notice that this criterion is equivalent to saying that the

function de�ned by f(x) = Bx+ b is a contraction mapping.

140



A.1.3 Gauss-Seidel iteration

A slight variation, called Gauss-Seidel iteration, uses:

xk+1(i) =
�Pi�1

j=1 aijxk+1(j)�
P

n

j=i+1 aijxk(j) +
P

n

j=1 aijbj

aii
: (A.7)

That is, instead of updating all components xk(i) synchronously, the new components are

used as soon as they become available. In matrix form, this means:

(L+D)xk+1 + Uxk = b; (A.8)

or

xk+1 = �(L+D)�1Uxk + (L+D)�1b: (A.9)

This method is somewhat better than the Jacobi method in that it updates the compo-

nents successively instead of synchronously, so the storage requirements are less stringent

and programs are generally more compact and e�cient. However, one should be careful in

using these methods because their convergence properties are di�erent, although for a large

class of problems they both converge.

A.1.4 Overrelaxation

These iterative methods are, in general, relatively slow. In order to speed up the conver-

gence, one often uses overrelaxation techniques by taking larger \steps" in each iteration.

For Jacobi iteration, this means using:

xk+1 � xk = �!((I �D
�1(L+ U))xk +D

�1
b); (A.10)

or

xk+1 = ((1 � �!)I � �!D�1(L+ U))xk + �!D�1
b: (A.11)

The number �! is called the overrelaxation factor when 1 < �! < 2, and called the

underrelaxation factor when 0 < �! < 1. One could show that the iteration must necessarily

diverge (that is, the spectral radius of the resulting iteration matrix B must be greater than

1) unless 0 < �! < 2. However, the converse does not hold: 0 < �! < 2 does not guarantee

convergence.

For Gauss-Seidel, a similar derivation yields:

xk+1 = ((1 � �!)I � �!(L+D)�1U)xk + �!(L+D)�1b: (A.12)

This is known as successive overrelaxation.

A.2 A brief introduction to �nite elements

A.2.1 Introduction

This section briey summarizes how numerical solutions of partial di�erential equations

can be computed using the �nite element method. In particular, it contains a derivation of

the standard discretization of Laplace's equation in two dimensions. Most of this material

141



comes from Vichnevetsky [27]; it is an excellent introduction to numerical methods for

partial di�erential equations. Johnson [17] also contains a clear and more detailed account

of �nite element methods. For an analytical approach, the opening chapters of Fritz John's

text [16] o�er a good introduction. The classic treatise on partial di�erential equations is

Courant and Hilbert [10], which may be too encyclopedic to serve as an introduction but

contains a lot of good stu�. A very brief but clear survey article appears in the McGraw-Hill

Encyclopedia of Science & Technology [5].

Notational and mathematical conventions

This section will not rigorously de�ne such terms as open set, closed set, and boundary,

since these topological concepts should be fairly intuitive in this setting. It will only de�ne

some notations and terms not commonly covered in introductory calculus courses.

The boundary of a region 
 is denoted by @
, and its closure 
 is de�ned as the union

of 
 and its boundary. Given a real-valued function f over 
, its support is de�ned as the

closure of the subset of points over which f is nonzero, i.e. the set fx 2 
jf(x) 6= 0g.
For the sake of precision (which is important for turning ideas into programs), functional

notation will be used wherever appropriate. Thus, the integral of a real-valued function f

over open set 
 is Z


f; (A.13)

instead of Z


f(x; y)dxdy: (A.14)

That the above is an area integral should be clear from the context, since 
 is an open subset

of the plane. Similarly, di�erential operators will operate on functions, not expressions.

More precisely:

d

dt
f(t) = (Df)(t);

@

@x
f(x; y) = (D1f)(x; y);

@
n

@xn
f(x; y) = (Dn

1 )f(x; y); (A.15)

and so on. And, unless otherwise speci�ed, all functions considered here will be continuously

di�erentiable up to whatever order is required in its context. Note that, for emphasis, the

derivative of a function evaluated at t was written as (Df)(t) above, but in general the

di�erential operator D takes precedence over functional evaluation, and (Df)(t) = Df(t).

One last bit of notational convenience is the multi-index notation. A multi-index � is

an n-tuple of non-negative integers (�1; �2; :::; �n). Given an n-vector x, de�ne x� to be

x
�1

1 � x�22 � ::: � x�nn . Also, de�ne the gradient operator r = D = (D1;D2; :::;Dn). Then D
�

gives us a useful way to denote the di�erential operator D�1

1 :::D
�n
n
. For convenience, de�ne

j�j to be �1 + :::+ �n.

A.2.2 Partial di�erential equations

Before a discussion of algorithms for solving partial di�erential equations, some terminology

and examples are needed. The focus here is on scalar di�erential equations, though some

of these methods generalize to systems of equations.

142



Basic de�nitions

A partial di�erential equation for a real-valued function u of n real variables is a relation of

the form

F (x; u(x);D1u(x); :::; Dnu(x);D
2
1u(x); :::) = 0; (A.16)

where F is real-valued function of �nitely many real variables and x denotes a real vector

with n components. A function u is a solution of the PDE over the domain 
 if it satis�es

Equation (A.16) for all x in 
. F constrains the value of the solution u and a �nite

number of its partial derivatives, and may depend on the coordinates. The order of a

partial di�erential equation is the order of the highest-order partial derivative that appears

in Equation (A.16). Depending on the speci�c function F , Equation (A.16) may have no

solution, a unique solution, or more than one solution; the existence theory for solutions of

partial di�erential equations is a large and complicated subject, and this report makes no

attempt at presenting it. An mth-order PDE is linear if it can be written as

X
j�j�m

A�D
�
u = Lu = b; (A.17)

where the coe�cients A� of L, as well as b, are functions of the coordinates. This class of

equations will be the most important to us.

Many equations arising from applications have in�nitely many solutions, so one must

prescribe additional constraints to obtain unique solutions. For an equation of order m

on a domain of dimension n, these constraints usually involve specifying the values of the

solution and its derivatives of order less than m on some (n � 1)-dimensional subspace

of the domain of solution. If a partial di�erential equation along with a constraint has a

unique solution, the problem is said to be well-posed.2 As we shall see, di�erent types of

equations require di�erent constraints to have existence and uniqueness of solutions. For

example, some constraints make the equation overdetermined; that is, there may not be a

solution of the di�erential equation that satis�es the given constraint. On the other hand,

some constraints may make the equation underdetermined, and there may be more than

one solution. In these cases, the problem is said to be ill-posed.

This section deals with equations over open subsets 
 of the plane (n = 2). Moreover,

it concentrates on equations that are linear and homogeneous with constant coe�cients:

aD
2
1u+ bD1D2u+ cD

2
2u+ dD1u+ eD2u+ fu = 0; (A.18)

where a, b, c, d, e, and f are arbitrary real constants. Slightly more general equations are

treated later.

Laplace's equation

Here are, without proof, a number of facts regarding Laplace's equation. Given an open

subset 
 of the plane, Laplace's equation for two variables is

D
2
1u+D

2
2u = 0; (A.19)

2The idea of well-posedness is due to Jacques Hadamard, the great French mathematician, who also

discovered some of the earliest examples of ill-posed problems. As a result, well-posed problems are sometimes

called well-posed in the sense of Hadamard in mathematical literature.

143



where u is a real-valued function on 
. A function satisfying Laplace's equation is said to

be harmonic. It is clear that Laplace's equation is a special case of Equation (A.18). In

general, it has in�nitely many solutions on a given domain 
. However, given a real-valued

function f on the boundary @
, the requirement that the solution u agrees with f on @
,

i.e.,

u(x; y) = f(x; y); (x; y) 2 @
; (A.20)

uniquely determines the solution u; this is one of the clasical results in the theory of PDEs.

Note that in this case, our constraint only speci�es the values of the solution on the bound-

ary, not the values of its �rst partials.

Equation (A.20) is called the boundary condition, and Equations (A.19) and (A.20)

together form the boundary value problem. Solving this equation allows us to determine,

for example, the electric potential in a bounded, charge-free region given the potential on

the boundary.

There is a beautiful way to reformulate the boundary value problem for Laplace's equa-

tion as a minimization problem. Let f be a real-valued function on @
, and let Xf be the

set of all real-valued functions u on 
 that agree with f on @
. De�ne the real-valued

mapping

S(u) =
1

2

Z



�
(D1u)

2 + (D2u)
2
�

(A.21)

on the function space Xf ; S is called the action. One can show that, among all functions u

that satisfy the boundary conditions, the solution of Laplace's equation minimizes S. This

is an example of a variational principle, and is discussed in more detail in xrefsec:variational.

A.2.3 The Rayleigh-Ritz Method

Typically, the numerical solution of a partial di�erential equation involve two distinct steps.

First, a way of representing the approximate solution is chosen, and the di�erential equation

is reduced to some set of simpler equations that determine the approximate solution; this is

known as discretization. Next, the discretized equations are solved, yielding the approximate

solution. This section discusses only discretization methods, whereas the solution of large

systems of linear algebraic equations was briey described in xA.1. For a more thorough

discussion of both aspects of this problem, see Vichnevetsky [27].

The speci�c discretization method developed here is known as the Rayleigh-Ritz method.

The basic idea behind this method is simple: Given the domain 
 and a prescription of the

boundary value f , choose a set of N functions f�ig on 
 and express the solution u as a

linear combination

u =

NX
i=1

ai�i: (A.22)

The functions �i are the basis functions, and the Rayleigh-Ritz method requires them to have

some speci�c properties (these are discussed later). These properties allow us to interpret

the coe�cients ai as values of the approximate solution u at pre-speci�ed sample points (or

nodes) pi. Having speci�ed a representation of approximate solutions, an approximation

of the action can be computed as a function of the unknown coe�cients ai and the given

boundary values. Minimizing this approximate action turns out to produce a system of

linear equations, which can be solved to yield the coe�cients ai.
3

3In the case of Laplace's equation, the coe�cients of the discretized equations form a positive-de�nite

144



Figure A-1: Finite elements on the unit disc.

Constructing basis functions

The Rayleigh-Ritz method and a large class of other methods are collectively referred to as

�nite element methods because they all represent approximate solutions as linear combina-

tions of a special type of basis functions. They rely on dividing the domain into a �nite

number of simple shapes, called elements, and expressing the approximate solution over

each element as a sum of simple shapes. In what follows, the shapes are assumed to be

triangles for simplicity, though in general they can be more complicated.

Here is a more detailed description of triangular elements: Choose a �nite set of sample

points fpig in the domain 
, such that the subset of sample points lying on the boundary

@
 is non-empty. Choose a �nite collection of triangular subsets Ti of 
, such that the

Ti intersect each other only along their boundaries, and the sample points are precisely

the vertices of the triangles. Furthermore, the union of the triangles Ti should closely

approximates 
.4 As an example, Figure A-1 shows a crude division of the unit circle into

triangular elements. In general, the more �nely the elements tesselate the domain 
, the

more accurate the approximate solution will be.

To each sample point pi we now associate a basis function �i. Intuitively, the basis

function �i is produced by \pasting together" simple shapes over each element adjacent

to pi; this arrangement, as will be shown later, makes the computation of �nite element

coe�cients more e�cient. More precisely, these are the requirements on the basis functions:

1. �i(pj) =

(
1; i = j

0; i 6= j

2.
P

N

i=1 �i(x; y) = 1 for all (x; y) 2 
.

3. The functions �i should be piecewise-di�erentiable, if not smooth everywhere.

4. The function �i should be nonzero only in the elements immediately adjacent to pi.

matrix, and may be inverted using many methods, such as relaxation, LU factorization, or conjugate gradient

methods.
4This report does not attempt to precisely de�ne this notion, but the union of the elements should at

least be topologically equivalent to the original domain 
.

145



The �rst requirement guarantees that if a function u is expressed as linear combination of

the basis f�ig, as in Equation (A.22), then its ith coe�cient is simply

ai = u(pi): (A.23)

This is a particularly nice property, for if pi is a sample point on the boundary @
, then the

value of the approximate solution, u(pi), is just the given boundary value f(pi). But then

ai = f(pi), so that in the linear combination (A.22), the coe�cients which correspond to

boundary nodes do not need to be computed at all, thus reducing the number of unknowns.

This is the way through which boundary values help determine the unknowns.

The second requirement ensures that if a1 = a2 = ::: = aN = a, then u(x; y) = a for

all (x; y) 2 
; that is, constant functions are interpolated exactly by these basis functions.

This ensures, for example, that if two approximate solutions constructed from these basis

functions have the same values at all sample points, then they are equal everywhere.5

The third requirement is necessary because in the process of discretizing the PDE,

it is necessary to take partial derivatives of the approximate solution. Finally, the last

requirement makes precise the idea of pasting together simple shapes over elements adjacent

to pi. Note that the support of a basis function corresponding to a node p is simply the

union of the elements with p as a vertex, and that the intersection of the supports of two

basis functions must also be a union of elements. This is an important property for �nite

element computation.

One way of constructing basis functions that satisfy the requirements above are the so-

called \tent functions," which are piecewise-linear functions constructed by linearly inter-

polating between neighboring nodes, and to let �i vanish uniformly outside of the elements

adjacent to pi. Note that by continuity, the last condition implies that �i = 0 at all nodes

except for pi, so requirements 1 and 4 are redundant.

Discretization

With a speci�c representation of approximate solutions, one can now compute the unknown

coe�cients. To do this, use the approximate solution u to compute an approximation of

the action (A.21). This is then a real-valued mapping that depends on the (�nitely many)

unknown coe�cients of u. One can then minimize this approximate action by equating its

derivative to zero, which yields a set of linear equations.6

At this point, it is helpful to keep track of nodes that lie on the boundary @
. Thus,

let us relabel the sample points so that the basis functions �i; i = 1; 2; :::; N correspond to

sample points on the boundary of 
, and let �i; i = 1; 2; :::;M continue to denote those that

correspond to interior nodes. Let ai denote the coe�cients of �i, and let bi denote those of

�i. As noted in the previous section, the N variables b1; b2; :::; bN are precisely the boundary

values at the sample points on the boundary, so the only unknown values are a1; a2; :::; aM .7

5Unlike �nite di�erence methods, which only work with values of solutions at sample poitns, �nite ele-

ments explicitly interpolates between sample points in discretizing PDEs.
6These are actually stationary points of the approximate action. For Laplace's equation, this is indeed

the minimum. For other equations where variational principles apply, stationary points need not minimize

the action.
7This step brings up a subtle point: There are two conditions that the approximate solution must satisfy,

and together they produce a unique solution. One is that the approximate solution minimizes the action,

and the other is that the solution has the required boundary values. This can be thought of as a constrained

minimization problem. There are two approaches to these sorts of problems: The �rst (the one used here) is

146



Let T be a real-valued function of the M unknown variables ai, de�ned by

T (a1; :::; aM ) = S(u[a1; a2; :::; aM ]) (A.24)

=
1

2

Z


(D1u[a1; a2; :::; aM ])2 + (D2u[a1; a2; :::; aM ])2; (A.25)

where u[a1; a2; :::; aM ] is de�ned by

u[a1; a2; :::; aM ] =

MX
i=1

ai�i +

NX
i=1

bi�i (A.26)

and the action S was de�ned in Equation (A.21).

To minimize T , simply di�erentiate under the integral sign. Via the chain rule, the

partial derivatives of T , DjT (a1; :::; aM ), are:

Z



  
MX
i=1

aiD1�i +

NX
i=1

biD1�i

!
�D1�j +

 
MX
i=1

aiD2�i +

NX
i=1

bi�i

!
�D2�j

!
; (A.27)

for j = 1; 2; :::;M . Equating the derivatives of T to 0 produces a system of equations:

MX
i=1

ai

Z


(D1�i �D1�j +D2�i �D2�j) = �

NX
i=1

bi

Z


(D1�i �D1�j +D2�i �D2�j); (A.28)

with j = 1; 2; :::;M . This is a system of M linear equations in M unknowns. Indeed, let

aij =

Z


(D1�i �D1�j +D2�i �D2�j); (A.29)

and let A be the matrix (aij). De�ne the M -vector

b =

 
�

NX
i=1

bi

Z


(D1�i �D1�j +D2�i �D2�j)

!
: (A.30)

Then Equation (A.28) becomes simply

Au = b; (A.31)

where u is the vector of the unknown coe�cients ai.

Some comments on �nite elements

The derivation of the discretized equations (A.28) involves many integrals. But recall now

that the basis functions were chosen so that a basis function associated with the node pi is

nonzero only over those elements adjacent to pi. Thus, the integrals in Equation (A.28) need

only be evaluated over a �nite number of elements. One can generally choose element shapes

to enforce the constraint �rst, and then minimize the action. The second involves minimizing the action �rst,

and then enforcing the constraint. A careful analysis will show that the second approach actually produces a

overdetermined system of equation; in order to arrive at the same equations one must justify the elimination

of the \extra" equations involving the inner product of the residual and basis functions corresponding to

boundary nodes.

147



A

B

C

D E

F

G

H

p1

p0

p2

p3

p4 p5 p6

p7

p8

Figure A-2: Rectangular �nite elements.

and basis functions to simplify the computation of these integrals, and the primary reason

for the popularity of �nite element methods is the e�ciency with which these coe�cients

can be computed.

Additionally, this locality mirrors the fact that in many physical systems, most interac-

tions are local and e�ects propagate with �nite speed through the system. And because a

coe�cient is nonzero only if two nodes are neighbors (in the sense that they are vertices of

the same element), the matrix A de�ned by Equation (A.29) is usually sparse; that is, it

contains many zeros. This lessens the storage requirements when working with systems with

large numbers of sample points, as well as making iterative solution methods like relaxation

more e�cient.8

Example

As an example, let us derive the standard �nite di�erence equations for the boundary value

problem using the Rayleigh-Ritz method. Consider a rectangular grid of points in the plane,

a subset of which is shown in Figure A-2.

Let's use piecewise-linear tent functions on the elements, and suppose that the elements

are isoceles triangles with base and height h. Let �i denote the basis function corresponding

to the node pi; it is then a tent function with its tip at the point pi. To compute the

coe�cients corresponding to a typical node p0 in the matrix A = (aij) of Equation (A.29),

let ci = a0;i.
9 Since the interpolants are linear, their gradients are constant. Hence, the

coe�cients are simply the dot products of the interpolants multiplied by the area of the

intersection of their supports; denote the intersection Support(�i) \ Support(�j) by 
(i;j).

The row ofA corresponding to p0 can have at most six non-zero entries, since p0 has only six

neighbors { namely p1, p2, p3, p5, p6, and p7. p4 and p8 (as well as any nodes in the system

8For solving large systems of linear equations, iterative methods are generally preferred over direct meth-

ods (such as LU decomposition) because of speed and the accumulation of round-o� errors.
9The matrix is denoted by boldface in this section because the symbol A also refers to one of the regions

in Figure (A-2).

148



that are not pictured in Figure A-2) are not neighbors of p0 and hence those coe�cients

must vanish.

To compute c1, note that 
(1;0) = A [G. Over the region A, the gradients are

r�1 =
1

h
(1; 1);r�0 =

1

h
(0;�1); (A.32)

and over the region G, they are

r�1 = 1

h
(0; 1);r�0 = 1

h
(�1;�1): (A.33)

The area of each element is 1
2
h
2, so the coe�cient c1 is simply -2. Similarly, c3 = c5 = c7 =

�2 and c2 = c6 = 0. Finally, c0 = 1+1+1+1+2+2 = 8, so the p0 equation of the system

Ax = b is 8c0 � 2c1 � 2c3 � 2c5 � 2c7 = 0, which upon rearrangement yields

c0 =
c1 + c3 + c5 + c7

4
: (A.34)

Equation (A.34) is simply the standard �nite di�erence approximation for Laplace's equa-

tion, and similar computations yield the same equations for the case when p0 is on the

boundary @
.

A.2.4 Galerkin's method

Another commonly-used �nite element method is Galerkin's method. In many cases, it pro-

duces equations equivalent to the Rayleigh-Ritz equations. However, this method di�ers in

that it is slightly more di�cult to justify mathematically, even though it is more generally

applicable, especially in situations where a variational principle is not available. We de-

rive Galerkin's method by a close analogy with a slightly more general function-expansion

method, which also uses expansion in terms of basis functions to solve di�erential equations.

As before, basis functions are denoted by f�i; i = 1; 2; 3; :::g; however, these functions
are not, for the moment, necessarily of the type considered in Rayleigh-Ritz. Furthermore,

representations of functions as (possibly in�nite) linear combinations of these basis functions

is assumed to be exact, so the set of basis functions (called the basis) will no longer be �nite.

Given two real-valued functions f and g on 
, de�ne the inner product hf; gi by

hf; gi =
Z


f � g (A.35)

The basis is required to be complete, in the sense that if a function u satis�es hu; �ii = 0

for all i, then u = 0 uniformly on 
. For example, if 
 is a bounded interval of the real

line, one can choose the �i to be Legendre polynomials or sinusoidal functions; both form

complete bases.

Back to Laplace's equation now: Recall that this involves �nding a real-valued function

u on 
 such that

D
2
1u+D

2
2u = 0 (A.36)

on 
 and u = f on the boundary @
 for some prescribed function f . Expanding the solution

as an in�nite series

u =

1X
i=1

ai�i(x; y) (A.37)

149



over a complete basis, the problem reduces to the determination of the unknown coe�cients.

Using completeness, this is equivalent toZ


(D2

1u+D
2
2u)�i = 0; i = 1; 2; 3; :::: (A.38)

Expanding u in its in�nite series, the above equation becomes

1X
i=1

ai

Z


(D2

1�i +D
2
2�i)�j = 0; j = 1; 2; 3; :::: (A.39)

Galerkin's method generalizes this procedure to the case when the basis is �nite, and there-

fore not complete.

More speci�cally, let f�i; i = 1; 2; :::;Mg and f�i; i = 1; 2; :::; Ng now denote the �nite

element basis functions considered in xA.2.3, where, as before, M nodes lie in the interior

of 
 and N nodes lie on the boundary. Since the �nite element basis is �nite, it cannot be

a complete basis for the solution space (which is generally in�nite-dimensional). However,

by analogy with Equation (A.39), one can still require that the residual be orthogonal to

the basis functions, producing

MX
i=1

ai

Z


(D2

1�i +D
2
2�i)�j = �

NX
i=1

bi

Z


(D2

1�i +D
2
2�i)�j ; (A.40)

with j = 1; 2; :::;M . Integrating by parts and noting that each basis functions vanishes

outside a bounded region, the equations become

�
MX
i=1

ai

Z


(D1�i �D1�j +D2�i �D2�j) =

NX
i=1

bi

Z


(D1�i �D1�j +D2�i �D2�j); (A.41)

again for j = 1; 2; :::;M . These equations are identical, up to a sign, to (A.28).

Let u denote the approximate solution given by Galerkin's method. Galerkin's method

only requires that the residual D2
1u+D

2
2u lies in the orthogonal complement of the span of

the basis. Thus, without some other criterion to justify the equations, Galerkin's method

does not actually guarantee that the approximate solution satis�es the di�erential equation

in any sense. Notice the resemblance between the orthogonality condition and least-squares

approximations: Recall that if � is a function to be approximated, and u is linear combina-

tion of basis functions �i, then the orthogonality condition h�� u; �ii = 0 indeed produces

the least-squares approximation. But in this case, the exact solution � is not available to us.

Thus, Galerkin's method does not actually produce the least squares approximation. Or-

thogonalizing the residual does not minimize it. Indeed, since the basis is not complete, the

error residual can be arbitrarily large while still being orthogonal to all the basis functions.

150



Appendix B

Integration of Di�erential Forms

on Manifolds

This appendix briey sketches the construction of di�erential forms, which are mathematical

objects that can be integrated on oriented manifolds. While they are of less importance in

the theory of di�erential equations on manifolds, they are very much essential in the study

of di�erential topology. However, those applications would take us too far a�eld and will

not be discussed here. For more information, please see either Guillemin and Pollack [14]

or Warner [28].

Recall the change of variables theorem (3.19):Z
y2V2

f(y)dy =

Z
x2V1

f(�(x))jdetD�(x)jdx (B.1)

where f is a function on B and � : A ! B is a smooth bijection. In x3.4.1, this the-
orem is used to de�ne integrals of scalar-valued functions on compact Riemannian man-

ifolds. Another possible approach, which we will briey sketch here, involves assigning

\determinant-like" functions to each tangent space of the manifold. Such an assignment is

called a \di�erential form."

Let V be a �nite-dimensional vector space. A scalar-valued function T on V � ::: � V

is multilinear if it is linear in each of its components, and is alternating if exchanging any

two arguments changes T to �T . The degree of T is the number of arguments T has. It

is a theorem of linear algebra that such functions, called alternating tensors, are always

proportional to the determinant function on V with respect to some basis.

Now, let ! be a function that assigns to each point p 2 M an alternating tensor !p on

TpM . One can show (although it is not done here) that the usual notions of smoothness

also apply to these alternating tensor �elds. A di�erential form on a manifold M is then a

smooth alternating tensor �eld on M .

Because alternating tensors are proportional to the determinant function, it is not very

di�cult to show that one could obtain a consistent de�nition of integration for di�erential

forms. To do this, �rst choose a partition of unity so that the problem is reduced to a local

one. Then, note that tensors transform naturally in the following way:

T
0(v1; :::; vk) = T (Lv1; :::; Lvk); (B.2)

where T 0 is a tensor on some vector space W , T is a tensor on V , L : V ! W is a

linear transformation, and k is the degree of T 0. Generalizing this to di�erential forms on

151



manifolds, we can simply replace L by the di�erential d� of the transition map �. A little

bit of linear algebra shows that this almost gives us the change of variables theorem:Z
y2V2

f(y)dy =

Z
x2V1

f(�(x)) detD�(x)dx; (B.3)

where f det is a (local) di�erential form on V2 and (f � �) det is a di�erential form on V1.

(Note that both their degrees have to agree with the dimension of the space, n, because of

the dimensions of D� as a matrix.) As one can see, this is the change of variables theorem

except for the absolute value. Thus, if one could choose charts so that all the transition

maps have positive determinants:

detD�(x) > 0; (B.4)

then we can de�ne integrals consistently. Manifolds for which such atlases exist are called

orientable manifolds, and we can thus de�ne integration of di�erential forms of degree n on

compact orientable n-manifolds.

B.1 Stokes's theorem

One of the most important things one can do with di�erential forms is to generalize Stokes's

theorem to compact orientable manifolds. This is done through a map called the exterior

derivative, which takes a di�erential form ! of degree k to another di�erential form d! of

degree k+1. De�ning d takes a little bit of work and will not be done here. But to show how

much Stokes's theorem is simpli�ed, here is the statement of the theorem using di�erential

forms: Z
M

d! =

Z
@M

!: (B.5)

This is actually so abstract that it does not say much, unless one has studied di�erential

forms in some depth. However, note that the boundary operator on manifolds satis�es:

@(M �N) = (@M �N) [ (M � @N); (B.6)

just like the product rule. As there is a corresponding product rule for exterior derivatives,

this shows that there is a rather deep duality between geometric objects on the one hand

and algebraic structures (such as di�erential forms) on the other.

152



Bibliography

[1] Harold Abelson, Tom Knight, and Gerald Jay Sussman. Amorphous Computing (draft).

MIT Arti�cial Intelligence Laboratory, Cambridge, Massachusetts, 1995.

[2] Harold Abelson and Gerlad Jay Sussman with Julie Sussman. Structure and Interpre-

tation of Computer Programs. The MIT Press, Cambridge, Massachusetts, 2 edition,

1996.

[3] Lars Ahlfors. Complex Analysis. McGraw-Hill, New York, 3rd edition, 1979.

[4] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, New

York, 2 edition, 1989.

[5] T. Balderes. Finite element method. McGraw-Hill Encyclopedia of Science & Technol-

ogy, 1992.

[6] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm

for convex hulls. Submitted to ACM Transactions on Mathematical Software, January

9, 1995.

[7] G. Chesshire and W. D. Henshaw. Composite overlapping meshes for the solution of

partial di�erential equations. Journal of Computational Physics, 90:1{64, 1990.

[8] James J. Clark, Matthew R. Palmer, and Peter D. Lawrence. A transformation method

for the reconstruction of functions from nonuniformly spaced samples. IEEE Transac-

tions on Acoustics, Speech, and Signal Processing, 33(4):1151{1165, October 1985.

[9] William Clinger and Jonathan Rees, editors. Revised
4
Report on the Algorithmic

Language Scheme. MIT Arti�cial Intelligence Laboratory, Cambridge, Massachusetts,

1991.

[10] Richard Courant and David Hilbert. Methods of Mathematical Physics, Volume II:

Partial Di�erential Equations. John Wiley & Sons, New York, 1989.

153



[11] C. Armando Duarte and J. Tinsley Oden. H-p clouds|an h-p meshless method. Nu-

merical Methods for Partial Di�erential Equations, 12(6):673{705, November 1996.

[12] Bjorn Engquist and Andrew Majda. Absorbing boundary conditions for the numerical

simulation of waves. Mathematics of Computation, 31(139):629{651, July 1977.

[13] D. Fox and C. Pucci. The Dirichlet problem for the wave equation. Ann. Mat. Pura

Appl., 46:155{182, 1958.

[14] Victor W. Guillemin and Alan Pollack. Di�erential Topology. Prentice-Hall, Englewood

Cli�s, New Jersey, 1974.

[15] Hermann A. Haus and James R. Melcher. Electromagnetic Fields and Energy. Prentice-

Hall, Englewood Cli�s, New Jersey, 1989.

[16] Fritz John. Partial Di�erential Equations. Springer-Verlag, New York, 4th edition,

1981.

[17] Claes Johnson. Numerical Solutions of Partial Di�erential Equations by the Finite

Element Method. Cambridge University Press, New York, 1987.

[18] James R. Munkres. Elementary Di�erential Topology. Princeton University Press,

Princeton, New Jersey, 1966.

[19] James R. Munkres. Topology: A �rst course. Prentice-Hall, Englewood Cli�s, New

Jersey, 1974.

[20] James R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Reading, Mas-

sachusetts, 1984.

[21] James R. Munkres. Analysis on Manifolds. Addison-Wesley, Reading, Massachusetts,

1991.

[22] L. E. Payne. Improperly posed problems in partial di�erential equations. Regional

Conference Series in Applied Mathematics, SIAM, Philadelphia, Pennsylvania, 1975.

[23] N. Anders Petersson. An algorithm for constructing overlapping grids. Submitted to

SIAM J. Sci. Comput., March 16, 1997.

[24] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.

Numerical Recipes: The Art of Scienti�c Computing. Cambridge University Press,

1986.

154



[25] Bernard F. Schutz. A First Course in General Relativity. Cambridge University Press,

New York, 1990.

[26] Rafael Sorkin. Time-evolution problem in Regge calculus. Physical Review D,

12(2):385{397, 15 July 1975.

[27] Robert Vichnevetsky. Computer Methods for Partial Di�erential Equations, Volume

1: Elliptic Equations and the Finite-Element Method. Prentice-Hall, New Jersey, 1981.

[28] Frank W. Warner. Foundations of Di�erentiable Manifolds and Lie Groups. Springer-

Verlag, New York, 1983.

[29] Jack Wisdom and Matthew Holman. Symplectic maps for the n-body problem. The

Astronomical Journal, 102(4):1528{1538, October 1991.

155


