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Abstract

This paper presents a new paradigm for signal reconstruction and superresolution,

Correlation Kernel Analysis (CKA), that is based on the selection of a sparse set of

bases from a large dictionary of class-speci�c basis functions. The basis functions that

we use are the correlation functions of the class of signals we are analyzing. To choose

the appropriate features from this large dictionary, we use Support Vector Machine

(SVM) regression and compare this to traditional Principal Component Analysis

(PCA) for the tasks of signal reconstruction, superresolution, and compression. The

testbed we use in this paper is a set of images of pedestrians. This paper also presents

results of experiments in which we use a dictionary of multiscale basis functions and

then use Basis Pursuit De-Noising to obtain a sparse, multiscale approximation of a

signal. The results are analyzed and we conclude that 1) when used with a sparse

representation technique, the correlation function is an e�ective kernel for image

reconstruction and superresolution, 2) for image compression, PCA and SVM have

di�erent tradeo�s, depending on the particular metric that is used to evaluate the

results, 3) in sparse representation techniques, L1 is not a good proxy for the true

measure of sparsity, L0, and 4) the L� norm may be a better error metric for image

reconstruction and compression than the L2 norm, though the exact psychophysical

metric should take into account high order structure in images.
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1 Introduction

This paper presents Correlation Kernel Analysis (CKA), a new paradigm for signal reconstruction

and compression that is based on the selection of a sparse set of bases from a large dictionary

of class-speci�c basis functions. The concept of sparsity enforces the requirement that, given a

certain reconstruction error, we should choose the smallest subset of basis functions that yields a

reconstruction with this error. The problem of signal reconstruction is formulated as one where

we are given only a small, possibly unevenly sampled, subset of points in a signal where the goal

is to accurately reconstruct the entire signal. We also investigate a closely related subject, lossy

compression, that is, given an entire signal of N bits, we see how well we can represent the signal

with only M � N bits of information, using the same general technique.

The signal approximation problem we present assumes that we have prior information about

the class of signals we are reconstructing or compressing; this information is in the form of

the correlation function of the class of signals to which this signal belongs, as de�ned by a

representative set of signals from this class (Penev and Atick, 1996; Poggio and Girosi, 1998a;

Poggio and Girosi, 1998b). For this paper, the signals that we will be looking at are images of

pedestrians (Papageorgiou, 1997; Oren, et al., 1997; Papageorgiou, et al., 1998). Using an initial

set of pedestrian images, we compute the correlation function and use the pointwise-de�ned

functions as the dictionary of basis functions from which we can reconstruct subsequent out-

of-sample images of pedestrians. Our choice of using the correlation kernel can be motivated

from a Bayesian point of view. We show that, if we assume a gaussian noise process on our

measurements, the kernel to use, in a Bayesian sense, is the correlation kernel.

To approximate or reconstruct an image, rather than using the entire set of correlation-based basis

functions comprising the dictionary { this would result in no compression whatsoever { we choose

a small subset of the kernels via the criteria of sparsity. We obtain a sparse representation by

approximating the signal using the Support Vector Machine (SVM) (Boser, Guyon, and Vapnik,

1992; Vapnik, 1995) formulation of the regression problem. Based on recently reported results

(Girosi, 1997; Girosi, 1998), we note that this framework is equivalent to using a modi�ed version

of the Basis Pursuit De-Noising (BPDN) approach of Chen, Donoho, and Saunders (1995) to

obtaining a sparse representation of a signal.

We push this paradigm further by investigating the use of dictionaries of multiscale basis functions

that encode di�erent levels of detail. To obtain a sparse, multiscale approximation of a signal,

we use BPDN; this leads to improved reconstruction error and a more sparse representation. We

also show that the empirical results highlight a drawback in using traditional formulations of

sparsity.

The results presented in this paper can be useful in low-bandwidth videoconferencing, image

de-noising, reconstruction in the presence of occlusions, signal approximation from sparse data,

as well as in superresolving images. It is important to note that the results are not particular to

image analysis; this technique can also be seen as an alternative to traditional means of function

approximation and signal reconstruction, such as Principal Components Analysis (PCA), for a

wider class of signals.

The paper is organized as follows: in Section 2, we introduce generalized correlation kernels and

Section 3 provides Bayesian motivation for our choice of kernels. Section 4 describes the concept

of sparsity and presents both the SVM regression and BPDN formulations of this approach.

In Section 5, we present results of several image reconstruction experiments using CKA for
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sparse approximations with the generalized correlation kernels and describe a superresolution

reconstruction experiment. Section 6 presents results of image compression experiments and a

comparison between SVM and BPDN on this task. In Section 7, we show results of experiments

that use a dictionary with basis functions at multiple scales to do lossy image compression

using BPDN. Section 8 discusses the error norms that our di�erent reconstruction techniques

use and their psychophysical plausibility. Section 9 summarizes our results and presents several

observations and open questions.

2 Generalized Correlation Kernels

To reconstruct or compress a function f , we use information about the class of pointwise mean-

normalized signals that f is a part of, derived from a set of representative examples from that

class. This information is in the form of the correlation function of the signals in the class:

R(x;y) = E[(f�(x)� �(x))(f�(y)� �(y))] (1)

where f� are instances of the class of functions to which f belongs, x and y are coordinates in the

2-dimensional signal, and � are the point means across the class of functions: �(x) = E[f�(x)].

We can also generate the eigen-decomposition of the symmetric, positive de�nite correlation

matrix by solving Z
dxR(x;y)�n(x) = �n�n(y) (2)

where �n are the eigenvectors and �n are the eigenvalues of the system. After generating this

decomposition, we can write R in the form,

R(x;y) =
MX
n=1

�n�n(x)�n(y) (3)

where M �1; this result is due to the spectral theorem.

The set of functions �n are ordered with decreasing positive eigenvalue �n and are normalized to

form an orthonormal basis for the correlation function of f�. The classical Principal Component

Analysis (PCA) approach approximates a function f as a linear combination of a �nite number,

M 0
, of the basis functions �n:

f(x) =
M

0X
n=1

bn�n(x) (4)

where the coe�cients bi are determined so as to minimize the L2 approximation error of f .

Poggio and Girosi (1998a) show that the correlation functionR, which is positive de�nite, induces

a Reproducing Kernel Hilbert Space (RKHS) that allows us to approximate the function f as:

f(x) =
NX
i=1

ciR(x;xi) (5)

where i ranges over pixel locations in the image; R is the reproducing kernel in this space and

the norm is:
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kfk2
R
=

MX
n=1

c2
n

�n
(6)

Figure 1: Examples of the correlation kernels we can compute. The kernels shown here are

computed from a set of 924 grey-level 128�64 images of pedestrians that have been normalized to

the same scale and position in the image. Each column shows the kernels,Rd((x1 = a; x2 = b);y),

for a speci�c (a; b) where d = 0:0, d = 0:5, and d = 1:0 in the top, middle, and bottom rows,

respectively. These images demonstrate that d = 1:0 corresponds to a very smooth kernel, while

d = 0:0 is highly localized.

We can obtain a wider class of kernels spanning exactly the same space of functions as the

correlation function in Equation 3 by varying the degree of �n, which in e�ect controls the prior

information regarding the strength of each eigenfunction, an observation due to Penev and Atick

(1996). We therefore de�ne the generalized correlation kernel as:

Rd(x;y) =
MX
n=1

(�n)
d�n(x)�n(y) (7)

and notice that the parameter d controls the locality of the kernel; for small d, Rd approaches a

delta function in the space of �n, and as d gets larger, Rd gets smoother
1
.

1This particular parameterization is one of many possibilities
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Each of these correlation kernels is a function in four variables (x1,x2,y1,y2) so, to e�ectively

visualize them, we hold the x1 and x2 positions constant and vary y1 and y2. Figure 1 shows

several examples of the kernels generated with varying d, for a set of 924 grey-level 128 � 64

images of pedestrians that have been normalized to the same scale and position; this database

has been used in Papageorgiou (1997), Oren, et al. (1997), and Papageorgiou, et al. (1998).

Each column shows Rd((x1 = a; x2 = b);y) for an image where, from the top to bottom rows,

d = 0:0, d = 0:5, and d = 1:0; for example, the �rst column shows the kernels for Rd((11; 10);y).

The progressive delocalization of the kernels when d is varied from 0:0 to 1:0 is evident in these

�gures.

3 Bayesian Motivation

Our choice of the correlation function, R, as the kernel can be motivated from a Bayesian

perspective; see Wahba (1990) and Poggio and Girosi (1998a) for background material. Consider

the general regularization problem:

min
f2H

H[f ] =
NX
i=1

(yi � f(xi))
2
+ 
kfk2

K
(8)

In a Bayesian interpretation, the data term is a model of the noise and the stabilizer is a prior on

the regression function f . If we assume that the data, yi, are a�ected by additive independent

gaussian noise, then the likelihood has the following form:

P (yjf) / e�
P

N

i=1
(yi�f(xi))

2

(9)

and, when we use the correlation kernel R, the prior probability is:

P (f) / e�kfk
2

R / e
�
P

M

n=1

c
2

n

�n (10)

where M <1. As shown earlier, this corresponds to a representation of the form:

f(x) =
MX
n=1

cn�n(x) (11)

Thus, the stabilizer measures the Mahalanobis distance of f from the mean signal. This also

corresponds to a zero mean multivariate gaussian density on the Hilbert space of functions de�ned

by R and spanned by �n, e.g., the space spanned by the principal components introduced in

Section 2. From a Bayesian point of view, under the assumption of gaussian noise, R is the

right kernel to use, whenever it is available. It is important to note that in our SVM and BPDN

formulations, we use gaussian priors but do not assume gaussian additive noise in the data.

4 Sparsity

The operational de�nition of a sparse representation in the context of regression that we will use is

the smallest subset of elements from a large dictionary of features such that a linear superposition
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of these features can e�ectively reconstruct the original signal. In this paper, we will focus on

sparse representations using the correlation kernels introduced in the previous section:

f(x) =
N
0X

i=1

ciR(x;xi) (12)

where N 0
is smaller than the size of the signal.

Suppose that we have a large dictionary of core building blocks for a class of signals we are

analyzing. Given a new signal of the same class, obtaining a sparse representation of this signal

amounts to choosing the smallest subset of building blocks from the dictionary that will allow us

to achieve a certain level of performance. It is important to note that comparing representations

for sparsity is only fair for a given performance criterion.

Here, we present a brief introduction to the concepts of Support Vector Machine regression and

Basis Pursuit De-Noising as they apply to sparse representations; for a more in depth treatment

of these subjects, the reader is referred to (Boser, Guyon, and Vapnik, 1992; Vapnik, 1995;

Burges, 1998; Chen, Donoho, and Saunders, 1995; Girosi, 1997; Girosi, 1998).

4.1 Support Vector Machine Regression

Given a kernel K that de�nes a RKHS and with the appropriate choice of the scalar prod-

uct induced by K, the empirical risk minimization regularization theory framework suggests to

minimize the following functional:

H[f ] =
1

N

NX
i=1

k zi � f(xi) k
2
L2

+
kfk2
K

(13)

where kfk2
K
is as de�ned in Section 2. This corresponds to minimizing the sum of the empirical

error measured in L2 and a smoothness functional. The Support Vector Machine regression

formulation minimizes a similar functional, di�ering only in the norm on the data term; instead

of using the L2 norm, the following �-insensitive error function, called the L� norm, is used:

jzi � f(xi)j� =

(
0 if jzi � f(xi)j < �

jzi � f(xi)j � � otherwise
(14)

The functional that is minimized is therefore:

H[f ] =
1

N

NX
i=1

jzi � f(xi)j� + 
kfk2
K

(15)

yielding a function of the form:

f(x) =
N
0X

i=1

ciR(x;xi) (16)

where the coe�cients c are obtained by solving a quadratic programming problem (Vapnik,

1995; Osuna, Freund, and Girosi, 1997; Girosi, 1997). Depending on the value of the sparsity

parameter 
, the number of ci that di�er from zero will be smaller than N ; the data points

associated with the non-zero coe�cients are called support vectors and it is these support vectors

that comprise our sparse approximation.
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4.2 Basis Pursuit De-Noising

The Basis Pursuit De-Noising approach of Chen, Donoho, and Saunders (1995) is a means of

decomposing a signal into a small number of constituent dictionary elements. The functional

that is minimized consists of an error term and a sparsity term and in the case of arbitrary basis

functions, �i, is:

E[c] = kf(x)�
NX
i=1

ci�i(xi)k
2
L2
+ �kckL

1
(17)

In our case, to sparsify Equation 12, the following functional must be minimized (Girosi, 1997;

Girosi, 1998):

E[c] = kf(x)�
NX
i=1

ciR(x;xi)k
2
L2
+ �kckL

1
(18)

yielding an approximation to f that has a similar form to Equation 16. Girosi (1997) shows that

if, instead of the L2 norm, we use the norm induced by R, then Basis Pursuit De-Noising is in

fact equivalent to Support Vector Machine regression and identical sparse representations are

obtained.

This function minimization is formulated as a quadratic programming problem (see Appendix A)

and can be solved using traditional methods. Appendix B presents a decomposition algorithm

that allows us to quickly solve this minimization problem even when we have a large dictionary

of basis functions.

5 Reconstruction

In the case of image reconstruction and compression when we do not assume any prior knowledge

(other than that we are considering images), we can use techniques like JPEG, wavelets, and

regularization using a spline or gaussian kernel. The focus of this paper is regularization schemes

for the case where we do have statistical information on the class of functions we are reconstruct-

ing. When we do have such knowledge, as in the case of the correlational structure of the class to

which the image to be compressed belongs, we may be able to obtain better compression by using

this information. As described in the introductory sections, we can use the set of basis functions

that encode the correlational structure of the class of images we are interesed in reconstructing.

For a given image that we would like to approximate, we use these class-speci�c basis functions

in the SVM formulation to obtain a sparse subset with which we can encode the image.

The generalized correlation kernels are generated from a training set of 924 grey-level 32 �

16 images of pedestrians that have been normalized to the same scale and position. We test

the correlation kernels and the SVM formulation of function approximation by analyzing the

reconstruction of pedestrian images not in the training set and comparing to the widely used

PCA technique. The test database of pedestrian images consists of 50 out-of-sample 32 � 16

grey-level images of frontal and rear views of pedestrians; as in the training set, these images

have been normalized such that the pedestrian bodies are aligned in the center of the image and

are scaled to the same size.
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Figure 2: Out-of-sample L2 reconstruction error comparison between SVMwith correlation kernel

R1:0, SVM with gaussian kernel (� = 3:0), and PCA, where the input is a random sampling of

the original image. Each of these �gures represents a di�erent sized sampling, (a)
1
4
of the image

as input, (b)
1
2
of the image as input, and (c)

3
4
of the image as input.

For the SVM experiments, we use the correlation kernel corresponding to d = 1:0 as our dictionary

of basis functions, so the reconstructed signal will be a sparse linear combination of those basis

functions:

R1:0(x;y) =
MX
n=1

�n�n(x)�n(y) (19)

To accurately test the reconstruction performance, we need to measure the ability of the technique

to reconstruct unseen data and not simply �t the data. For each image in the test set, we

randomly partition the pixels into a set that has M pixels { the input set, Finput { and a set

consisting of the remaining (N �M) pixels { the test set, Ftest.

In the case of the SVM, to �nd the sparse set of basis functions that minimizes the error over

the input subset, Finput, we obtain the coe�cients of reconstruction by minimizing:
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(a) (b) (c) (d)

Figure 3: Reconstruction comparison for a higher resolution image (64 � 32) using identical

random sets of
1
16
th of the original pixels as input; (a) the original image, (b) PCA reconstruction

with 74 basis functions, (c) SVM reconstruction with 74 basis functions (� = 10 for the SVM),

(d) locations of the support vectors are denoted as black values. With a small subset of the

original image as input, the SVM reconstruction is clearly superior to the PCA reconstruction.

H[f ] =
1

M

MX
i=1

jFinput(xi)� f(xi)j
2
�
+

1

C
kfk2

K
(20)

where,

f(x) =
MX
i=1

ciR(x;xi) (21)

The portion of the coe�cients, ci, that will be 0 is determined by the variable C.

For PCA-based reconstruction, we minimize L2 error over Finput:

min
c

MX
i=1

kFinput(xi)�

NX
j=1

cj�j(xi)k
2
L2

(22)

where cj is given by the dot product between Finput and �0
j
is taken over the M input points:

cj = hFinput; �
0
j
i (23)

Out-of-sample performance in each case is determined by reconstructing the full image and

measuring the error over the pixels in ftest. We measure performance as the error achieved

with respect to the number of basis functions used in the above formulations (equivalently,

reconstruction error versus the sparsity of the representation). In the case of the SVM regression,
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the number of basis functions is varied by changing the � parameter. To compare with PCA-

based reconstruction, for a given �, we use, as the number of principal components (ie. basis

functions) for the reconstruction, the number of support vectors found in the SVM formulation.

In our experiments, the size of the input set is varied as
1
4
N ,

1
2
N , and

3
4
N ; error is measured in

L2.

As a benchmark meant to ensure that the performance of the system using SVM with the

correlation kernels is not due exclusively to the SVM machinery, we also show the results using

SVM with gaussian kernels, yielding approximations of the form:

f(x) =
MX
i=1

cie
(
x�xi

�
)
2

(24)

where the value of � is determined empirically over a small set of images and that same � is used

throughout. This setting of sigma for all the tests may be limiting the performance of the SVM

with a gaussian kernel; on the other hand, we are also a priori �xing the locality parameter, d,

in our choice of correlation kernel.

The results of these reconstructions, averaged over the 50 out-of-sample images, are shown in

Figures 2a-c for each case of using
1
4
,

1
2
, and

3
4
of the pixels as input, respectively. The SVM

reconstructions using di�erent numbers of basis functions were generated by varying �. From

these performance results, we can see that, even though the PCA formulation minimizes L2 error

and SVM regression is minimizing error in the RKHS induced by the epsilon insensitive norm,

SVM performs better than PCA even when measuring error in L2 over out-of-sample test data.

Furthermore, SVM with the correlation kernels performs better than SVM with gaussian kernels,

showing that the correlation kernels encode important prior information on the pedestrian class.

The di�erence in performance is most pronounced for the reconstructions that use the smallest

input set.

Figure 3 presents an extreme case where the input data is a random set of only
1
16
th (6:25%)

of the image pixels; here, a higher resolution image (64 � 32) is used. The SVM reconstruction

with correlation kernels recovers more of the structure of the pedestrian than PCA, due to

the smoothness preserving properties of the SVM approach to function approximation (Vapnik,

1995).

5.1 Superresolution

To further highlight the generalization power of the SVM reconstruction, we can do an experiment

to determine superresolution capability, that is, reconstructions at a �ner level of detail than

was originally present in the image. Superresolution entails approximating a small image with

some representation and then sampling that representation at a �ner scale to recover the higher

resolution image. This could be useful if, for instance, we have an image of a person's face that

is too small for us to be able to recognize who it is; after superresolving the image, the details

that emerge could allow us to recognize the person.

This is not possible with our generalized correlation kernels since they are discrete kernels gen-

erated from high resolution images (64 � 32) and we cannot subsample them. Therefore, to

superresolve a given 32 � 16 image, we can consider it as a 64 � 32 image sampled every two

pixels in both dimensions and then use the correlation kernel basis functions de�ned in the high

resolution space (64 � 32) to recover the full high resolution image.
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(a) (b)

(c) (d) (e)

Figure 4: Superresolution reconstruction from a low resolution (32 � 16) sampling; (a) the

input 32 � 16 image, scaled up to 64 � 32 by direct scaling, (b) the actual 64 � 32 image,

(c) SVM superresolution reconstruction using 272 basis functions from R1:0 (� = 10), (d) PCA

superresolution reconstruction using 272 basis functions, and (e) cubic spline interpolation.
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As input to the superresolution technique, we take a low resolution 32�16 image of a pedestrian

and reconstruct it at high resolution (64 � 32). Figure 4 shows (a) an example of a 32 � 16

image of a pedestrian that has been directly scaled to 64�32 and (b) the true 64�32 pedestrian

image. These are compared with (c) the superresolved image, reconstructed at 64� 32 using the

SVM with correlation kernels R1:0, compared against both (d) a PCA reconstruction, and (e)

a standard cubic spline interpolation reconstruction (Schumaker, 1981). Given the constraints

presented above as well as the fact that the cubic spline interpolation superresolves the image

quite well, for this speci�c experiment,we favor this standard spline technique over the correlation

kernels.

6 Compression

We can also investigate image compression using the set of correlation-based basis functions,

in the same manner as the reconstruction experiments presented in Section 5. For the task of

compression, the goal is to approximate the entire given signal f using as few basis functions as

possible. The experiments are run as before; we compare the SVM regularization approach to

compression with our benchmark, PCA-based compression. For the SVM approach, we use the

correlation kernel with d = 1:0 and compare with using SVM with gaussian kernels. Performance

is measured as the error achieved for a given number of basis functions. The number of basis

functions that are used in the case of SVM regression are varied by changing the � parameter.

As in the reconstruction experiments, the number of eigenvectors we use to compare against

PCA-based compression is the number of support vectors for given level of �.

Figure 5 plots the reconstruction error against the number of basis functions for three di�erent

error norms: L2, L1, and L�. Comparing the SVM and PCA approaches to compression is less

conclusive than the reconstruction experiments; the results here depend on the measure of error.

PCA performs better when measured in L2 and L1 while SVM wins when measured in L�. The

L2 and L� results are not surprising; when error is measured in the norm that a technique is

minimizing, we would expect that technique to perform better than the others. On the other

hand, it is not clear which norm results in a reconstructed image that appears more similar to

the original image; Section 8 contains a discussion of the di�erent norms.

6.1 Comparing SVM and BPDN

Girosi (1997, 1998) showed that Basis Pursuit De-Noising is equivalent to Support Vector Ma-

chines when the L2 norm in the BPDN formulation is replaced by the norm induced by the

regularization kernel. Here, we empirically test the e�ect of the di�erent error norms in the two

approaches by comparing SVM and BPDN reconstruction error when compressing our test set of

50 pedestrian images. Both of these techniques are evaluated using the correlation kernel R1:0.

Figure 6 graphs the results and indicates that the performance of the two techniques is not iden-

tical. For representations using large numbers of basis functions, the performance is comparable,

but BPDN obtains more accurate sparse approximations, when measured in L2, to the original

image (where the number of basis functions is less than 100). Again, the reason behind this is

that we are measuring error in the norm that BPDN is explicitly minimizing.
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(a) (b)

number of SVM error with kernel R1:0 PCA error

� bases L2 L1 L� L2 L1 L�

0 512.00 258.45 258.45 258.45 0.00 0.17 0.17

1 483.32 744.37 499.96 122.20 1232.28 476.48 189.88

5 366.35 10495.71 2182.04 89.59 17318.51 2214.40 613.90

10 258.35 33565.92 3772.49 63.33 46563.25 3594.14 743.88

20 144.00 100221.65 6252.31 34.61 108767.78 5368.40 740.31

30 93.73 194718.31 8637.45 19.82 160343.38 6450.33 583.80

40 66.02 325743.27 11201.67 13.98 207841.38 7300.94 458.35

50 45.47 485822.18 13720.92 8.39 259697.64 8181.98 358.18

60 31.59 653269.84 15841.84 5.88 306557.81 8897.46 264.76

70 21.16 819763.43 17634.61 3.90 364437.23 9705.89 218.01

(c)

Figure 5: Comparison of compression error between SVM with correlation kernel R1:0, SVM

with gaussian kernel, and PCA; (a) L2 error, (b) L1 error, and (c) L� error. The L� results are

presented in tabular format. The L2 and L1 results indicate that performance is comparable

between SVM with the correlation kernel and PCA for large numbers of basis functions, but the

SVM generates better sparse approximations (using less than 100 basis functions).
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Figure 6: A comparison of SVM and BPDN measuring reconstruction error obtained when

representing pedestrian images as a sparse set of correlation-based basis functions (R1:0); L2

reconstruction error is plotted against the number of basis functions found by each technique.

The performance of these techniques is comparable for large numbers of basis functions, but

BPDN obtains better sparse approximations, measured in L2, to the original images (number of

basis functions < 100).

7 Multiscale Representations

Multiscale representations allow us to represent a signal using successive levels of approximation;

lower levels of resolution capture the coarse structure of the signal and �ner levels resolution

of resolution encode the details. These representations are standard in the signal processing

literature (Mallat and Zhang, 1989; Simoncelli and Freeman, 1995; Mallat and Zhang, 1993).

In our image reconstruction experiments, we have focused on approximating a signal using a

single kernel with d = 1:0, corresponding to coarse scale features. In certain applications, we

may be able to derive class-speci�c basis functions for several scales; this is the case for our

generalized correlation kernels where, to vary the locality of the basis functions, we simply

change d. We can then use the sparsi�cation paradigm on this larger overcomplete dictionary

to obtain a sparse approximation of a given signal with a set of basis functions at several scales.

The SVM formulation for multiple scales has not been derived yet, but Basis Pursuit De-Noising

can be used with these multiscale dictionaries.

As introduced in Section 4.2, Basis Pursuit De-Noising is an approach to sparsi�cation that

minimizes a functional containing an term measuring the approximation error in L2 using a

linear combination of basis functions and a sparsity term in L1. In our signal and reconstruction

experiments, where we have focused on using a set of basis functions �n that are at a single scale,

we would minimize:

E[c] = kf(x)�
NX
i=1

ci�i(xi)k
2
L2
+ �kckL1 (25)

for some signal f .

We can formulate the BPDN functional for our case of generating a multiscale representation

using correlation kernels as follows:
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Figure 7: Compression error when using multiscale basis functions with BPDN; (a) L2 error

plotted against the L0 norm of the coe�cients (ie., the number of basis functions), (b) L2 error

plotted against the L1 norm of the coe�cients. These graphs imply that, in the context of

sparsity, the L1 norm is not a good approximation of L0.

E[c] = kf(x)�
NX
i=1

dDX
d=d1

ci;dRd(x;xi)k
2
L2

+ �kckL1 (26)

where d ranges over the elements of D, the set of scales we are using.

The experiments compare the performance of the BPDN technique for correlation kernels using

various numbers of scales: one scale (D = f1:0g), two scales (D = f0:5; 1:0g), and four scales

(D = f0:0; 0:5; 0:75; 1:0g). As before, we run the experiments on our set of 50 out-of-sample

images of pedestrians. Figure 7a, which plots the average reconstruction error in L2 against the

number of basis functions used in the compression, seems to indicate that to achieve a certain

error rate, fewer scales of basis functions are better. This is counter to our argument for using

multiple scales of basis functions since we would expect that, with more scales to choose from,

the minimization technique would be able to obtain a better approximation when choosing basis

functions from this larger dictionary.

To explain this apparent inconsistency, Figure 7b plots reconstruction error against the L1 norm

of the coe�cients, which is the measure of sparsity that BPDN minimizes. Here, the desired

behavior of the one-, two-, and four-scale reconstructions is evident { for a given level of recon-

struction error, starting with a multiscale dictionary a�ords a more sparse representation. What

does this mean?

The true measure of sparsity is the L0 norm of the coe�cients, or the number of basis functions.

Since this would lead to an Integer Programming problem which is computationally prohibitive

for the number of basis functions we are using, the BPDN formulation approximates L0 by L1.

These results o�er empirical evidence that these norms are in fact very di�erent and L1 is not a

good approximation of L0.
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8 Error Norms for Image Compression

(a) (b)

Figure 8: The two di�erent error norms; (a) L2 norm, (b) L� norm.

The techniques for basis selection that we present in this paper use fundamentally di�erent

criteria to represent signals, depending on what functional form the error term takes; PCA

minimizes the traditional L2 norm and SVM minimizes L�, an �-insensitive norm (Pontil, et

al., 1998), both plotted in Figure 8. While the vast majority of reports of image processing

techniques ascribe to the use of the L2 norm, it is not clear that this measure of error is the

\best" for this particular domain. One important caveat: any pixel-based norm, in particular

all Lp, is clearly not the \right" error metric to use since the human visual system takes into

account higher order image structure; our discussion focuses on choosing the best norm when we

are restricted to a \pixelwise" cost such as Lp or L�.

In the context of image reconstruction, the L2 norm penalizes any perturbations from the true

value, while the L� norm does not penalize values that are within � of the true value, but linearly

penalizes values lying outside of this region. The di�erence in these similarity measures is shown

in Figure 9; Figure 9a has low L2 error and high L� error, relative to 9c, while Figure 9c has high

L2 error and low L� error, relative to 9a; 9b is the true image. The deviations in Figure 9a seem

to stand out more than those in 9c, but 9c has higher L2 error.

How are we to reconcile this seeming inconsistency in what the traditional L2 error tells us with

what our brain tells us? It is well known that people cannot perceive di�erences in intensity

that are very small (Schade, 1956; Campbell and Robson, 1968; Hess and Howell, 1977). In

DeVore, et al. (1992), the authors argue that the L1 error norm is a more accurate mathematical

realization of the norm embedded in the human visual system than the L2 norm. Fundamental to

their hypothesis is the structure of the Contrast Sensitivity Threshold (CST) curve that captures

a person's ability to distinguish an oscillating pattern of increasing frequency at di�erent levels

of contrast. Their argument determines the value of p for which the Lp norm best �ts what

the geometry of the CST curve implies; they �nd that p = 1 is the best approximation of the

perceptual system's norm.

We can combine their results with the fact that at low contrasts in the middle frequencies of the

CST curve it is nearly impossible to distinguish the di�erent bands, implying the existence of
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(a) (b) (c)

Figure 9: Examples of images with di�erent types of errors; (a) low L2 error, high L� error,

relative to image (c); (b) true image; (c) high L2 error, low L� error, relative to image (a).

some base threshold. This leads us to postulate that the L� norm may be a more perceptually

accurate norm than L1, since it encodes both the geometric constraints and threshold evident in

the CST curve. In the absence of a psychophysical experiment that investigates this hypothesis,

this conjecture is speculation, of course.

9 Conclusion

We have shown that the use of class-speci�c correlation-based kernels, when combined with the

notion of sparsity, results in a powerful signal reconstruction technique. In a comparison to

a traditional method of signal approximation, Principal Components Analysis, our approach

achieves a more sparse representation for a given level of error.

For signal compression, the di�erence in performance between the techniques is not easily eval-

uated; when using di�erent measures of error, we obtain a di�erent \best" system. The choice

of a system to use could depend on the characteristics of the di�erent norms. The L2 norm

penalizes any di�erence in reconstruction. On the other hand, the L� norm does not penalize

di�erences in the small �-insensitive region around the true value, but linearly penalizes errors

outside this region. One way of comparing the L2, L1, and L� norms could be to decide which is

a more accurate description of psychophysical measures of similarity between images. Based on

the arguments presented in Section 8 and the references cited therein, we postulate that the L�

norm may be the norm we should use in image reconstruction, superresolution, and compression.

Our approach of using a dictionary of class-speci�c correlation kernels to obtain sparse represen-

tation of a signal leads to an interesting question: could this sparse representation that has been

generated to approximate a signal be used to classify di�erent signals? In other words, is the

representation of pedestrians via sparse sets of correlation-based basis functions di�erent enough
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from the representation of other objects (or all other objects), so that it can be used as a model

for that class of objects? The representations we generate are derived through an argument

that minimizes error for reconstructing the image. This, however, says nothing about the ability

of that same representation to be used to di�erentiate images of di�erent objects. Whether or

not this can be done is an open question; Appendix C presents a preliminary discussion of this

approach.
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A The BPDN QP Formulation

The Basis Pursuit De-Noising formulation minimizes the following functional:

kf(x)�
NX
i=1

ci�i(x)k
2
L2
+ �kckL1 (27)

To make the expansion of Equation 27 easier, we decompose c into its positive and negative

coe�cients:

c = c
+
� c

�
(28)

where, to enforce the constraint that a coe�cient is non-zero in at most one of the vectors, c
+

or c
�
, we have:

c
+; c� � 0

c+
i
c�
i
= 0 8i = 1 : : : N

This allows us to write the rewrite the sparsity term as:

kckL1 = 1
T
(c

+
+ c

�
) =

NX
i=1

(c+
i
+ c�

i
):

We therefore expand Equation 27 as:

kf(x)k2 � 2

NX
i=1

cihf(x); �i(x)i+
NX
i=1

NX
j=1

cicjh�i(x); �j(x)i+ �1T (c+ + c
�
) (29)

Since kf(x)k2 is a constant, it does not a�ect the minimization, so we have:

� 2

NX
i=1

cihf(x); �i(x)i+
NX
i=1

NX
j=1

cicjh�i(x); �j(x)i+ �1T (c+ + c
�
) (30)

Letting:

yi = hf(x); �i(x)i

Mij = h�i(x); �j(x)i
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we get:

� 2

NX
i=1

ciyi +
NX
i=1

NX
j=1

(c+
i
� c�

i
)(c+

j
� c�

j
)h�i(x); �j(x)i+ �1T (c+ + c

�
) (31)

Using the following de�nitions,

d = (c
+; c�)

Y = (y;�y)

the �rst and last terms can be rewritten as:

�2c
T
y+ �1Tc

= d
T
(�1� 2Y)

so we have:

NX
i=1

NX
j=1

(c+
i
� c�

i
)(c+

j
� c�

j
)h�i(x); �j(x)i+ d

T
(�1� 2Y) (32)

Taking:

H = 2

 
M �M

�M M

!

the �nal form of this QP problem is

minimize
1

2
d
T
Hd+ d

T
(�1 � 2Y) (33)

subject to the constraints:

d � 0 (34)

We compute the M matrix by taking the inner products of di�erent basis functions; the basis

functions we use are the correlation kernels from Section 2. For notional simplicity, let R(�) refer

to the correlation kernel with d = 1:0, Q(�) to the kernel with d = 0:5, and P (�) to the kernel

with d = 0:0.

Z
R(x;xi)R(x;xj)dx =

 X
k

�k�k(x)�k(xi)

! X
`

�`�`(x)�`(x`)

!

=
X
k

X
`

�k�`�k(x)�k(xi) h�k(x); �`(x)i| {z }
�k`

=
X
k

�2
k
�k(xi)�k(xj)
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which corresponds to the correlation kernel with d = 2:0, ie.Z
R(x;xi)R(x;xj)dx = R2:0(xi;xj)

Similarly, we can show that for corresponding choices of basis functions, Q and P , we get:

Z
Q(x;xi)Q(x;xj)dx = R1:0(xi;xj)Z
P (x;xi)P (x;xj)dx = R0:0(xi;xj)

Therefore, the matrix M does not need to be computed on the 
y; we can simply store the

correlation function of the signal and use this at run-time.

B QP Decomposition Algorithm

For the Basis Pursuit De-Noising approach to the sparsity problem, the size of the quadratic

programming problem is directly related to the number of basis functions contained in our

dictionary of features. The computational limitations come from the size of the matrix H in

Equation 33; if there are n features in our dictionary, the size of the matrix will be 4n2. Even

for dictionaries where n is on the order of O(103), the amount of space this matrix takes up

is immense. We would like to have both a system that uses a rich set of basis functions and

one that is computationally tractable; for this we develop an active set method that decomposes

the problem into smaller elements, under the expectation that most basis functions will not be

included in the �nal solution.

The algorithm proceeds by �rst �nding a feasible solution in a smaller problem and verifying

optimality conditions in the original problem. We then check the optimality conditions for this

point; if the solution is not optimal, the smaller problem is modi�ed by substituting in elements

that will help reduce the objective function. This process of �nding a feasible solution in a

smaller problem, checking the optimality of this point, and modifying the problem to push it

towards an optimal point, is iterated until an optimal solution is found.

The details regarding the optimality conditions and the actual decomposition algorithm are

presented in the rest of this section.

B.1 Optimality Conditions

In general terms, the minimization problem is formulated as follows:

minimize f(d) (35)

subject to the constraints:

g1(d) � 0

g2(d) � 0

...

gm(d) � 0

(36)
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Finding an optimal solution to this problem entails a constrained search in parameter space

(d) to minimize the objective function in Equation 35 while maintaining the constraints in

Equation 36. A point in space, d
0
, that satis�es the constraints is called a feasible point. If

H is positive de�nite, the objective function we are minimizing is strictly convex so a feasible

point d
0
is an optimal solution if it satis�es a set of conditions called the Karush-Kuhn-Tucker

(KKT) conditions (Karush, 1939; Kuhn and Tucker, 1951; Bazaraa, et al., 1979). For the

general problem, the KKT conditions are, in addition to the primal feasibility (PF) condition,

the following:

rf(d) +
P

m

i=1 �irgi(d) = 0 (DF )

�i � 0 8i = 1; : : : ;m (DF )

�igi(d) = 0 8i = 1; : : : ;m (CS)

(37)

where �i are the Lagrange multipliers of the problem, DF indicates a dual feasibility condition,

and CS indicates the complementary slackness condition.

The QP problem we address is:

minimize
1

2
d
T
Hd+ d

T
C (38)

subject to the constraints:

d � 0

d � u
(39)

which can be placed into the general form as:

�d � 0 (g1)

d � u1 � 0 (g2)
(40)

The formulas for the KKT conditions for this problem are as follows:

rf(d) + �rg1(d) + �rg2(d) = 0

�g1(d) = 0

�g2(d) = 0

� � 0

� � 0

(41)

which yield:

[Hd+C]i � �i + �i = 0

��idi = 0

�i(di � u) = 0

�i � 0

�i � 0

8i = 1; : : : ; n

(42)

Since in our case H is positive de�nite, the objective function we are minimizing is convex and,

if the KKT conditions hold for a feasible point, this point is an optimal solution.
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B.2 Decomposition Algorithm

For our particular problem, we are interested in obtaining a solution where the number of non-

zero elements of d are small in comparison to the number of zero coe�cients; this is exactly the

sparsity criterion. The decomposition algorithm we develop will push the objective function down

the gradient until a point is reached where the objective function can no longer be decreased.

To start developing the algorithm, we de�ne an index set I on the variables d and then partition

I into [B;N], such that the optimality conditions are enforced only in the smaller QP problem

de�ned over the variables inB. The vector d is partitioned into dB and dN, where di = 0 8i 2 N;

our goal is to have B index the sparse nonzero coe�cients.

Since we are looking for a sparse representation, dB will have relatively few elements; minimizing

this smaller objective function will be e�cient. Since we set di = 0 8i 2 N, the value of the

objective function we get by solving the smaller QP problem is equal to the value of the original

objective function. For a formal proof showing that improving the cost function de�ned over the

sub-problem strictly improves global cost function we are minimizing, see Osuna, et al., (1997).

After solving the smaller QP problem, we check the KKT conditions to see if this solution is

optimal. The KKT conditions postulate that for a solution to be optimal, the following must

hold, for each di:

[Hd+C]i

8><
>:
� 0 if di = 0

= 0 if 0 < di < u

� 0 if di = u

(43)

This means that, for each coe�cient dj j 2 B, [Hd+C]j = 0 must be true. If, for any di i 2 N,

[Hd+C]i < 0, then the addition of di to the working set would decrease the objective function

{ the current solution is not optimal. Hence, we exchange each di i 2 N where [Hd+C]i < 0

with a dj j 2 B where dj = 0 (and dj is therefore not contributing to minimizing the objective

function); it is easy to see that this pivoting does not change the value of the objective function.

The algorithm will move down the gradient until it reaches an optimal solution; the stopping

criterion is that there are no more di i 2 N with [Hd+C]i < 0. From the KKT conditions, this

means that [Hd+C]i < 0 8i 2 B and the solution is therefore optimal.

The decomposition algorithm is as follows:

1. Partition the variables into d
B
and d

N
such that di are �xed to 0 8i 2 N.

2. Solve the smaller QP problem over d
B
; since di = 0 i 2 N, do not a�ect the value of the

objective function.

3. While there is a di i 2 N such that [Hd+C]i < 0 (ie., the contribution of this variable

will push down the objective function), we will pivot this with a dj = 0 j 2 B (i.e. dj is

not contributing to reducing the objective function). Go to (2) and repeat.

C Classi�cation

The pattern classi�cation problem is one where, instead of approximating a signal, we would like

to decide to which class of patterns that signal belongs. For simplicity, let us say that we are
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interested in a classi�cation problem where there are two classes, C1 and C2. We may be able to

relate the distinct problems of regression and classi�cation through our use of class-speci�c basis

functions. Speci�cally, we would like to argue that the features of an object class C1 that are

important for reconstructing elements of that class may be useful for di�erentiating elements of

that class from elements of the other class C2. More formally, we would like to classify the image

f(x) but we also know the generalized correlation function R(x;y) of the set of similar images

f�(x), from which the correlation function was derived. We can follow the general approach

of Penev and Atick (1996) where they use the sparsi�ed kernels computed for regression for

classi�cation; in our case, we will use a SVM classi�er.

C.1 Using the Regression Kernel Rd for Pattern Classi�cation

Consider the problem of classi�cation applied to images of dimensionality N ; here, each real-

valued pixel corresponds to one dimension. The goal is to learn a mapping g from points in RN

to a binary variable, C, that indicates the possible classes. In general, this is a di�cult task

because the dimensionality of N is usually large. To make this tractable, we can use the notion

of sparse representations to compress the "index" space RN
into a smaller space that accurately

approximates the original space. As we have shown in this paper, this can be done using SVM

regression or BPDN.

Let us assume that we have found the optimal sparse set of Rd(x;xi) for i = 1; : : : ; N 0
(N 0 << N)

over the set of images f�. Thus:

f�(x) =
N
0X

i=1

a�
i
R(x;xi) (44)

where the xi are not computed from the speci�c images; for instance, they could be generated

by sparsifying the average image E[f�]; see remark later). Then we can estimate the coe�cients

a
�
for each image from

f� = Ra� (45)

(a
�
= Ry

f�)
2
. The matrix Ry

can be precomputed at the locations xi given by the sparsi�cation

of the average image.

In many image classi�cation problems there are two classes: the class of images we are interested

in, and the class of all other images. The latter class will be associated with a correlation function

which is translation invariant and rather "generic". It would be advantageous to use both kernels

within the classi�er but it is not clear what is the best way to do it.

2The coe�cients computed in this way are not the correct ones from the point of view of SVM regression.
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