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Abstract

The task in text retrieval is to find the subset of a collection of documents relevant to a
user’s information request, usually expressed as a set of words. Classically, documents
and queries are represented as vectors of word counts. In its simplest form, relevance
is defined to be the dot product between a document and a query vector–a measure of
the number of common terms. A central difficulty in text retrieval is that the presence
or absence of a word is not sufficient to determine relevance to a query. Linear dimen-
sionality reduction has been proposed as a technique for extracting underlying structure
from the document collection. In some domains (such as vision) dimensionality re-
duction reduces computational complexity. In text retrieval it is more often used to
improve retrieval performance. We propose an alternative and novel technique that pro-
duces sparse representations constructed from sets of highly-related words. Documents
and queries are represented by their distance to these sets. and relevance is measured by
the number of common clusters. This technique significantly improves retrieval perfor-
mance, is efficient to compute and shares properties with the optimal linear projection
operator and the independent components of documents.
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Figure 1: A Model of Word Generation. Independent topics give rise to specific words words
according an unknown probability distribution (Line thickness indicates the likelihood of generating
a word).

1 Introduction

The task in text retrieval is to find the subset of a collection of documents relevant to a user’s infor-
mation request, usually expressed as a set of words. Naturally, we would like to apply techniques
from natural language understanding to this problem. Unfortunately, the sheer size of the data to be
represented makes this difficult. We wish to process tens or hundreds of thousands of documents,
each of which may contain hundreds of thousands of different words. It is clear that any useful
approach must be time and space efficient.

Following (Salton, 1971), we adopt a modified Vector Space Model (VSM) for document rep-
resentation. A document is a vector where each dimension is a count of occurrences for a different
word1. A collection of documents is a matrix, D, where each column is a document vector di.
Queries are similarly represented.

We propose a topic based model for the generation of words in documents. Each document is
generated by the interaction of a set of independent hidden random variables called topics. When a
topic is active it causes words to appear in documents. Some words are very likely to be generated
by a topic and others less so. Different topics may give rise to some of the same words. The final set
of observed words results from a linear combination of topics. See Figure 1 for an example.

In this view of word generation, individual words are only weak indicators of underlying topics.
Our task is to discover from data those collections of words that best predict the (unknown) under-
lying topics. The assumption that words are neither independent of one another or conditionally
independent of topics motivates our belief that this is possible.

Our approach is to construct a set of linear operators which extract the independent topic struc-
ture of documents. We have explored different algorithms for discovering these operators include
independent components analysis (Bell and Sejnowski, 1995). The inferred topics are then used to
represent and compare documents.

Below we describe our approach and contrast it with Latent Semantic Indexing (LSI), a tech-
nique that also attempts to linearly transform the documents from “word space” into one more
appropriate for comparison (Hull, 1994; Deerwester et al., 1990). We show that the LSI transfor-
mation has very different properties than the optimal linear transformation. We characterize some
of these properties and derive an unsupervised method that searches for them. Finally, we present
experiments demonstrating the robustness of this method and describe several computational and
space advantages.

1In practice, suffixes are removed and counts are re-weighted by some function of their natural frequency (Frakes and
Baeza-Yates, 1992). We incorporate these methods; however, such details are unimportant for this discussion.
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2 The Vector Space Model and Latent Semantic Indexing

The similarity between two documents using the VSM model is their inner product, dT
i dj . Queries

are just short documents, so the relevance of documents to a query, q, is DT q. There are several
advantages to this approach beyond its mathematical simplicity. Above all, it is efficient to compute
and store the word counts. While the word-document matrix has a very large number of potential
entries, most documents do not contain very many of the possible words, so it is sparsely populated.
Thus, algorithms for manipulating the matrix only require space and time proportional to the average
number of different words that appear in a document, a number likely to be much smaller than the
full dimensionality of the document matrix (in practice, non-zero elements represent about 2% of
the total number of elements). Nevertheless, VSM makes an important tradeoff by sacrificing a great
deal of document structure, losing context that may disambiguate meaning.

Any text retrieval system must overcome the fundamental difficulty that the presence or absence
of a word is insufficient to determine relevance. This is due to two intrinsic problems of natural
language: synonymy and polysemy. Synonymy refers to the fact that a single underlying concept
can be represented by many different words (e.g. “car” and “automobile” refer to the same class
of objects). Polysemy refers to the fact that a single word can refer to more than one underlying
concept (e.g. “apple” is both a fruit and a computer company). Synonymy results in false negatives
and polysemy results in false positives.

Latent semantic indexing is one proposal for addressing this problem. LSI constructs a smaller
document matrix that retains only the most important information from the original, by using the
Singular Value Decomposition (SVD). Briefly, the SVD of a matrix D is: USV T where U and V
contain orthogonal vectors and S is diagonal (see (Golub and Loan, 1993) for further properties and
algorithms). Note that the co-occurrence matrix, DDT , can be written as US2UT ; U contains the
eigenvectors of the co-occurrence matrix while the diagonal elements of S (referred to as singular
values) contain the square roots of their corresponding eigenvalues. The eigenvectors with the largest
eigenvalues capture the axes of largest variation in the data.

In LSI, each document is projected into a lower dimensional space D̂ = Ŝ−1
k ÛT

k D where Ŝk and
Ûk which contain only the largest k singular values and the corresponding eigenvectors, respectively.
The resulting document matrix is of smaller size but still provably represents the most variation in the
original matrix. Thus, LSI represents documents as linear combinations of orthogonal features. It is
hoped that these features represent meaningful underlying “topics” present in the collection. Queries
are also projected into this space, so the relevance of documents to a query is DT ÛkŜ−2

k ÛT
k q.

This type of dimensionality reduction is very similar to principal components analysis (PCA),
which has been used in other domains, including visual object recognition (Turk and Pentland,
1991). In practice, there is some evidence to suggest that LSI can improve retrieval performance;
however, it is often the case that LSI improves text retrieval performance by only a small amount or
not at all (see (Hull, 1994) and (Deerwester et al., 1990) for a discussion).

3 Do Optimal Projections for Retrieval Exist?

Hypotheses abound for the success of LSI, including: i) LSI removes noise from the document
set; ii) LSI finds words that are synonyms; iii) LSI finds clusters of documents. Whatever it does,
LSI operates without knowledge of the queries that will be presented to the system. We could
instead attempt a supervised approach, searching for a matrix P such that DT PPT q results in large
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Figure 2: (A). The distribution of medline documents projected onto one of the “optimal” axes. The
kurtosis of this distribution is 44. (B). The distribution of medline documents projected onto one
of the LSIaxes. The kurtosis of this distribution is 6.9. (C). The distribution of medline documents
projected onto one of the ICA axes. The kurtosis of this distribution is 60.

values for documents in D that are known to be relevant for a particular query, q. The choice for
the structure of P embodies assumptions about the structure of D and q and what it means for
documents and queries to be related.

For example, imagine that we are given a collection of documents, D, and queries, Q. For
each query we are told which documents are relevant. We can use this information to construct an
optimal P such that: DT PPT Q ≈ R, where Rij equals 1 if document i is relevant to query j, and
0 otherwise.

We find P in two steps. First we find an X minimizing ‖DT XQ − R‖F , where ‖ · ‖F denotes
the Frobenius norm of a matrix2. Second, we find P by decomposing X into PP T . Unfortunately,
this may not be simple. The matrix PP T has properties that are not necessarily shared by X . In
particular, while PP T is symmetric, there is no guarantee that X will be (in our experiments X is
far from symmetric). We can however take SVD of X = UxSxV T

x , using matrix Ux to project the
documents and Vx to project the queries.

We can now compare LSI’s projection axes, U with the optimal Ux computed as above. One
measure of comparison is the distribution of documents as projected onto these axes. Figure 2a
shows the distribution of Medline documents3 projected onto the first axis of Ux. Notice that there
is a large spike near zero, and a well-separated outlier spike. The kurtosis of this distribution is 44.
Subsequent axes of Ux result in similar distributions. We might hope that these axes each represent a
topic shared by a few documents. Figure 2b shows the distribution of documents projected onto the
first LSI axis. This axis yields a distribution with a much lower kurtosis of 6.9 (a normal distribution
has kurtosis 3). This induces a distribution that looks nothing like a cluster: there is a smooth
continuum of values. Similar distributions result for many of the first 100 axes.

These results suggest that LSI-like approaches may well be searching for projections that are
suboptimal. In the next section, we describe an algorithm designed to find projections that look
more like those in Figure 2a than in Figure 2b.

2First find M that minimizes ‖DT M − R‖F . X is the matrix that minimizes ‖XQ − M‖F
3Medline is a small test collection, consisting of 1033 documents and about 8500 distinct words. We have found similar

results for other, larger collections.
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Figure 3: The distribution of words with large magnitude along an ICA axis from the White House
collection.

4 Topic Centered Representations

There are several problems with the “optimal” approach described in the previous section. Aside
from its completely supervised nature, there may be a problem of over-fitting: the number of param-
eters in X (the number of words squared) can be large compared to the number of documents and
queries. It is not clear how to move towards a solution that will likely have low generalization error,
our ultimate goal. Further, computing X is expensive, involving several full-rank singular value
decompositions.

On the other hand, while we may not be able to take advantage of supervision, it seems reason-
able to search for projections like those in Figure 2a. There are several unsupervised techniques we
might use. We begin with independent component analysis (Bell and Sejnowski, 1995), a technique
that has recently gained popularity. Extensions such as (Amari, Cichocki and Yang, 1996) have
made the algorithm more efficient and robust.

4.1 What are the Independent Components of Documents?

Figure 2C shows the distribution of Medline documents along one of the ICA axes (kurtosis 60). It
is representative of other axes found for that collection, and for other, larger collections.

Like the optimal axes found earlier, this axis also separates documents. This is desirable because
it means that the axes are distinguishing groups of (presumably related) documents. Still, we can
ask a more interesting question; namely, how do these axes group words? Rather than project our
documents onto the ICA space, we can project individual words (this amounts to projecting the
identity matrix onto that space) and observe how ICA redistributes them.

Figure 3 shows a typical distribution of all the words along one of the axes found by ICA on
the White House collection.4 ICA induces a highly kurtotic distribution over the words. It is also
quite sparse: most words have a value very close to zero. The histogram shows only the words
large values, both positive and negative. One group of words is made up of highly-related words;
namely, “africa,” “apartheid,” and “mandela.” The other is made up of words that have no obvious
relationship to one another. In fact, these words are not directly related, but each co-occurs with
different individual words in the first group. For example, “saharan” and “africa” occur together
many times, but not in the context of apartheid and South Africa; rather, in documents concerning

4The White House collection contains transcripts of press releases and press conferences from 1993. There are 1585
documents and 18675 distinct words.
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US policy toward Africa in general. As it so happens, “saharn” acts as a discriminating word for
these subtopics.

4.2 Topic Centered Representations

It appears that ICA is finding a set of words, S, that selects for related documents, H , along with
another set of words, T , whose elements do not select for H , but co-occur with elements of S.
Intuitively, S selects for documents in a general subject area, and T removes a specific subset of
those documents, leaving a small set of highly related documents. This suggests a straightforward
algorithm to achieve the same goal directly:

foreach topic, Ck, you wish to define:
-Choose a source document dc from D

-Let D̂ be the documents of D sorted by similarity to dc

-Divide D̂ into into three groups: those assumed to be relevant,
those assumed to be completely irrelevant,
and those assumed to be weakly relevant.

-Let Gk, Bk, and Mk be the centroid of each respective group
-Let Ck = f(Gk − Bk) − f(Mk − Gk)
where f(x) = max(x, 0).

The three groups of documents are used to drive the discovery of two sets of words. One set
selects for documents in a general topic area by finding the set of words that distinguish the relevant
documents from documents in general, a form of global clustering. The other set of words distin-
guish the weakly-related documents from the relevant documents. Assigning them negative weight
results in their removal. This leaves only a set of closely related documents. This local clustering
approach is similar to an unsupervised version of Rocchio with Query Zoning (Singhal, 1997).

5 Experiments

In this section, we show results of experiments with the Wall Street Journal collection. It con-
tains 42,652 documents and 89757 words. Following convention, we measure the success of a text
retrieval system using precision-recall curves5. Figure 4 illustrates the performance of several algo-
rithms:

1. Baseline: the standard inner product measure, DT q.

2. LSI: Latent Semantic Indexing.

3. Documents as Clusters: each document is a projection axis. This is equivalent to a modified
inner product measure, DT DDT q.

4. Relevant Documents as Clusters: In order to simulate psuedo-relevance feedback, we use the
centroid of the top few documents returned by the DT q similarity measure.

5. ICA: Independent Component Analysis.

5When asked to return n documents precision is the percentage of those which are relavant. Recall is the percentage of
the total relevant documents which are returned.
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Figure 4: A comparison of different algorithms on the Wall Street Journal

6. Topic Clustering: The algorithm described in Section 4.2.

In this graph, we restrict queries to those that have at least fifty relevant documents. The topic
clustering approach and ICA perform best, maintaining higher average precision over all ranges.
Unlike smaller collections such as Medline, documents from this collection do not tend to cluster
around the queries naturally. As a result, the baseline inner product measure performs poorly. Other
clustering techniques that tend to work well on collections such as Medline perform even worse.
Finally, LSI does not perform well.

Figure 5 illustrates different approaches on subsets of Wall Street Journal queries. In general,
as each query has more and more relevant documents, overall performance improves. In particular,
the simple clustering scheme using only relevant documents performs very well. Nonetheless, our
approach improves upon this standard technique with minimal additional computation.

6 Discussion

We have described typical dimension reduction techniques used in text retrieval and shown that
these techniques make strong assumptions about the form of projection axes. We have character-
ized another set of assumptions and derived an algorithm that enjoys significant computational and
space advantages. Further, we have described experiments that suggest that this approach is robust.
Finally, much of what we have described here is not specific to text retrieval. Hopefully, similar
characterizations will apply to other sparse high-dimensional domains.
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