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1 Introduction

1.1 The Problem and Why it Matters

Consider the task of building a speech-to-speech translation system. One signi�cant problem
confronting the designer is the absence of a one-to-one mapping from word sounds to text
strings to word meanings. The following examples reveal the ubiquity of this problem . In

a highly homophonous language like Chinese the single sound sequence 'shi' maps to 56

di�erent characters, each of which in turn has at least one meaning. In English, not only are
there many text strings with context-dependent pronunciations and meanings (\record": the

verb - \re-c�ord" and the noun \r�e-cord"), but there are also many words like \bank" which
have only one pronunciation but take on numerous meanings. For example, \bank" can be
used as \the bank of a river", \bank account", and \bank a plane". The most extreme
form of this ambiguity appears in pronous like \it", which take meaning only by reference

to another element of the discourse. These mismatches multiply across languages , where
in English the word \sentence" has two meanings, but in French, these meanings must be
realized as two di�erent words peine, in the criminal sense, and phrase in the grammatical.

So, performing dictation,speech recognition, machine translation, or Web-search document
retrieval, all require the ability to correctly select word senses.

1.2 Roadmap

In the course of this paper, I will describe a set of three techniques which claim to use

corpus-based statistical methods to try to solve the problem of word sense disambiguation.

As an introduction I will describe brie
y some of the range of approaches which have been
applied to this task. I will further indicate the limitations on scalability of these techniques
which motivated the shift to automatic machine-learning techniques trained of large corpora

for this task. Then I will embark on a careful assessment of the three techniques described

in the examination papers addressing the issues below:

� Description of the techniques and some preliminary results

1



� Operation on an illustrative example

� Important Sources of Disambiguation Information

� Contrasts between wide and narrow windows of context

� Limitations of Surface Statistics

� Di�erent de�nitions of similarity

� New Senses and the Importance of Generalization

� Lack of a Model

1.3 A Variety of Attempts

Early word sense disambiguation (WSD) approaches emphasized working from large amounts

of hand-coded knowledge. Scripts, as developed by Schank & Abelson [31],[7] encoded topic-
based world knowledge about word uses in typical instances of common activities, such as
going to a restaurant. Others used a mix of syntactic and semantic constraints embodied in

parser rules or semantic frames [38], while a number of researchers collected lists of words
strongly associated with a sense of a word or synonyms and looked for matches between the

lists and the words near a target word. Others picked a variety of these constraints and
combined them either in complex pieces of computer code [33], [18] or complex networks of
spreading activation [5],[37]. Many of these techniques performed accurate sense selection

in tests, but the task of manually encoding all of the information to handle any signi�cant
portion of English was far too large. These techniques were also not robust enough handle
imperfect input.

To ease this problem, many turned to precoded knowledge sources, such as machine-
readable dictionaries (MRDS), thesauri, or semantic networks [19],[30]. However, Lesk's

(1986) [23] seminal approach which relied on word overlap between the current use of the

word in a sentence and the dictionary de�nition text to identify the correct sense in the
context illustrates the di�culty of using precoded knowledge source. The technique depends

crucially on similarity in wording between the two texts. Negotiating coincidence of word
choice is something which, as Brennan [1] notes, is actually a key part of negotiating the

form of a dialogue for the participants. In order to surmount the problem of lexical choice in

MRDS, it became necessary for their users to embark of the huge task learning to understand
the dictionary itself in order to extract useful information from it. [40],[14] Dictionaries also

su�ered from limits in domain speci�c coverage and in the ability to adapt to the introduction

of new words. In rejection of these limitations, a number of researchers decided that instead
of trying to convert a precoded knowledge base to their needs, they would simply build their

own from corpus data in the world and replaced pre-coded or hand-coded information about
word sense and uses with learned information derived from statistics over large corpora.
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1.4 Why Learn from Large Corpora?

As noted above, a major challenge and stumbling block for many WSD systems has been the

ability to handle a large number of words in a wide variety of contexts. In part the problem is

exacerbated by hand-coding, where the designer must produce individually all the necessary
information about disambiguation. It is this issue, among others, which has inspired a

number of researchers to turn to the collection and exploitation of large corpora (of text or

speech) to help extend the coverage of existing models or even to bootstrap or train the design

of new ones. An early proponent of the corpus-based approach in linguistics was Z. Harris

(1968)[16] who tried to extract groups from text corpora which corresponded to syntactic
categories. Techniques which merged machine-learning techniques and large training corpora

have proven successful in areas ranging from �nding faces in crowded scenes (Sung & Poggio

1995)[34] to speech recognition systems [28] and part-of-speech taggers [2]. In the remainder
of this paper, we will explore the issues raised by techniques of this class which will, we hope,

shed further light on WSD needs and the ability of corpus-based techniques to meet them.

1.4.1 A Caveat about Statistics

However, let us �rst interject a word of warning about the ability of these techniques to

succeed in the task we have set for them. Scalability is a tremendous challenge for statistical
and corpus-based approaches. In speech recognition, there are approximately 625 triphone

contexts which can appear for English and which the system must be trained to recognize.
This task can be achieved with greater than 95% word accuracy on a 1,000-word speaker-

independent recognition task with thousands of sentences of recorded speech from more than
109 talkers. (Rabiner & Juang 1993)[28]. Part-of-speech taggers likewise have 64 part-of-
speech tags to assign and work on short sequences of parts of speech, often just pairs, to

make their decisions. These systems can be trained to 97% accuracy on corpora of 1.5 million
words. (Brill et al. 1991)[2] In contrast, to do word sense tagging there are more than 55,000
words and 74,000 senses [40] in even a learner's dictionary, much less something like the
OED with hundreds of thousands of senses. The problem is compounded by the fact that

constraints on word sense can easily come from as far away as 40 words, say the previous

sentence in the Wall Street Journal. Even storing only the pairwise word-word co-occurrence
matrix for this task is beyond the capacity of most contemporary workstations. This problem

is far larger than those to which large corpus statistic-based techniques have been applied

with such high success rates, even before considering the size of the corpus required to exhibit
all those interactions which could be useful for word sense disambiguation. More abstract

relations which allow us to make more useful generalizations than word-word co-occurrence

relations seem crucial to making the problem of word sense disambiguation tractable.

2 Three Ways to Pick Senses

2.1 Schutze: Context Vector Representations

In his paper \Word Space", Schutze describes a technique which builds a vector space repre-
sentation of word meanings. Speci�cally, he begins by bootstrapping his representations by
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building a co-occurrence matrix for 5,000 frequent yet informative letter fourgrams. These
are simply four character sequences which occur in a large corpus of New York Times news

stories. The most frequent 300 are excluded as too frequent to be informative and include

sequences such as ' the', ' and', common a�xes, and function words. Essentially, these

sequences provide a controlled vocabulary, since the actual word-word full co-occurrence

matrix for this corpus would be far too large for modern computational techniques. The

co-occurrence matrix value of Aij is incremented each time wi occurs within 200 fourgrams
to the left of wj. A singular value decomposition is then performed, allowing each letter

fourgram to be represented as a vector of 97 real values. Word context vectors are, in turn,

built by summing and normalizing the vectors of all fourgrams within a 1001 character win-
dow of the encoded word. A sum of the context vectors of all observed instances of a word

in the corpus form that word's confusion.

To apply this representation to WSD, an automatic clustering algorithm operates on

the context vectors of all observed instances of the target word. The distance metric is
vector distance within the 97 dimensional space. Each cluster is then (hand-)labelled with

a sense tag as appropriate. For each new word occurrence to be disambiguated, a context
vector is constructed as before and is assigned the sense tag of the closest cluster. On a
task disambiguating instances of 10 well-known ambiguous words, mostly in 2-way sense

distinctions, the system achieved an average accuracy of greater than 92%.

2.2 Resnik: Interpreting Clusters with a Semantic Network

The next paper, by Resnik, basically provides an extension to Schutze's \word space", or
any other distributional clustering algorithm for word sets, to eliminate the need for hand-
labelling of sense clusters. It starts from the observation that when presented with a cluster
of words, people naturally and automatically interpret them as a coherent group and assign

a sense to polysemous words that suits the meaning of the group. For instance, in a cluster
such as \attorney, counsel, court, trial, judge", cited in his paper and extracted by (Brown et

al. 1992)[3], readers naturally assign the legal senses of 'counsel', 'trial', and 'judge', under

the in
uence of the surrounding words.
To perform this assignment automatically, Resnik uses the IS-A hierarchy of WordNet

[25], speci�cally the noun component of this carefully hand-crafted semantic network, to
assess the similarity between word senses. For each node in the network, a measure of

informativeness is computed as follows: I(C) = � log(

P
n2words(C)

count(n)

N
), where N is the

size of the corpus. This measure corresponds to the log of the inverse frequency of the
concept and all of its child words in the corpus. Infrequent concepts are presumed to be

more informative in a representative corpus. This approach to similarity in WordNet tries

to avoid the pitfalls of path length distance metrics where concepts high in the hierarchy
may be very close in terms of path length, but may be such abstract concepts as to be very

weak indicators of relatedness.
To perform disambiguation within a word cluster, for each pair of words in the cluster,

do the following:

1. Get the most informative common ancestor of any senses of the two words and its I

measure.
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2. Add this I value to all senses of the two words subsumed by this concept.

Then assign the highest scoring sense to each instance, after accumulating values over all pairs

of words. The author presented a variety of example labellings as a qualitative evaluation,

and also conducted a formal evaluation in comparison with human labellers, using Roget's

Thesaurus categories as clusters and labelling 23 senses of 'line' in those contexts, in which

the system approached the human level of performance, with man achieving 67% accuracy
and the machine 60% on this di�cult task.

2.3 Yarowsky: Making Senses with Decision Lists

The third and �nal approach, described by Yarowsky in \Unsupervised Word Sense Disam-

biguation Rivaling Supervised Methods", proceeds under two main assumptions: that there
is one sense per discourse and one sense per collocation. The �rst means that in a given text

document an ambiguous word will probably only appear in one of its senses. In addition to
statistical evidence which Yarowsky cites, this observation makes intuitive sense. A given

topic generally selects one sense of a word, and also co-operative speakers and writers do not
try to confuse their partners by intentionally mixing senses of a word. The second observa-
tion means that if a word w appears in sense s1 in some collocation or \word con�guration"
much more frequently than in s2, when w appears elsewhere in the same collocation, it will
probably have the same sense s1. Again there is intuitive support for this claim in that when

we are asked to explain the meaning of a word, we often use a short characteristic phrase
which includes the word, as in \river bank" vs. \bank account".

Yarowsky describes an algorithm that, given a small set of sense-tagged \seed" instances,
can build a decision list procedure to label a full corpus and disambiguate new instances of a

word. The seed instances are examples of the word in each of its senses in sentence context.

Each instance is examined by the algorithm to �nd collocations of di�erent forms, such
as \word-to-the-left", \word-to-the-right", \word in �k words", etc. Such a collocation is

deemed informative if for all currently labelled instances abs(log Pr(sense1 jcollocation)
Pr(sense2 jcollocation)) is large;

that is, if one sense appears in the speci�c collocation much more often than the other.
For instance, for \plant", in the biological and factory senses, \manufacturing plant" is

highly informative, but \the plant" would not be. These rules are ordered from most to
least informative based on this maximum likelihood estimator and are placed in a decision

list. The algorithm then loops over any remaining untagged instances labelling as many
as possible with the new decision list, and then using the contexts of the newly labelled

instances as sources for new collocations which can be inserted into the decision list. The

one sense per discourse constraint can also be applied either at each iteration or when no

new instances in the residual can be labelled. This constraint can (re-)label all instances

of a word in an article where a majority sense had emerged. Once the decision list has
been trained, disambiguation proceeds by presenting the target instance in its context to

the decision list for labelling by the highest ranked informant. Like Schutze's, this algorithm

was evaluated on a set of infamous pairwise ambiguous words and achieved an accuracy of

95%.
Let us quickly try to put these results into perspective. Miller et al. [26] ran three simple

experiments to establish baseline performance measures for statistical techniques. First they
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observe that while 82% of the words in WordNet have only one sense, in a typical corpus
only 27% of the words have a single sense. Thus, the need to disambiguate senses clearly

arises very frequently. These researchers applied two simple statistical heuristics for sense

selection: sense frequency from a labelled corpus and co-occurrence within a sentence. Both

simple metrics achieved an accuracy of 70% on labelling all senses in the corpus, re
ecting a

60% accuracy on words with more than one sense. Although applying our three techniques

to a full corpus labelling task would be instructive, even these basic results illustrate that
the algorithms are faring well above the baseline.
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2.4 Example: \Plant" Disambiguation

The two text segments below were taken from Web pages and will illustrate the operation

of each of the three disambiguation techniques described above. We will assume that the

training stage has already completed and we will disambiguate the uses of plant in each
passage.

There are more kinds of plants and animals in

the rainforests than anywhere else on Earth.

Over half of the millions of known species

of plants and animals live in the rainforest.

Many are found nowhere else. There are even

plants and animals in the rainforest that we

have not yet discovered.

Many of the plants from the rainforest are

used for medicines by both people in the for-

est and hospitals throughout the world. One-

fourth of the drugs that you can buy at the

drugstore have products that come from the

rainforest. Medicines that �ght heart disease

and treat cancer patients are made from rain-

forest plants. Aspirin originally came from the

rainforest. A 
ower called the rosy periwinkle

helps treat children with Leukemia ( a kind of

cancer).

Text 1

The Paulus company was founded in 1931.

Since those days the product range has been

the subject of constant expansions and is

brought up continously to correspond with the

state of the art. We're engineering, manufac-

turing and commissioning worldwide ready-

to-run plants packed with our comprehen-

sive know-how. Our Product Range includes

pneumatic conveying systems for carbon, car-

bide, sand, lime and many others. We use

reagent injection in molten metal for the pur-

pose of desulphurising and recarburising. We

also build dust extraction and �lter plants in

dry and wet implementations, sand reclama-

tion plants for the foundry industry, and mov-

able sandrecovery machines. Our industrial

automation for the iron/steel, foundry and

chemical industries, including Switchgears,

PLC/DCS and MMI systems are the best. We

will provide special industrial designs to meet

your requirements upon request.

Text 2

Let us start with Schutze's approach. Running some quick statistics on the two texts we

note �rst that each is smaller than the 1001 character window over which the algorithm builds
a context vector. Also, we observe that there are only 7 instances of content words which

appear in both, three of which are the target word itself. Clearly the context vectors formed
by the fourgrams in these contexts will be far apart in \word space", and will be assigned to

di�erent clusters as appropriate. A scan of the words indicates typical contexts associated

with the biological and manufacturing senses of \plant", leading to correct labeling.
Next let us apply Resnik's approach. Since we do not have a cluster for plant, let us

construct one for each passage from the nouns which appear there. For text 1, that gives
us \plants, animals, rainforests, species, medicines, people, forest, ..."; for text 2, we have

\product,range, systems, carbon, ..., metal, purpose, ...,�lter,extraction, industry,machines,
plants, automation, ...". Even without a corpus to generate informativeness scores for the

subsumers, it is clear that the best subsumer for plants in cluster from text 1 will be the
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biological sense, and in text 2 the manufacturing sense.
Finally, let us try the decision list provided in [11] to assign the senses to plant. For each

text let us consider the �rst occurrence of the word plants. Going down the (initial) decision

list, we match on \animal (within �2-10 words)! sense A" for text 1, and \manufacturing

(within �2-10 words)" ! sense B. It is interesting to note that both of these rules are placed

much lower in the �nal decision list, and none of the top decision rules in that list match in

our texts. Also, curiously, although \manufacturing" does occur close to \plants" in text 2,
this meaning is surely not the one anticipated in the training data.

All three approaches easily accomplish this simple sense disambiguation task.

3 Information They Try to Use

All three of the current papers use di�erent sets of co-occurrence statistics, sometimes aug-
mented with other linguistic or world knowledge, to try to capture some of the types of
disambiguating information described by Hirst (1987) as listed below. These are:

� Knowledge of Context: this refers to global topic, such as the information captured by
Schank and others in scripts.

� Association with nearby words

� Syntactic disambiguation cues, which include subcategorization

� Selectional restrictions between ambiguous words

� Inference and World Knowledge1

Psycholinguists also recognize that frequency of sense can play a role in sense selection.

3.1 Finding the Topic in a Window

3.1.1 A Needle in a Haystack?

Schutze captures information about letter fourgrams within a 1001 character window of the

target word as a representation of the context in which the word appears. These vectors are

treated as an unordered bag of words. Thus any information which is encoded in ordering or
adjacency relations between the context words and the target word is lost. The technique is
unable to make use of most cues based on syntactic structure or selectional restrictions and

close word associations. Thus what the vector space model is most e�ectively equipped to
capture is some notion of a general knowledge of the topic. The use of this type of information

is re
ected in the word groupings which he cites as examples, and the relative success of the
system at disambiguating noun rather than verb senses. Statistical studies such as those by

Yarowsky in \One Sense Per Collocation" [42] indicate that while noun sense disambiguation

can be aided by word co-occurrences up to hundreds of words away, useful information for
selecting verb and adjective senses falls o� rapidly with distance from the target word. As

1[18], p. 80
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frame theory identi�es, and as used in Preference Semantics [39], the verb in a sentence
interacts strongly with its objects, and adjectives likewise are tightly associated with the

nouns they modify. These associations provide the best evidence for their senses. Thus, by

focusing on wide-window co-occurrences Schutze ignores the best sources of disambiguating

information for verbs, resulting in the weakest reported result of 69% for the verb sense of

'train', which could easily be bettered by a simple part-of-speech tagger.

Resnik's approach again relies heavily on a knowledge of topic. The distributional clusters
he uses are, as with Schutze, unordered bags of words which are presumed to be related

under some topic, which when inferred will provide evidence for the most appropriate sense.

WordNet, in turn, provides both a fairly simple knowledge base on which to perform some
inference and an additional source of information about context. The secondary use of

the corpus provides a more motivated way of measuring similarity of objects within the

knowledge base. However, since WordNet separates parts of speech strictly into di�erent

hierarchies, and the similarity metric operates only within the one dimension of the IS-
A hierarchy, the disambiguation technique is restricted to operating on nouns alone and

can derive no information from either syntax or other possible relations between verbs or
adjectives and the current target noun.

Yarowsky's technique allows for the potential incorporation of a wide range of di�er-

ent information sources through the decision list mechanism. The current implementation
described here, though, makes use of a smaller subset of the available disambiguators. In

particular, most of the discriminants are short-range collocates of the form - x target-word,

target-word x, or x �10 words from the target-word. These features explicitly capture in-
formation on nearby words, and implicitly try to access some bits of syntactic information,
selectional restriction, and topic. The \one sense per discourse" constraint more explicitly
captures topical information on a very broad, article-level scale.

Clearly, no single source of information will be able to disambiguate every utterance, so
those techniques which rely heavily on, for instance, \global" topical information will be
unsuccessful in cases where the context of the target word is narrow or underspeci�ed , as is
often the case in information retrieval queries. Disambiguation will also fail for words which

appear in a wide variety of topical contexts, such as common verbs, which conversely may

be easily identi�ed by local collocational, syntactic or selectional cues, or even by frequency
information.

A comparison of three di�erent \wide-window" statistically-based techniques was con-

ducted by Leacock et al [22]. Speci�cally, they compared the performance of a Bayesian
classi�er, a context vector, and a neural network, trained on the same corpus with the same

context window of the current and preceding sentence. On a two-way sense disambiguation

task, all achieved greater than 90% accuracy. For three and six- way sense selection tasks,

performance for all systems quickly dropped to around 70%. These results are consistent

with other attempts to use \wide-window" context schemes with other machine learning
techniques such as simulated annealing [6], indicating that most of these machine learning

techniques, while di�ering in implementation, are similar in power and in disambiguation

ability when given the same information on which to operate. It also suggests the limitations

of the pair-wise disambiguation task as a metric for evaluating the techniques; clearly, even

a small increase in the number of senses dramatically changes the di�culty of the task.
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Particularly revealing is an additional study by Leacock et al [22] in which human subjects
were given the same disambiguation tasks to perform with three di�erent types of information

available: �rst the two original context sentences, then the context sentences with the words

all randomly ordered, and �nally only the randomly ordered content words. While the

subjects performed almost perfectly on the �rst task, once ordering information and original

syntactic structure were removed, the performance of human subjects became comparable to

that of the computer systems, falling to an error rate of almost 32%. These results indicate
two signi�cant points: �rst that the systems are doing as well as possible with the limited

input they are given, and second, that crucial information is lost when the context is treated

simply as an unordered \bag of words."

4 Surface Co-occurrence, not Meaningful Disambigua-

tors

In the preceding discussion we described how these corpus-based algorithms selected di�erent
categories of disambiguation information from the environment in which the target word
occurred. Speci�cally, we noted that use of wide-window techniques which concentrate on the

use of bags of content words can capture some constraints associated with topic while narrow-

window approaches can capture information of the type encoded in selectional restrictions
and word associations. However, as tempting as it may be for these authors to claim that

they are using \topic" or \global context" or \syntactic cues", it is important to remember
that these techniques are really capturing statistical regularities about the sentences in and
near which these words occur. While topic, selectional restrictions, syntax, etc. interact in
the mind of the writer/speaker to cause the sentences to take the form they do, statistics

of word co-occurrence capture only the surface regularities. There is no distinction between
signi�cant regularities - in this case, those co-occurrences which are directly the result of
the interaction of the word sense and, say, one feature of its environment - and unimportant
regularities. As an example of the latter, DeMarcken(1995)[12] in a corpus-based lexical

learning task notes that \scratching her nose" appears in his corpus much more frequently

than expected, i.e. it is a statistically signi�cant regularity; however, it isn't a meaningful

regularity in the same sense as the fact that \kicking the bucket" can be expected to occur

much more often in a corpus than expected since it is an idiom.

In this case, it is important to di�erentiate between regularities that have impact on the
sense of the word and those which do not; it would also be pro�table to di�erentiate among

sources of regularities, since , just as all co-occurrences are not equally relevant , not all

sources of information are equally relevant. We will �nd examples in these techniques of
the inability to treat meaningful and coincidental regularities di�erently, and also the lack
of weighting between information sources.

Schutze's \word space" provides a number of insights into what is really being learned by

corpus-based techniques. These issues strongly impact Resnik's work as well, since he acts
as a consumer of these distributional clusters. Let us consider some illustrative examples of

randomly selected nearest neighbors in \word space."
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4.1 People Interpret Clusters, Algorithms Don't

For \burglar" the 10 related items are: \burglars thief rob mugging stray robbing lookout

chase crate thieves". The majority of these neighbors look \reasonable" - burglar, mugging,

rob, robbing, even lookout - logically are related to each other in the context of criminal
activities. First we should note that we have interpreted this set in such a way as to make

it coherent. Secondly, consider that one of the top 10 scorers for 'burglar' is 'crate.' The

inclusion of this word, to us, is clearly anomalous, and we may even be willing to accept this

cluster as \good" since \it only got one wrong." However, to the system, and any others

which make use of this output, this entry is as valid as all the others on the list. If it were
di�erentiable, it would not have been included in the �rst place.

4.2 Learning the Corpus, not the Sense

Now consider a less successful cluster, the one for \Ste." (Sainte) which is as follows: \dry

oyster whisky hot �lling rolls lean 
oat bottle ice". First, observe that none of these words

has anything to do with the lexical meaning of \Ste." as a beati�ed woman. In fact, the
system here has simply learned that in its huge corpus of words \Ste." appears in the
context of these other words; Schutze notes that these contexts are in reference to the river

Ste. Marguerite. A post-hoc labelling algorithm such as Resnik's would likely treat the

cluster as a bunch of food-related terms, which do not relate to \Ste." in any way. Since
his algorithm assumes that distributional clusters are semantically meaningful, they are

interpreted as coherent even when they are not.

4.3 Learning Nothing, by Asking the Wrong question

Finally, consider the case of \keeping" with neighbors \hoping bring wiping could some would

other here rest have". Even for a person knowing that this is a cluster for \keeping" , it is
di�cult, if not impossible, to �nd any relation either among the words as a group, or even
between any of the words and \keeping" . Schutze remarks that it is di�cult for his technique

to handle words which appear in a wide variety of contexts. This example highlights the
need for multiple knowledge sources and the need to apply di�erent information to di�erent

tasks. Even a hand-labelled description of topic for each instance in which this word appears

would not handle the two senses so clearly di�erentiated by \keeping up" vs. \in keeping
with," for example. This problem with words appearing in a wide variety of contexts is

of particular concern since, distributionally, a relatively small proportion of the words in
a language is used very frequently, and these words in fact are the most polysemous and

therefore in need of disambiguation.

4.4 All collocations are not created equal

Turning to Yarowsky's approach, we �nd a technique that can possibly incorporate any num-

ber of di�erent knowledge sources, but here again we �nd little distinction between knowledge

sources, and no di�erentiation between relevant and irrelevant regularities. There is a broad-
brush distinction between sense determination based on discourse and that of more localist
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collocational information. However, there is no di�erence for the algorithm between localist
co-occurrences that arise due to topical constraint as in \astronomer" and \star", those that

occur in common colloquialisms, \the North Star", and those from selectional restrictions

such as \married a star", which forces the \famous person" interpretation. Clearly, these

constraints can interact, and we need a method which allows us to model these interactions at

least su�ciently to choose between senses based on competing constraints that are weighted

by more than relative frequency of co-occurrence in collocation.

5 Measures of Similarity

Let us next consider the de�nitions of similarity de�ned and used by these approaches. What

criteria do they use to determine whether two instances of a single text or phoneme string

or two di�erent words are similar? This question greatly in
uences the tasks for which
the techniques can be used and also how easily the approach can generalize to new words,

additional senses, and new domains. Each method builds up its own notion of similarity

from training data in cooperation with any precoded knowledge.

5.1 Vector Distances in Word Space

Schutze has a straightforward de�nition of similarity which is a natural outgrowth of his
choice of representation. Since he builds a high dimensional vector space, he used vector

distance within this space to assess similarity. Once the representation is computed by
training, it is simple to compute similarities. Since word instances are represented by vectors
derived from \wide-window" co-occurrence information, we can say that things appearing in

similar context are similar.

5.2 WordNet IS-A Hierarchy: Similarity in 2-D

Resnik combines two components to establish his notion of similarity. The �rst is simply

co-occurrence within a cluster. The second is derived with the WordNet IS-A hierarchy as
sharing an informative subsumer, so two senses are, intuitively, more similar if they can
be found to share an ancestor deep in the WordNet tree, preferably one which also occurs

infrequently. This metric is actually quite restrictive. Speci�cally it depends on both the
exact structure of the IS-A hierarchy and the idiosyncracies of the training corpus. To

illustrate this problem, consider again the example Resnik himself used to introduce his

stance - \attorney, counsel, trial, court, judge". Curiously, the algorithm can not assign the
correct sense to trial, even though it has very strong semantic associations with the other

members of the cluster. This is because the other list elements all fall within the \person"
hierarchy in WordNet , while none of the senses of 'trial' does. Thus the most informative

subsumer is the empty root node.

The system will, conversely, label \lookout" in the \burglar" cluster correctly but for
the \wrong" reason - here this is the only person sense available and the cluster provides

many supporters for the \person" interpretation. This raises the dangerous possibility of
unanticipated interactions between coincidental similarities in clusters and the structure
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of WordNet. More generally, the problem here is that meaning can be viewed as multi-
dimensional, reminiscent of the feature vectors of Katz & Fodor -style semantics[20], and

structurally similar to Schutze's word space. The WordNet hierarchy, however, only forms

IS-A links along a certain dimension. When the cluster is related along the same dimension

as the WordNet hierarchy, correct disambiguation is promoted; when the cluster is related

along a di�erent, perhaps orthogonal, dimension, coincidental support is given to senses.

5.3 Who Needs Similarity When We have Di�erence?

Finally, we have Yarowsky's approach. Here, we �nd no general notion of similarity at all.
Two words may have collocations in common, but the decision lists are built independently

for each set of senses to be partitioned. Since such a wide variety of surface collocations is

used, it would be di�cult to say that two words have a similar sense and thus should share
a decision list. The algorithm can, of course, be instructed to �nd any collocational features

which can discriminate between members of pairs. Looking assiduously for di�erences, as
this algorithm does, will not lead one to identify similarities. The programmer may be

able to identify similar classes, as in the case of accent restoration for pairs of Spanish verb
tenses, and apply the same decision list to all members of the class, but this process requires
hand-coding to prevent inadvertently including word-speci�c cues in the class-level decision

list.

6 Key to Generalization: Recognizing Similarity

It is important to be able identify and interpret new words and senses. One also needs to

be able to easily extend the system to handle new ambiguities and tasks. Let us consider
how each approach would respond, having encountered the two noun sense pairs of \river
bank"/ \�nancial bank" and \manufacturing plant"/ \living plant", to the verb sense of
each ambiguous word.

Schutze would, as usual, compute a context vector for the new instance and compare

it under the vector distance metric to other established senses and other words. In fact,
even unseen words have a de�ned place in the word space, according to their \wide-window"

context. No new representations need to be created and, while the verb sense of \plant"
would likely be viewed, reasonably, as fairly close to the biological sense of the word, the
verb form of \bank" would probably be easily identi�able as a new sense. Having a general

similarity metric allows a system to 
exibly adapt to new words or senses of a known word.

This particular metric is weakened by the problems of the \wide-window" bag of words

de�nition of context discussed above, but could still prove useful.
Resnik, by using WordNet as a �lter for all actions, gains a lot of information for free,

avoiding the need to build a representation as both Schutze and Yarowsky must. However,
the converse problem is that WordNet forms a closed semantic representation and compresses

the many dimensions of word meaning into its hierarchy. A contextually appropriate sense

which is novel to WordNet, as in the verb sense of \bank" (since Resnik uses only the noun
hierarchy and hierarchies by de�nition have zero cross-similarity) in the context of, say,

\plane",\
ight",etc.. will be identi�ed with any noun sense of \bank" which coincidentally
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overlaps with one or more senses of other words in the cluster. The algorithm will never know
the di�erence. Thus, any new word or sense must be explicitly hand-coded into WordNet,

a highly complex task, before it can participate in sense labelling. One could conceivably

label any unknown word in a cluster with some sense tag which is \dominant" across the

cluster, but that would not distinguish between unknown words, missing senses and words

that didn't belong in the cluster in the �rst place. Further, choosing such a \dominant"

sense simply returns us to the sense disambiguation problem again.
Lastly, for Yarowsky the issue of adding new senses of words to existing pairs, identifying

such senses, and adding new words is both simple and complex at once. Since there is

no notion of similarity but only of discriminants, which have been selected to identify a
particular pairwise contrast, it is quite possible for the verb sense of \plant" to masquerade

well enough to be labelled as the noun. Severe problems could arise from the appearance of

unanticipated senses in the training corpus, since they would eventually be tagged one way

or another by the system if they shared any contexts with known senses.
The algorithm certainly can be straightforwardly extended to handle multiple senses, and

one can train a new decision list for any new sense pair represented in the corpus. However,
it would be desirable to not have to start from stratch to learn decision rules for each new
ambiguous pair. Instead, we would like to be able to share or duplicate appropriate parts

of the decision lists we have learned for other \similar" words, with weights appropriately
adjusted for the collocations. However, simply by inspection of the rule, we can not tell

what information source gave rise to this collocation. Thus we can not tell which rules

are transferrable or what relations must hold between two words in order to share rules.
For instance, many word association rules would hold, say, for the both the verb and noun
senses of \plant" since they both relate to agriculture , but none of the rules that related to
adjacent content words because these would be most heavily in
uenced by syntax, in which

these senses di�er. Likewise, \brook" and \river" are very similar with respect to most
information sources, but a list which learned \babbling" as a good collocate for \brook"
should not transfer that to \river".

Clearly, a well-supported, general, extensible notion of similarity provides major advan-

tages for word sense disambiguation systems it terms of identifying and incorporating new

words and senses. This discussion has also highlighted the utility of an \open" method,
rather than one which rigidly encapsulates all that it learns. Finally, it again points up the

need to identify the underlying sources of disambiguating surface structures, since words we

wish to handle with our algorithms may be similar in their reaction to some environments,
while di�ering in others. As in the \plant" example above, the broad topics in which both

the noun and verb form occur are quite similar, but they di�er dramatically in position in

predicate-argument structure.

7 The Big Picture

Stepping back from the detailed examination of de�nitions of similarity, use and capture
of underlying knowledge sources from surface phenomena, and questions of extensibility

and generalization, we can now evaluate the overall contributions of these techniques to
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identifying what is needed for an e�ective, trainable, and extendable technique for word
sense disambiguation. We can also identify some key points of failure.

7.1 Where's the model?

Curiously, none of these approaches undertakes to de�ne what really constitutes a sense.

Schutze generates distributional clusters and tags them, while Resnik uses WordNet as a

source of senses. Yarowsky likewise uses the de�ned seeds as \senses". All three make

reference to di�erent levels of sense distinctions, without de�ning the criteria for �ne-grained

vs. coarse-grained senses, while saying that the former are less important than the latter.
One would think that such a de�nition of the task you are trying to solve would be a key

component of the experimental structure. Further, none of the approaches tries to describe,

say, how senses are learned by people or model the development of selection of sense. As a
result, one �nds the lack of generalizabilty and lack of coherent representation that leads to

the problems we have detailed.

7.2 Some Pieces of a Model

Just as Yarowsky rightly criticizes Schutze and other users of \wide-window" co-occurrences
for using a \bag of words", he in turn is guilty of using a \bag of rules" in his decision lists and

a \bag of classi�ers" to hold all of his di�erent pair-speci�c decision procedures. By treating
the words around a target word as an unordered list, one loses the opportunity to exploit
or model the in
uence of syntax, word association, and other factors which depend on order
and position. Even people experience a severe degradation in their ability to perform sense

assignmentstasks when normal sentence environments are replaced with unordered groups

of words. How can we expect computers to fare better? Crucial information is missing.

Likewise, it is wrong to treat all decision rules the same, distinguishing only on the basis
of surface statistics. Yarowsky's ability to incorporate any sort of rule into the decision
list paradigm is very powerful, but can not fully solve the problem. As the example of
\The astronomer married the star" illustrates, some constraints are simply stronger than

others, even though there may be no additional support from surface statistics. Further,
di�erent types of constraints generalize di�erently. A collocation based on sound similarity
like \babbling brook" is very unlikely to be informative for other words, but selectional

restrictions like the requirement that the object be a person can be used for a variety of

words. However, one can only make such a generalization if one knows that the relationship

which led to the meaning of \married the star" is di�erent from the one which led to the

\babbling brook." If you can not make the distinction and generalize from it, you are forced
to relearn decision rules for each new word.

Schutze's description of a general metric for similarity of words is a signi�cant contribu-
tion. This type of comparison allows one to identify old versus new senses of a word and

allows easy extension to new words, by placing them in relation to already known words.

In addition, this metric is scalar, permitting degrees of similarity in contrast to Yarowsky's

binary distinction between sense1 and sense2. The problem is that the metric is limited.

Only \wide-window" information is available, so one can not recognize, much less use or
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relate, words based on other factors - such as similarity in selectional restriction or part of
speech. Resnik too recognizes the importance of de�ning a general, scalable similarity met-

ric. Unfortunately, he is again hampered by an even more restrictive notion of similarity, by

using only WordNet's IS-A hierarchy which reduces the number of dimensions along which

we can assess similarity. Yarowsky fails to address the issue of similarity between words, in

some ways his approach is a logical descendant of Word-Expert parsing (Small & Reiger)

in that each word learns all about how to disambiguate itself, and each new word requires
encoding all of the possible cues for it.

It is necessary to recognize that words vary along many dimensions and identifying sim-

ilarity along any dimension allows one to generalize in that domain. For instance, if one
knows only word-word cooccurrences, one, like Yarowsky, can not generalize without exter-

nal intervention. However, if one can capture both the surface relations between words and

the underlying constraints which lead to them, one can generalize appropriately for words

which are similar with respect to that relation. Dagan et al[10] reach toward this notion
when they de�ne similarity as being between words with high mutual information and which

occur in similar predicate argument structures. This allows them to substantially increase
the applicability of their target word selection technique. In order to build successful, exten-
sible disambiguation techniques, we must model not just the surface co-occurrences which

arise from deeper constraints, but also the constraints themselves and their interactions, and
then tie this to a robust notion of word similarity. Otherwise, we will be forced to constantly

relearn constraints for each new task.

8 Conclusion: The Last Resort

Corpus-based techniques, like those we have discussed here, succeed or fail based on their
ability to capture regularities in observed surface word co-occurrences. However, there are
disambiguation tasks where surface co-occurrence phenomena provide no cues. Consider
an example from Hebrew, where the word hagira is ambiguous between immigration and

emigration, as follows: \According to the new hagira bill every Soviet citizen will have the
automatic right to receive a passport valid for �ve years." 2 One must reason that a bill

about passports for Soviet citizens must be a soviet bill and thus passport issuing should
be related to leaving rather than entering the country. Also, consider an example from

Chinese, \Gou chi ji." which could be translated variously as \Dog/Dogs eat/ate/eats/have

eaten chicken/chickens." Chinese has no surface in
ection related to singular/plural or
tense distinctions, and all of these combinations are valid. Only general inference from

knowledge about the event can resolve this multi-way ambiguity. Here we see that although
the techniques we reviewed have made use of many sources of disambiguation information

based on surface co-occurrence statistics, one source of information is closed to them, forever:

inference, which was identi�ed by Hirst, as the source of \last resort". [18] Sometimes there

is no substitute for knowing what the sentence means.

2dagan1991
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