
Visible Decomposition: Real-Time Path Planning in
Large Planar Environments

Oded Maron

Arti�cial Intelligence Lab

NE43-755
Massacusetts Institute of Technology

Cambridge, MA 02139

oded@ai.mit.edu

Tom�as Lozano-P�erez

Arti�cial Intelligence Lab

NE43-836a

Massacusetts Institute of Technology
Cambridge, MA 02139

tlp@ai.mit.edu

Abstract

We describe a method called Visible Decomposition for computing collision-free

paths in real time through a planar environment with a large number of obstacles.

This method divides space into local visibility graphs, ensuring that all operations are

local. The search time is kept low since the number of regions is proved to be small.

We analyze the computational demands of the algorithm and the quality of the paths

it produces. In addition, we show test results on a large simulation testbed.

1 Introduction

There is rapidly growing interest in the area of large-scale distributed simulations of physical
systems. These simulations have many applications in planning, testing and training. In

many cases, these simulations involve simulated agents that interact with human users.
Producing these simulated agents requires solving many of the classic problems of arti�cial
intelligence and robotics in environments that are more predictable than the \real world" but

which are often very complex, since there is little interest in simulating simple environments.
The particular problem we faced was to create a real-time motion planning mechanism

for the simulated forces (ModSAF) in the SIMNET military simulation environment [Brock
et al., 1992]. Because this is a simulation system, the problems of uncertainty in sensing and
control so prominent in robotic motion planning are essentially non-existent. Also, in our

case, it is su�cient to consider translational motion in the plane. However, these simulations

run on a world in which every tree, boulder, building, river, and swamp are mapped. There

are normally thousands of obstacles (each with many vertices) in a typical simulated world.

In addition, the agent whose path is being planned is actually a group of vehicles. The various
formations of this group have di�erent sizes and result in di�erent radii for the con�guration

space obstacles. Therefore, the con�guration space actually has a third dimension | the

radius of the formation. If there are m di�erent formations, there are m times as many

vertices in the con�guration space. The number of obstacle vertices is now in the millions.

Another characteristic of these domains is that some of the obstacles change over time so
it must be possible to update the model on a nearly continuous basis. Furthermore, the

performance requirements for path planning are very stringent. The planner needs to be

able to continuously replan a path for one or more vehicles as the user is dragging his mouse

to specify the origin and goal vertices. Therefore, \real-time" in this problem does not mean

seconds or minutes but milliseconds.

1

We chose to focus on motion-planning methods that are deterministic and guaranteed

(unlike potential �elds), primarily because we felt that users would �nd it disconcerting

to be faced with \erratic" behavior on the part of their simulations. Essentially all the
deterministic and guaranteed motion planning methods involve three steps: (1) computing

a con�guration space (C-space) for the moving body, which in the case of a translating body

represented by a circle is simply an expanded version of the obstacles, (2) representing the

free-space outside of the C-space obstacles by a graph and (3) �nding the shortest path in the

graph. Since the �rst and third steps are well understood [Latombe, 1991], the variability
among path-planning methods is limited to the second step. There are three broad classes

of approaches that have been taken to represent the free-space for path-planning problems

in the plane.

� The earliest and possibly most studied method for path-planning in the plane is the

visibility graph approach [Nilsson, 1984, Lozano-P�erez and Wesley, 1979, Asano et al.,
1986]. This approach has the advantage of producing the shortest collision-free path

but has very bad running times for large problems. In particular, the simple versions of
the algorithm have poor asymptotic running-time, O(n3), which in practice means that
they perform well for small problems (since there is so little implementation overhead)

but poorly for the large problems of practical interest. The optimal algorithms that
have better asymptotic running-times, O(n2), on the other hand are so complex that
they perform very poorly for small problems and, at least in our limited experience,
require so much space that they are also completely impractical for large problems.
Furthermore, the cost of changing the obstacles in the optimal algorithms is empirically

very high.

� Another class of methods is based on the \generalized" Voronoi diagram [�O'D�unlaing

and Yap, 1982, Canny and Donald, 1988]. These methods can support very fast path

planning since they produce small graphs and, although more di�cult to implement
than simple visibility graph methods, are quite practical. Nevertheless, they have one

property that is undesirable for our purposes, namely that the paths one gets can be
far from optimal. This occurs especially in open areas, since the Voronoi diagram is
always maximally distant from obstacles. Another (smaller) disadvantage is that the
algorithms for updating the generalized Voronoi diagram when obstacles change are a

bit complex and numerically sensitive.

� The other classic approach to motion planning in the plane (and elsewhere) is the cell-

decomposition approach [Brooks and Lozano-P�erez, 1985] where the space outside of the

C-space obstacles is divided into (usually) convex cells that are completely outside the
obstacles and which are then connected into a graph. Many versions of this approach

exist, some based on hierarchic decompositions and others on line-scanning methods.
These methods can be e�cient even for large problems. The usual di�culty is, again,

how to get \good" paths. If the cells are few and therefore big, one needs a strategy to

�nd paths inside them. If the cells are small enough that one can simply move through

their centers, then there are too many cells to be e�cient.

The situation seems to boil down to this: methods that can compute the free-space

graph e�ciently tend to produce paths that can be far from the optimal. The ones that can

2

produce optimal or nearly optimal paths (visibility graphs or �ne-scale cell-decomposition)

are too slow for the huge problems of interest in simulation. We have no doubt that any

of the three approaches described above can be extended into a method capable of dealing
with the requirements of our problem. In this paper, we show how to generalize the visibility

graph approach.

The method we present, Visible Decomposition, divides the con�guration space into a

grid of regions. These regions include both obstacles and free space in general, so this is

not a cell-decomposition method in the usual sense. Each grid region has its own local
visibility graph. These graphs, being local, are small enough that the simple methods for

constructing visibility graphs are quite adequate. Therefore, building the initial visibility

graphs, updating the graphs and planning paths within a cell are all quite fast. We simply

make the global visibility graph be the union of the local visibility graphs. One has to add

\additional" points along the boundary of the regions to guarantee global connectivity but
this is relatively simple. The disadvantage of this method is, predictably, that the paths are
no longer optimal. Below, we show that by adding enough extra points along the boundary

of the regions one can get good paths, which can then be further smoothed.

In the rest of the paper, we present the Visible Decomposition algorithm and analyze its
performance. We then present results of running it on large problems. Finally, we conclude
with a discussion of its merits and disadvantages.

2 Visible Decomposition

A visibility graph is a graph where the nodes are the vertices of the polygonal obstacles, and

an edge is drawn from one vertex to another if the edge is \visible". An edge is visible if
it does not intersect any obstacles. Once the static graph is constructed, goal and origin
vertices are added and their visible edges are computed. This graph can then be searched

for a shortest path between the origin and goal. An example of a visibility graph is shown
in Figure 1.

In summary, the advantages of using a visibility graph for motion-planning is that it is
a simple, well-understood method which returns optimal paths in 2D con�guration space.

One disadvantage is that the paths it generates hug the obstacles, and in many situations

we want the path to stay at a respectable distance from the obstacles. In addition, for a

complex world with a large number of obstacles, the visibility check becomes very expensive
| we need to check if the candidate edge intersects any of the obstacle edges in the world.

This causes the construction of the static visibility graph to be slow, and more importantly
dynamic changes such as adding a goal vertex or adding a new obstacle are too slow to be

done in real time.
The main purpose of the Visible Decomposition algorithm is to make all operations

on the visibility graph (except for search) local operations. This is done by dividing the

con�guration space into regions, each of which maintains its own collection of vertices. The
global graph maintains the edges that connect the vertices. Regions share vertices that lie

on the region boundaries so that the global graph will stay connected.

Speci�cally, the following is an algorithm for computing a visible decomposition, given

a set of obstacles and a grid of regions. Notice that the obstacles need not be convex, and

3

(a) Obstacles in con�guration space (b) Static Visibility Graph

(c) Adding start and goal vertices (d) A path through the visibility graph

Figure 1: An example of path planning using a Visibility Graph

4

(a) Grid imposed over con�guration space
(b) Vertices of obstacles, grid intersections

and glue points

(c) Static Visible Decomposition (d) Adding start and goal vertices

(e) A path through the global graph

Figure 2: An example of path planning using Visible Decomposition

5

the grid does not need to be regular and can be represented as an arbitrary decomposition

of the con�guration space.

� For every edge in every obstacle, check for intersection against grid lines. For each of

the two endpoints and each intersection point, add it to the region that it belongs to.

The intersection points are shared by more than one region.

� For every region, construct the visibility graph for points in that region, including
shared points. In other words, for every pair of points in the region that are \visible",

add an edge between them in the global visibility graph. The usual visibility graph

speedups such as checking for tangency before visibility still apply. 1

� In addition to the points shared by two regions when an obstacle overlaps those regions,

we need \glue points" in order to make sure that the set of local visibility graphs is

globally connected. Otherwise, empty regions can disconnect sections of the global

visibility graph. At a minimum, we need to add a point to the corners of every region.
These points are connected locally as discussed above.

An example illustrating this computation is shown in Figure 2. Part (a) shows the grid
and the regions it generates on the con�guration space. In part (b), the circles are the original

vertices of the obstacles, the squares are the intersections of the obstacle edges with the grid,
and the crosses are the glue points added to make sure that all regions are connected. In
part (c), we �nd the visible edges for each region, and since regions share either glue points
or grid intersection points, the resulting graph is connected.

Once the static visibility graph is constructed, we can perform operations such as adding
a vertex to the graph, adding an obstacle, or removing an obstacle using only local compu-

tations. For example, to add a start or goal vertex:

� Find the region that contains the vertex, and �nd the visible edges from the vertex
to the local points maintained by that region. Add the vertex and those edges to the
visibility graph.

To add an obstacle:

� Update the visibility graph for those regions that overlap the obstacle. The simplest
method is simply to recompute the visibility graphs in those regions from scratch.
More elaborate methods are possible, but we have not felt the need for them.

In order to plan a path, we insert the start vertex and the goal vertex, and then search

the global graph for a path between the two. The insertion operations have been speeded up

considerably by the decomposition of the con�guration space, but the search is potentially

slowed down by the addition of grid intersection vertices and glue points. In fact, the more
we decompose the space, the closer we move toward the Cell Decomposition approach in

which most cells are uniform (either empty or full) and we look for a path through them.

1If an edge in a visibility graph is not tangent at both endpoints, then it can not be part of the shortest

path.

6

Unfortunately, as we move toward that approach, the search cost increases. We attempt to

analyze the necessary computations and explore this tradeo� in the next section.

An example of path planning is shown in Figure 2. In part (d), we highlight the regions
where the origin and goal points are located. We only attempt to add visible edges to points

within those regions. Part (e) shows the shortest path through that graph. As can be seen,

the number of vertices is slightly increased over the one shown in Figure 1 and the path is

slightly longer, but the amount of computation needed to insert the origin and goal vertices is

much smaller since only edges to the vertices in the highlighted regions need to be examined.

2.1 Analysis

The analysis in this section is an average worst case of the Visible Decomposition algorithm.
We compare it with the running time of the global visibility graph approach. Some empirical

comparisons are shown in Section 3.
The key computation in these algorithms is the line intersection routine. This is a basic

routine which is called repeatedly, and it is relatively expensive for such a basic operation.

Therefore, the cost of an operation will be measured by how many line intersection checks it
performs. The time will grow with respect to n, the number of points in the set of obstacles.

There are two parts to the analysis: computation of the static visibility graph, and inserting
a new vertex to the graph. The former is less important since this computation only needs
to be performed rarely and its results can then be stored. The latter is what needs to be

performed repeatedly in real-time. Incremental updates on obstacles (addition or deletion
of an obstacle) also need to be performed quickly.

For global visibility graphs, the simple method of inserting a point into the graph is
O(n2) since there are n possible visibility edges eminating from that point, each of which

needs to be checked for intersection with the n edges that make up the obstacles in the
world. Then, computing the entire static graph is O(n3) since we need to insert all n points,

each of which takes O(n2). This is the naive implementation, and there are methods which
are theoretically faster [Asano et al., 1986]. However, they tend to be complicated and are

slower in practice than the naive method.
For the analysis of the Visible Decomposition approach, we assume that the points are

on average uniformly distributed through the con�guration space. This assumption is in

general not true since even if the obstacles are uniformly distributed, their vertices are not.
In addition, we assume that we decompose the world into a k � k grid, and each of the
regions is equal size.

Therefore, there are n=k
2 points contributed by the original obstacles in each region.

However, in the worst case each edge of every polygon intersects all 2k grid lines, giving us

an extra O(nk) points in the con�guration space. The glue points get swallowed up (since
n� k), and there are actually about O(n+nk

k2
) � O(n=k) points per region. 2

The initial static part of Visible Decomposition performs k2 visibility graph constructions,
with each construction building on O(n=k) points. Since each construction takes O((n

k
)3),

the entire initialization takes O(n
3

k
). This is a factor of k faster than the traditional visibility

2Since most obstacles usually do not fall into the worst case category, the number of points per region is

usually closer to O(n=k2) than to O(n=k).

7

graph approach.

Inserting a point using Visible Decomposition uses the same analysis as for the traditional

approach, except that there are only O(n=k) points to try to connect the point to, and
likewise only O(n=k) edges that the potential visible edge can intersect. Therefore, inserting

a point is done in O(n2=k2), a speedup of k2 over the visibility graph approach.

Ideally, we would increase k until there were less than 1 point per region on average.

Unfortunately, the number of total points (due to grid intersections and glue points) in the

global graph would increase as O(nk). A search technique such as Dijkstra's shortest path
works in O(nk lg(nk)). Clearly, there is a value of k for which the extra expense incurred

in search is greater than the time saved in inserting the point. The optimal value for k

minimizes the cost of insertion and search. Despite some abuse of notation, we can solve for

when the derivative of this sum with respect to k is zero. We �nd that the optimal value for

k is O(n
1

3
+�), for arbitrarily small �. Therefore, the optimal number of regions grows slowly

with the complexity of the world.
In Section 3, we will show that this analysis holds in the real world and that empirically

the insertion time drops dramatically, the search time rises slowly, and the optimal value for

k is small with respect to n.

2.2 Path Length

One of the advantages of the traditional Visibility Graph approach is that the paths it

generates are of optimal length. This property is not conserved by the Visible Decomposition
method since paths that go through more than one region must use the points on the region
boundary as \portals". Intuitively, as the number of regions or the number of additional
glue points grows, the paths get closer to their optimal length, at the expense of additional

computation. In this section we will show that in fact, the path length does not converge to
the optimum as the number of regions grow. The path length does converge to optimum as

the number of glue points grows. These claims will be proved in this section, and empirical
evidence is shown in section 3.

2.2.1 Increasing the number of regions

For simplicity, the analysis will be done on an empty, square world with no obstacles. How-

ever, the basic results hold on a non-empty world as well. With no partitioning, the average

distance between two points in a square with sides of length s is [Santal�o, 1976]

OPT = s

p
2 + 2 + 5 log(1 +

p
2)

15
(1)

We would like to compare this to the average distance between two points in a unit square

with the following restriction: there is a k � k grid imposed on the square and if the points

fall in di�erent regions, the path between themmust go through the grid intersections. There
are three cases: (a) the points fall in the same region, (b) the points fall on the same row

or column of regions (but not in the same region), (c) the points are not in the same region
nor in the same row or column. We need to �nd the probability (Prf�g) of each of the three

8

cases happening, and the average distance (AvgD(�)) between the two points in each case.

Once we have those, we can compute

lim
k!1

PrfagAvgD(a) + PrfbgAvgD(b) + PrfcgAvgD(c)

OPT
(2)

Finding the probabilities is easy:

Prfag = 1

k2
(3)

Prfbg = 2k � 1

k2
(4)

Prfcg = 1� (Prfag+ Prfbg) = k � 2

k
(5)

If the points fall in the same region, then we can use Equation 1 to say that the average

distance between two points in square of size 1

k
� 1

k
is

AvgD(a) =
1

k

p
2 + 2 + 5 log(1 +

p
2)

15
(6)

If the points fall in the same row or column of regions, then we can assume without loss

of generality (i.e. the average distance does not change) that they fall in the same row and
and that the �rst point lies in a region with a lower x-coordinate than the second point. The
distance between the two points consists of three parts: the distance from the �rst point to
its region's upper-right or lower-right corner (b1), the distance from the second point to its
region's upper-left or lower-left corner (b3), and the distance between the region corners (b2).

An example of this situation is shown in Figure 3.
The average sum of b1 and b3 can be lower bounded by 0. 3 The average distance between

the two region corners is

E[b2] =
1

k

P
k�2
x1=0

P
k�1
x2=x1+1

x2 � x1 � 1
P

k�2
x1=0

P
k�1
x2=x1+1

1
=

k � 2

3k
(7)

Therefore,

AvgD(b) = E[b1 + b2 + b3] >
k � 2

3k
(8)

If the points do not fall in the same row or column of regions, then we can assume

without loss of generality that the �rst point is in a region which is \below" the region that
the second point falls in. The distance between the two points consists of four parts: the

distance between the �rst point and its region's upper right corner (c1), the distance between

the second point and its region's lower left corner (c2), the distance along the diagonal path
from the lower region to the upper's region row or column (cdiag), and the distance up the

row or column to the second region (choriz or cvert). An example of this situation is shown

in Figure 3.

3It is actually about 1:3=k, but we want to show that even a lower bound on the average Visible Decom-

position path is higher than the optimal path length. In addition, as k !1, case (c) dominates.

9

}

}
}

b1

2b

3b

(x ,y)1 1
(x ,y)2 1

Case (b) of the analysis, in which

both points fall in the same row or

column. The path between them
must consist of three parts: two seg-

ments from the points to their re-
spective region corners, and a (po-

tentially zero-length) segment be-
tween the region corners.

choriz
cdiag

c1

c
2

} }

}

}
(x ,y)11

(x ,y)
22

Case (c) of the analysis, in which
the points do not fall in the same
row or column. The path between

themmust consist of a diagonal sec-
tion, a vertical or horizontal sec-
tion, and two segments from the
points to their respective region cor-

ners.

Figure 3: Two cases from the analysis of average Visible Decomposition path length

10

The average lengths of c1 and c2 are independent, and since the average distance to every

corner must be equal, the average length to the corner is the radius of the region. In other

words, E[c1] = E[c2] =
p
2

2k
.

Now we calculate cdiag + choriz + cvert: the path from the �rst region's upper right corner

(x1; y1) to the second region's lower left corner (x2; y2), where x1 < x2 and y1 < y2. The

length of the path along the diagonal is cdiag =
p
2

k
(min(x2 � x1; y2 � y1) � 1). The length

of the vertical and horizontal part of the path (at least one of which must be zero) is

cvert =
1

k
(y2 � y1 � min(x2 � x1; y2 � y1)) and choriz =

1

k
(x2 � x1 � min(x2 � x1; y2 � y1)),

respectively. The average distance of the path along the diagonal and up the row or column
is therefore

E[cdiag + cvert + choriz] =
k�2X
x1=0

k�2X
y1=0

k�1X
x2=x1+1

k�1X
y2=y1+1

cdiag + cvert + choriz

k�2X
x1=0

k�2X
y1=0

k�1X
x2=x1+1

k�1X
y2=y1+1

1

=
(k � 2)((4 + 3

p
2)k2 + (2� 6

p
2)k +

p
2� 2)

15k2(k � 1)
(9)

and therefore,

AvgD(c) = E[cdiag + cvert + choriz + c1 + c2]

=
(k � 2)((4 + 3

p
2)k2 + (2 � 6

p
2)k +

p
2� 2)

15k2(k � 1)
+

p
2

k
(10)

We now have all the components for �nding the average path length between two points

where the path must go through the grid intersections. PrfagAvgD(a) + PrfbgAvgD(b) +
PrfcgAvgD(c) is at least:

[�20 + 3
p
2� 5log(1 +

p
2) + (53 � 3

p
2 + 5 log(1 +

p
2))k+

(�8
p
2� 29)k2 + (�4� 3

p
2)k3 + (4 + 3

p
2)k4] = 15(k � 1)k3

(11)

As we make the grid �ner and �ner (i.e. as k !1), Equation 11 converges on 4+3
p
2

15
�

0:55, about 5:5% longer than the average optimal path (Equation 1) which is about 0:521.

The intuition behind this is that as the number of subdivisions increases, the deviations

from the optimal path get smaller and smaller, but the number of deviations gets larger and

larger.

Both the grid path and the optimal path scale linearly with the length of the side of the
square. This analysis was done in an empty world, and adding obstacles to the world helps

the grid path. That is because any intersection of an obstacle with a grid line generates an

additional \portal" point to cross from region to region. However, the convergence behavior

described in this section persists, and the length of the average Visible Decomposition path

still does not match the optimal path length.

11

}

2kg

s

glue
point}___

 k
s

optim
al path segment

vis
ible deco

mposit
ion se

gment

Figure 4: Worst case di�erence between the optimal path segment and the visible decompo-
sition path segment. In this diagram, the number of glue points per edge,g, is 2.

2.2.2 Increasing the number of glue points

As the number of glue points increases, the average path length does converge to the optimal

average. To show this, we again consider an empty square world of size s � s, subdivided
into k � k regions (in this case k is held constant). There are g glue points on every side of
each of the k2 regions and they are uniformly spaced.

If two points are picked at random, they will be on average k=3 region-rows away from

each other and k=3 region-columns away from each other. In other words, the line connecting

them will go through 2k=3 regions on the average.
We will now discuss the worst case di�erence between the optimal path segment and the

visible decomposition path segment that goes through a particular region. The worst case
occurs when (1) the optimal path segment starts at the lower left corner of the region and
crosses the right edge of the region as it exits, and (2) the visible decomposition path segment

is the longest possible segment in the region | the diagonal. This situation is depicted in

Figure 4. Since the edge of the region is of length s=k, the diagonal is of length s
p
2=k. We

know that the optimal segment hits the right edge of the region at most 1=2g � s=k below the

top right corner. Since there are g glue points (one of them is the corner), there is another

glue point on the right edge, s=gk below the corner. Therefore, if the optimal path segment

crosses the right edge more than s=2gk below the corner, then the visible decomposition

path segment would not go through the corner glue point, but through the glue point below
the corner.

We can now compute the distance of the optimal path segment in that region. It is

s

2kg

q
8g2 � 4g + 1 (12)

As the number of glue points increases (g !1), Equation 12 converges to s
p
2=k, which

12

is the worst case length of the Visible Decomposition segment. Therefore, the di�erence

between the optimal and visible decomposition path segments converges to zero. The total

di�erence of the path length also converges to zero since the path goes through only 2k=3
regions on the average.

2.3 Path smoothing

While adding glue points is a good way to decrease path length, it is very memory intensive

since many new points need to be added to the visibility graph. An alternative approach is
to smooth the path after it is generated. The smoothing techniques described in this section

do not add new points, but they are asymptotically ine�cient (i.e. global) in time. However,

the expense incurred in practice is negligible.
We rely on the triangle inequality in order to smooth the path. The unsmoothed path is a

list of vertices (v1; : : : ; vn), where the �rst and last vertices are the origin and goal. For every
triple of vertices (vi; vi+1; vi+2) for i = 1 : : : n � 2, check if dist(vi; vi+1) + dist(vi+1; vi+2) >
dist(vi; vi+2). If so, and the edge from vi to vi+2 is visible, then remove the vertex vi+1.

This algorithm constitutes one smoothing pass. We can pass over the list of vertices
repeatedly until there is no change. The expensive and non-local part of the algorithm is

the visibility check. It is possible that we need to check for intersection of every obstacle in
the world with every segment of the path. In practice however, even multi-pass smoothing
can be done in real time.

This smoothing technique is an instance of �ltering the path with a narrow �lter. It is
possible to extend it to �lters of growing widths, and recursive schemes. For example, trying
to smooth triple (v1; vn=2; vn), and then the two triples (v1; vn=4; vn=2�1) and (vn=2; v3n=4; vn),
and so on.

3 Results

The Visible Decomposition algorithm was implemented and tested on various terrains from
the ModSAF database. The complexity of these worlds varied from 150 to over 2000 obsta-
cles, and the obstacles themselves ranged from well de�ned tree canvases to rivers to swamps.

The con�guration space is two-dimensional, but there are multiple copies of it since there

are many di�erent widths that the collection of vehicles can assume. The following results
are from experiments on a 150 obstacle world with about 6500 vertices. This relatively small
problem (by the standards of these simulations) is used to enable us to do extensive testing

in �nite time. The algorithm has also been run on the larger databases and achieves the

desired interactive performance, that is, a user can drag a point over the whole terrain while

the a collision-free path is continuously being found (from scratch) from the origin to the
point being dragged.

The graph in Figure 5 shows the CPU time on an SGI Indigo2 (in centiseconds) spent
on inserting the goal and start vertices as k grows (the world is divided into a k � k grid).

It also shows the time spent on searching the resulting graph using both Dijkstra's shortest
path and A*. The topmost point, k = 1, represents the traditional visibility graph approach,

and it can be seen that as k increases, the insertion time decreases quickly until the total

13

20 40 60 80 100
k0

2500

5000

7500

10000

12500

15000

17500 k=2

70000
k=1

Search - Dijkstra

Search - A*

Insertion

average
 time

Insertion

Figure 5: Time for vertex insertion and search as k increases. k = 1 is the global visibility
graph approach.

planning time is dominated by the search. In addition, it is clear that the value of k for
which both insertion and search is minimized is low. The timing is averaged over 500 random
paths for each value of k.

The graph in Figure 6 shows how the length of paths generated by Visible Decomposition
compares with the optimal paths produced by the traditional visibility graph method. We
chose 500 random pairs of start and goal vertices, and used this set for measuring the
average path length for increasing values of k. The optimal path length is the base line at

the bottom. The top line shows results without smoothing. The second line shows results

with one-pass triangle inequality smoothing. The third line shows results with multiple-pass

triangle inequality smoothing, as described in Section 2.3.
In the example shown in Figure 2, there is one glue point associated with each region;

namely, one in the lower left corner (the region's neighbors provide for the other corners).
This is the minimum required for connectivity, but doesn't lead to very good looking paths.

In the experiments described above, there are 3 glue points for each region | the bottom

left corner, the midpoint of the left wall, and the midpoint of the
oor.
As can be seen, the paths generated using Visible Decomposition are only about 1% longer

than optimal, and can be made shorter using very simple smoothing techniques. However,
as the analysis of the previous section showed, increasing the subdivision does not lead to

convergence to the optimal path length.

Figure 7 shows how the average path length decreases as the number of glue points per
region increases. The paths are the same set as the ones used for Figure 6. The number of

regions was held constant at 15�15, and the number of glue points per region was increased
from 1 to 60. Increasing the number of glue points results in convergence to the optimal

path length, agreeing with the analysis. However, there is extra computation as can be seen

in Figure 8. The top line shows the search time using Dijkstra as the number of glue points

14

20 40 60 80 100
k25700

25800

25900

26000

26100

26200

avg
dist

no smoothing

one-pass smoothing

multi-pass smoothing

optimal

Figure 6: Average path length as k increases. The base line is the optimal k = 1. The top

plot uses Visible Decomposition. The second plot smoothes using 1-pass triangle inequality.

The third plot smoothes using multiple-pass triangle inequality.

10 20 30 40 50 60
g

25800

26000

26200

26400

26600

avg
dist

optimal

no smoothing

smoothed

path

Figure 7: Average path length as g, the number of glue points, increases. The base line is

the optimal path length with k = 1. The decomposition is held constant at k = 15.

15

10 20 30 40 50 60
g0

2500

5000

7500

10000

12500

15000

17500

20000

time

Search - Dijkstra

Search - A*

Insertion

Figure 8: Average computation time as g, the number of glue points, increases. The de-
composition is held constant at k = 15. The top line shows the time taken by Dijkstra, the
middle line by A*, and the bottom line by inserting the origin and goal vertices.

increases, the second line shows the search time using A*, and the bottom line shows the
time taken to insert the origin and goal vertices.

4 Conclusions

In this paper we have discussed a technique called Visible Decomposition for local construc-

tion and update of visibility graph planning. The method represents a tradeo� between the

visibility graph approach and the cell decomposition approaches. The tradeo� is parame-
terized by the number of local regions. We analyze a decomposition into a world of k � k

squares, and show that the optimal value for k only grows as O(n
1

3
+�), where n is the number

of vertices of all the obstacles in the world. This means that the number of regions grows

very slowly compared to the size of the world.

We have shown that the method is well suited for real-time planning in complex, planar
environments. We have also shown that the paths generated by using Visible Decomposition

are not much longer than the optimal paths, and can be made to converge by smoothing
and adding glue points.

Future extensions should include variable density decomposition with more regions in the

areas with more obstacle vertices.

References

[Asano et al., 1986] Takao Asano, Tetsuo Asano, Leonidas Guibas, John Hershberger, and Hiroshi Imai.

Visibility of disjoint polygons. Algorithmica, 1:49{63, 1986.

16

[Brock et al., 1992] D.L. Brock, D.J. Montana, and A.Z. Ceranowicz. Coordination and Control of Multiple

Autonomous Vehicles. In Proc. of IEEE International Conference on Robotics and Automation. IEEE,

1992.

[Brooks and Lozano-P�erez, 1985] R. A. Brooks and T. Lozano-P�erez. A subdivision algorithm in con�g-

uration space for �ndpath with rotation. "IEEE Transacations on Systems, Man and Cybernetics",

SMC-15(2):224{233, 1985.

[Canny and Donald, 1988] J. Canny and B. Donald. Simpli�ed voronoi diagrams. Discrete and Computa-

tional Geometry, 3:219{236, 1988.

[Latombe, 1991] Jean-Claude Latombe. Robot motion planning. Kluwer Academic, 1991.

[Lozano-P�erez and Wesley, 1979] Tom�as Lozano-P�erez and M. Wesley. An algorithm for planning collision-

free paths among polyhedral obstacles. Communications of the ACM, 22:560{570, 1979.

[Nilsson, 1984] Nils J. Nilsson. Shakey the robot. SRI TN-323, SRI International, 1984.

[�O'D�unlaing and Yap, 1982] C. O. �O'D�unlaing and C. K. Yap. A retraction method for planning the motion

of a disc. Journal of Algorithms, 6(1):104{111, 1982.

[Santal�o, 1976] L. A. Santal�o. Integral Geometry and Geometric Probability. Encyclopedia of Mathematics

and its applications. Addison-Wesley, 1976.

17

