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Abstract

Stimuli outside classical receptive fields have been shown to exert significant influence over
the activities of neurons in primary visual cortex. We propose that contextual influences
are used for pre-attentive visual segmentation, in a new framework called segmentation
without classification. This means that segmentation of an image into regions occurs with-
out classification of features within a region or comparison of features between regions.
This segmentation framework is simpler than previous computational approaches, making
it implementable by V1 mechanisms, though higher level visual mechanisms are needed
to refine its output. However, it easily handles a class of segmentation problems that
are tricky in conventional methods. The cortex computes global region boundaries by de-
tecting the breakdown of homogeneity or translation invariance in the input, using local
intra-cortical interactions mediated by the horizontal connections. The difference between
contextual influences near and far from region boundaries makes neural activities near
region boundaries higher than elsewhere, making boundaries more salient for perceptual
pop-out. This proposal is implemented in a biologically based model of V1, and demon-
strated using examples of texture segmentation and figure-ground segregation. The model
performs segmentation in exactly the same neural circuit that solves the dual problem of
the enhancement of contours, as is suggested by experimental observations. Its behavior is
compared with psychophysical and physiological data on segmentation, contour enhance-
ment, and contextual influences. We discuss the implications of segmentation without
classification and the predictions of our V1 model, and relate it to other phenomena such
as asymmetry in visual search.
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1. Introduction

In early stages of the visual system, individ-
ual neurons respond directly only to stimuli in
their classical receptive fields (RFs)(Hubel and
Wiesel, 1962). These RFs sample the local con-
trast information in the input but are too small
to cover visual objects at a global scale. Re-
cent experiments show that the responses of pri-
mary cortical (V1) cells are significantly influ-
enced by stimuli nearby and beyond their clas-
sical RFs (Allman, Miezin, and McGuinness,
1985, Knierim and Van Essen 1992, Gilbert,
1992, Kapadia, Ito, Gilbert, and Westheimer
1995, Sillito et al 1995, Lamme, 1995, Zipser,
Lamme, and Schiller 1996, Levitt and Lund
1997). These contextual influences are in gen-
eral suppressive and depend on whether stimuli
within and beyond the RF's share the same ori-
entation (Allman et al, 1985, Knierim and Van
Essen 1992, Sillito et al 1995, Levitt and Lund
1997). In particular, the response to an opti-
mal bar in the RF is suppressed significantly by
similarly oriented bars in the surround — iso-
orientation suppression (Knierim and Van Es-
sen 1992). The suppression is reduced when the
orientations of the surround bars are random or
different from the bar in the RF (Knierim and
Van Essen 1992, Sillito et al 1995). However, if
the surround bars are aligned with the optimal
bar inside the RF to form a smooth contour,
then suppression becomes facilitation (Kapadia
et al 1995). The contextual influences are ap-
parent within 10-20 ms after the cell’s initial re-
sponse( Knierim and Van Essen 1992, Kapadia
et al 1995), suggesting that mechanisms within
V1 itself are responsible (see discussion later on
the different time scales observed by Zipser et
al 1996). Horizontal intra-cortical connections
linking cells with non-overlapping RF's and sim-
ilar orientation preferences have been observed
and hypothesized as the underlying neural sub-
strate(Gilbert and Wiesel, 1983, Rockland and
Lund 1983, Gilbert, 1992). While the phenom-
ena and the mechanisms of the contextual in-
fluences are studied experimentally and in some
models (e.g., Somers Todorov, Siapas, and Sur
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1995, Stemmler, Usher, and Niebur, 1995), in-
sights into their computational roles have been
limited to mainly contour or feature linking (All-
man et al 1995, Gilbert, 1992, see more refer-
ences in Li 1998).

We propose that contextual influences serve
the goal of pre-attentive visual segmentation or
grouping to infer global visual objects such as re-
gions and contours from local RF features. Lo-
cal features can group into regions, as in texture
segmentation; or into contours which may repre-
sent boundaries of underlying objects. We show
how region segmentation emerges from a sim-
ple but biologically-based model of V1 with only
local cortical interactions between cells within a
few RF sizes away from each other. Note that al-
though the horizontal intra-cortical connections
are termed as long range, they are still local with
respect to the whole visual field since the ax-
ons reach only a few millimeters, or a few hy-
percolumns or receptive field sizes, away from
the pre-synaptic cells. To attack the formidable
problem of segmentation in such a low level vi-
sual area, we introduce a new computational
framework — segmentation without classifica-
tion.

2. The problem of visual segmentation

Visual segmentation is defined as locating the
boundary between different image regions. For
example, when regions are defined by their pixel
luminance values, center-surround filters in the
retina can locate boundaries between regions by
comparing the classification (in this case, lumi-
nance) values between neighboring image areas.
In general, regions are seldom classifiable by
pixel luminances, and image filters are mainly
to extract image features rather than to segment
image regions(Haralick and Shapiro, 1992). For
general region segmentation, previous compu-
tational approaches have always assumed, im-
plicitly or explicitly, that segmentation requires
(1) feature extraction or classification for ev-
ery small image area, and, (2) comparisons of
the classification flags (feature values) between
neighboring image areas to locate the boundary
as where the classification flags change (Haral-



ick and Shapiro, 1992, Bergen 1991, Bergen and
Adelson, 1988, Malik and Perona 1990). This
framework can be summarized as segmentation
by classification. Over the years, many such seg-
mentation algorithms have been developed both
for computer vision(Haralick and Shapiro, 1992)
and to model natural vision (Bergen and Adel-
son, 1988, Malik and Perona 1990). They are
all forms of segmentation by classification, and
differ chiefly as to how the region features are ex-
tracted and classified, whether it is by, e.g., im-
age statistics by pixel correlations, or the model
parameters in the Markov random fields gener-
ating the image (Haralick and Shapiro, 1992), or
the outcomes from model neural filters ( Bergen
and Adelson, 1988) or model neural interactions
(Malik and Perona 1990). In such approaches,
classification is problematic and ambiguous near
boundaries between regions. This is because fea-
ture evaluations can only be performed in lo-
cal areas of the image which are assumed to be
sitting away from region boundaries, i.e., fea-
ture classification presumes some degree of re-
gion segmentation. A priori, the locations of
the region boundaries are not known, and so
the feature values at these places will be am-
biguous. The probability that this ambiguity
happens can be reduced by choosing smaller im-
age areas for feature evaluation. However, this
in turn gives less accurate feature values, espe-
cially in textured regions, and can lead to there
being significant differences in the feature val-
ues even within a region, and thus to false re-
gion boundaries. One seems inevitably to face a
fundamental dilemma — classification presumes
segmentation, and segmentation presumes clas-
sification.

This dilemma can be dissolved by recognizing
that segmentation does not presume classifica-
tion. Natural vision can segment the two re-
gions in Fig. 1 even though they have the same
texture features (note that the plotted area is
only a small part of an extended image). In
this case, classification of the region features is
neither sufficient, nor necessary, and segmenta-
tion is rather triggered by the sudden changes
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near the region boundary which is problematic
in traditional approaches. In fact, even with dis-
tinguishable classification flags for all image ar-
eas in any two regions (such as the ‘|” and '
in Fig. 3A), segmentation is not completed un-
til another processing step locates the boundary,
perhaps by searching for where the classification
flags change. We propose that segmentation at
its pre-attentive bare minimum is segmentation
without classification, i.e., segmentation with-
out explicitly knowing the feature contents of
the regions. This simplifies the segmentation
process conceptually, making it plausible that
it can be performed by low level processings in
V1. This paper focuses on pre-attentive segmen-
tation. Additional processing is likely needed
to improve the resulting segmentation, e.g., by
refining the coarse boundaries detected at the
pre-attentive stage and classifying the contents
of the regions.

3. The principle and its implementation

The principle of segmentation without classifi-
cation is to detect region boundaries by detect-
ing the breakdown of translation invariance in
inputs. A single image region is assumed to be
defined by the homogeneity or translation in-
variance of the statistics of the image features,
no matter what the features are, or, for instance,
whether they are colored red or blue or whether
or not the texture elements are textons (Julesz,
1981). In general, this translation invariance
should include cases such as the image of a sur-
face slanted in depth, although the current im-
plementation of the principle has not yet been
generalized beyond images of fronto-parallel sur-
faces. Homogeneity is disrupted or broken at the
boundary of a region. In segmentation without
classification, a mechanism signals the location
of this disruption without explicitly extracting
and comparing the features in image areas.

This principle is implemented in a model of
V1. Without loss of generality, the model fo-
cuses on texture segmentation, i.e., segmenta-
tion without color, motion, luminance, or stereo
cues. To focus on the segmentation problem, the
model includes mainly layer 2-3 orientation se-



lective cells and ignores the mechanism by which
their receptive fields are formed. Inputs to the
model are images filtered by the edge- or bar-
like local RFs of V1 cells. (The terms ‘edge’
and ‘bar’ will be used interchangeably.) The re-
sulting bar inputs are merely image primitives,
which are in principle like image pixel primi-
tives and are reversibly convertible from them.
They are not texture feature values, such as the
‘+’ or ‘X’ patterns in Fig. 6D and the statistics
of their spatial arrangements, or the estimated
densities of bars of particular orientations, from
which one can not recover the original input im-
ages. To reiterate, this model does not extract
texture features in order to segment'. To avoid
confusions, this paper uses the term ‘edge’ only
for local luminance contrast, a boundary of a re-
gion is termed ‘boundary’ or ‘border’ which may
or may not (especially for texture regions) cor-
respond to any ‘edges’ in the image. The cells
influence each other contextually via horizontal
intra-cortical connections (Rockland and Lund
1983, Gilbert and Wiesel, 1983, Gilbert, 1992),
transforming patterns of inputs to patterns of
cell responses. If cortical interactions are trans-
lation invariant and do not induce spontaneous
pattern formation (such as zebra stripes (Mein-
hardt, 1982)) through the spontaneous break-
down of translation symmetry, then the corti-
cal response to a homogenous region will itself
be homogeneous. However, if there is a region
boundary, then two neurons, one near and an-
other far from the boundary will experience dif-
ferent contextual influences, and thus respond
differently. In the model, the cortical interac-
tions are designed (see below) such that the ac-
tivities of neurons near the boundaries will be
relatively higher. This makes the boundaries
relatively more salient, allowing them to pop
out perceptually for pre-attentive segmentation.

In practice, in the presence of noise, it is not possible
to uniquely reconstruct the original pixel values in the input
image from the ‘edge’ and ‘bar’ variables. For simplicity, the
current implementation has not enforced this reversibility.
However, the principle of no classification is adhered to by
not explicitly comparing (whether by differentiation or other
related manners) the ‘edge’ and ‘bar’ values between image
areas to find region boundaries
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Experiments in V1 indeed show that activity
levels are robustly higher near simple texture
boundaries only 10-15 msec after the initial cell
responses (Nothdurft, 1994, Gallant, Van Essen,
and Nothdurft 1995).

Fig. 2 shows the elements of the model and
their interactions. At each location 7 there is a
model V1 hypercolumn composed of K neuron
pairs. Each pair (7,0) has RF center i and pre-
ferred orientation § = kn/K for k = 1,2,...K,
and is called (a neural representation of) an edge
segment. Based on experimental data (White,
1989, Douglas and Martin 1990), each edge seg-
ment consists of an excitatory and an inhibitory
neuron that are connected with each other, and
each model cell represents a collection of local
cells of similar types. The excitatory cell re-
ceives the visual input; its output quantifies the
response or salience of the edge segment and
projects to higher visual areas. The inhibitory
cells are treated as interneurons. An edge of
input strength fiﬂ at ¢ with orientation [ in
the input image contribute to I;p by an amount
Ligp(0 — B), where ¢p(0 — ) = e 10-8/(/%) jg
the cell’s orientation tuning curve. Based on
observations by Gilbert, Lund and their col-
leagues (Gilbert and Wiesel, 1983, Rockland
and Lund, 1983, Hirsch and Gilbert, 1991), hori-
zontal connections Jig jor (resp. Wi jor) mediate
contextual influences via monosynaptic excita-
tion (resp. disynaptic inhibition) from bar j6’
to i# which have nearby but different RF cen-
ters, i # j, and similar orientation preferences,
f ~ 6. The membrane potentials follow the
equations:

—ayig — > P(A0) gy (yigrn0) + Jogu(Tio)
A0
+ Y Jijeg:(zje) + Lig + 1, (1)
JELY
—ayYig + 92(i0)

+ Y Wigjogs(zjor) + L.
J#i,0

Tip =

yi&

(2)

where a,xi9 and oy, y;p model the decay to rest-
ing potential, g,(x) and g,(y) are sigmoid-like
functions modeling cells’ firing rates in response
to membrane potentials x and y, respectively,



1(AB) is the spread of inhibition within a hyper-
column, J,g,(x;9) is self excitation, I, and I, are
background inputs, including noise and inputs
modeling the general and local normalization of
activities (Heeger, 1992) (see Li (1998) for more
details). Visual input I;p persists after onset,
and initializes the activity levels g,(z). Equa-
tions (1) and (2) specify how the activities are
then modified (effectively within one membrane
time constant) by the contextual influences. De-
pending on the visual stimuli, the system of-
ten settles into an oscillatory state (Gray and
Singer, 1989, Eckhorn, Bauer, Jordan, Brosch,
Kruse, Munk, and Reitboeck 1988), an intrin-
sic property of a population of recurrently con-
nected excitatory and inhibitory cells (see Li
(1998) for detailed parameters and dynamic
analysis of the model). Temporal averages of
gz () over several oscillation cycles (about 12
to 24 membrane time constants) are used as the
model’s output. If the maxima over time of the
responses of the cells were used instead as the
model’s output, the boundary effects shown in
this paper would usually be stronger. That dif-
ferent regions occupy different oscillation phases
could be exploited for segmentation (Li, 1998),
although we do not do so here. The nature of
the computation performed by the model is de-
termined largely by the horizontal connections
J and W.

For view-point invariance, the connections are
local, and translation and rotation invariant
(Fig. 2B), i.e., every pyramidal cell has the
same horizontal connection pattern in its ego-
centric reference frame. The synaptic weights
are designed for the segmentation task while
staying consistent with experimental observa-
tions (Rockland and Lund 1983, Gilbert and
Wiesel, 1983, Hirsch and Gilbert 1991, Weliky,
Kandler, Fitzpatrick, and Katz 1995). In partic-
ular, J and W are chosen to satisfy the follow-
ing three conditions (Li, 1997): (1) the system
should not generate patterns spontaneously, i.e.,
homogenous input images give homogenous out-
puts, so that no illusory borders occur within
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should give relatively higher responses, and (3)
the same neural circuit should perform contour
enhancement. Condition (3) is not only required
by physiological facts (Knierim and Van Essen
1992, Kapadia et al, 1995), but is also desirable
because regions and their boundary contours
are complementary. The qualitative structure
of the connection pattern satisfying the condi-
tions is shown in Fig. 2B, and is thus a predic-
tion of our model (see Appendix and Li (1998)
for its derivation). Qualitatively, the connec-
tion pattern resembles a “bow tie”: J predom-
inantly links cells with aligned RFs for contour
enhancement, and W predominantly links cells
with non-aligned RF's for surround suppression.
Both J and W link cells with similar orientation
preferences, as observed experimentally (Rock-
land and Lund 1983, Gilbert and Wiesel 1983,
Hirsch and Gilbert 1991, Weliky et al, 1995),
and their magnitudes decay with distance be-
tween RFs(Li, 1998).

Mean field techniques and dynamic stability
analysis (shown in Appendix) are used to de-
sign the horizontal connections that ensure the
3 conditions above. Conditions (1) and (2) are
strictly met only for (the particularly homoge-
nous) inputs I;p within a region that are inde-
pendent of 7, i.e., exactly the same inputs are
received at each grid point. When a region re-
ceives more complex input texture patterns such
as in stochastic or sparse texture regions (e.g.,
those in Fig. (6)), conditions (1) and (2) are
often met but not guaranteed. This is not nec-
essarily a flaw in this model, since it is not clear
whether conditions (1) and (2) can always be
met for any types of homogenous inputs within
a region under the hardware constraints of the
model or the cortex. This is consistent with
the observations that sometimes a texture region
does not pop out of a background pre-attentively
in human vision (Bergen 1991). A range of
quantitatively different connection patterns can
meet our 3 restrictive conditions. Of course, this
range depends on the particular structure and
parameters of the model such as its receptive
field sampling density. This makes our model



quantitatively imprecise compared to physiolog-
ical and psychophysical observations (see discus-
sions later).

4. Performance of the model

The model was applied to a variety of input
textures, as shown in examples in the figures.
With two exceptions, the input values Iy is the
same for all visible bars in each example so that
any difference in the outputs g, (z;9) of the bars
are solely due to the effects of the intra-cortical
interactions. The exceptions are the input taken
from a photo (Fig. 10), and the input in Fig.
(9D) which models an experiment on contour
enhancement (Kapadia et al 1995). The differ-
ence in the outputs, which are interpreted as a
difference in saliencies, are significant about one
membrane time constant after the initial neu-
ral response (Li, 1998). This agrees with ex-
perimental observations (Knierim and van Essen
1992, Kapadia et al 1995, Gallant et al 1995) if
this time constant is assumed to be of order 10
msec. The actual value jig used in all examples
are chosen to mimic the corresponding experi-
mental conditions. In this model the dynamic
range is Ly = (1.0,4.0) for an isolated bar to
drive the excitatory neuron from threshold ac-
tivation to saturation. Hence, we use jig = 1.2,
2.0, and 3.5 for low, intermediate, and high con-
trast input conditions used in experiments. Low
input levels are used to demonstrate contour en-
hancement — the visible bars in Figs. (7B) and
the target bar in Fig. (9D) (Kapadia et al 1995,
Kovacs and Julesz 1993). Intermediate levels
are used for all visible bars in texture segmenta-
tion and figure-ground pop-out examples (Figs.
(3, 4, 5, 6, 7TA, and 8)). High input levels are
used for all visible bars in Fig. (9A,B,C) and
the contextual (background) bars in Fig. (9D)
to model the high contrast conditions used in
physiological experiments that study contextual
influence from textured and/or contour back-
grounds (Knierim and van Essen 1992, Kapadia
et al 1995). The input I; from a photo im-
age (Fig. (10)) is different for different 76 with
I;p < 3.0. The output saliency g, (z;) ranges in
[0,1]. The widths of the bars in the figures are
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proportional to input or output strengths. The
same model parameters (e.g., the dependence of
the synaptic weights on distances and orienta-
tions, the thresholds and gains in the functions
g,(.) and g,(.), and the level of input noises in
I,) are used for all the examples whether it is for
the texture segmentation, contour enhancement,
figure-ground segregation, or combinations of
them. The only difference between different ex-
amples are the differences in the model inputs
I;p and possibly the different image grid struc-
ture (Manhattan or orthogonal grids) for bet-
ter input sampling. All the model parameters
needed to reproduce the results are listed in the
Appendix of the reference (Li, 1998).

Fig. 3A shows a sample input containing
two regions. Fig. 3B shows the model out-
put. Note that the plotted region is only a
small part of, and extends continuously to, a
larger image. This is the case for all figures
in this paper except Fig. (10). Fig. 3C plots
the average saliency S(c) of the bars in each
column ¢ in Fig. 3B, indicating that the most
salient bars are indeed near the region bound-
ary. Fig. 3D confirms that the boundary can be
identified by thresholding the output activities
using a threshold, denoted as, say, thre = 0.5
in Fig. 3D, the fraction of the highest out-
put max;p{g.(x)} in the image. Note that V1
does not perform such thresholding, it is per-
formed only for display purposes. Also, the
value of the threshold is example dependent for
better visualization. To quantify the relative
saliency of the boundary, define the net saliency
at each grid point 7 to be that of the most ac-
tivated bar (maxg{g,(xig)}), let Speqar be aver-
age saliency across the most salient grid column
parallel and near the boundary, and S and o, be
the mean and standard deviation in the salien-
cies of non-boundary locations, defined as being
at least (say) 3 grid units away from the bound-
ary. Define (1 = Spear/S, d = (Spear. — S)/0s).
A salient boundary should give large values for
(r,d). One expects that at least one of r and
d should be comfortably larger than 1 for the
boundaries to be adequately salient. In Fig.



(3), (r,d) = (4.5,15.0). Notes that the vertical
bars near the boundary are more salient than
the horizontal ones. This is because the vertical
bars run parallel to the boundary, and are there-
fore specially enhanced through the contour en-
hancement effect of the contextual influences.
This is related to the psychophysical observation
that texture boundaries are stronger when the
texture elements on one side of them are paral-
lel to the boundaries (Walkson and Landy 1994).
Fig (4A) shows an example with the same ori-
entation contrast (90°) at the boundary but dif-
ferent orientations of the texture bars. Here the
saliency values distribute symmetrically across
the boundary and the boundary strength is a lit-
tle weaker. These model behaviors can be phys-
iologically tested.

Fig. 4 shows examples using other ori-
entations of the texture bars. The bound-
ary strength decreases with decreasing orienta-
tion contrast at the region border. It is very
weak when the orientation contrast is only 15°
(Fig.(4C)) — here translation invariance in in-
put is only weakly broken, making the bound-
ary very difficult to detect pre-attentively. Note
also that the most salient location in an im-
age may not be exactly on the boundary (Fig.
4B), this should lead to a bias in the estima-
tion of the border location, as can be experi-
mentally tested. This also suggests that outputs
from pre-attentive segmentation need to be pro-
cessed further by the visual system. The bound-
ary strength also decreases if the orientations of
the texture elements are somewhat random or
the spacing between the elements increases (Fig.
(5)). Boundary detection is difficult when ori-
entation noise > 30° or when the spacing be-
tween bar elements is more than 4 or 5 grid
points (or texture element sizes). These qual-
itative and quantitative results (on the cut off
orientation contrast, orientation noise, and bar
spacings) compare quite well with human per-
formance on segmentation related tasks (Noth-
durft 1985, 1991).

This model also copes well with textures de-

(6)). In both Figs. 6A and 6B, the neighbor-
ing regions can be segmented even though they
have the same bar primitives and densities. In
particular, the two regions in Fig. 6A have ex-
actly the same features, just like that in Fig. 1,
and would be difficult to segment using tradi-
tional approaches.

When a region is very small, all parts of it be-
long to the boundary and it pops out from the
background, as in Fig. 7A. In addition, Fig. 7B
confirms that exactly the same model, with the
same elements and parameters, can also high-
light contours against a noisy background —
another example of a breakdown of translation
invariance.

Our model also accounts for the asymmetry
in pop-out strength observed in psychophysics
(Treisman and Gormican, 1988), i.e., item A
pops out among item B more easily than vice
versa. Fig. (8) demonstrates such an example
where a cross among bars pops out much more
readily than a bar among crosses. Such asym-
metry is quite natural in our framework — the
nature of breakdown of translation invariance in
the input is quite different depending on which
one is the figure or background.

The model replicates the results of physiolog-
ical experiments on contextual influences from
beyond the classical receptive fields (Knierim
and van Essen 1992, Kapadia et al, 1995). In
particular, Fig. (9A,B,C,D) demonstrate that
the response of a neuron to a bar of preferred
orientation in its receptive field is suppressed by
a textured surround but enhanced by colinear
contextual bars that form a line. As experimen-
tally observed (Knierim and van Essen 1992),
suppression in the model is strongest when the
surround bars are of the same orientation as
the center bar, is weaker when the surround
bars have random orientations, and is weakest
when the surround bars are oriented orthogo-
nally to the center bar. The relative degree of
suppression is quantitatively comparable to that
of the orientation contrast cells observed physi-
ologically (Knierim and van Essen 1992). Sim-

fined by complex or stochastic patterns (Fig. 6 ilarly, Fig. (9D) closely simulates the enhance-



ment effect observed physiologically (Kapadia et
al 1995) when bars in the surround are aligned
with the central bar to form a line.

5. Summary and discussions
Summary of the results

This paper makes two main contributions.
First, we propose a computational framework
for pre-attentive segmentation — segmentation
without classification. Second, we present a bi-
ologically based model of V1 which implements
the framework using contextual influences, and
we thereby demonstrate the feasibility of the
framework.

Since it does not rely on classification, our seg-
mentation framework is simpler than traditional
methods, which explicitly or implicitly require
classification. Consequently, not only can our
framework be implemented using lower level vi-
sual mechanisms as in V1, but also, it avoids the
dilemma which plagues the traditional compu-
tational approaches — segmentation presumes
classification, classification presumes segmenta-
tion. A further consequence is that, our frame-
work can easily handle some segmentation ex-
amples such as those in Fig. (6A), for which the
two regions have the same classification values,
that pose problems for the traditional compu-
tational approaches, but are easily segmentable
by human pre-attentive vision.

Since the computational framework is new,
this is the first model of V1 that captures the
effect of higher neural activities near region
boundaries, as well as its natural consequence
of pop-out of small figures against backgrounds
and asymmetries in pop-out strengths between
choices of figure and ground. The mechanism of
the model is the local intra-cortical interactions
that modify individual neural activities depend-
ing on the contextual visual stimuli, thus de-
tecting the region boundaries by detecting the
breakdown of translation invariance in inputs.
Furthermore, our model is the first to use the
same neural circuit for both the region bound-
ary effect and contour enhancement — individ-
ual contours in a noisy or non-noisy background
can also seen as examples of the breakdown of
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translation invariance in inputs. Putting these
effects together, V1 is modeled as a saliency
network that highlights the conspicuous image
areas in inputs. These conspicuous areas in-
clude region boundaries, and smooth contours or
small figures against backgrounds, thus serving
the purpose of pre-attentive segmentation. This
V1 model, with its intra-cortical interactions de-
signed for pre-attentive segmentation, success-
fully explains the contextual influences beyond
the classical receptive fields observed in phys-
iological experiments (Knierim and van Essen
1992, Kapadia et al 1995). Hence, we suggest
that one of the roles of contextual influences is
pre-attentive segmentation.

Relation to other studies

It has recently been argued that texture anal-
ysis is performed at low levels of visual process-
ing (Bergen, 1991) — indeed filter based models
(Bergen and Adelson 1988) and their non-linear
extensions (e.g., Malik and Perona (1990)) cap-
ture well much of the phenomenology of psy-
chophysical performance. However, all the pre-
vious models are in the traditional framework
of segmentation by classification, and thus differ
from our model in principle. For example, the
texture segmentation model of Malik and Per-
ona (1990) also employs neural-like (albeit much
less realistic) interactions in a parallel network.
However, their interactions are designed to clas-
sify or extract region features. Consequently,
the model requires a subsequent feature compar-
ison operation (by spatial differentiation) in or-
der to segment. It would thus have difficulties in
cases like Fig. (1), and would not naturally cap-
ture figure pop-out, asymmetries between the
figure and ground, or contour enhancement.

By locating the conspicuous image locations
without specific tuning to (or classification of)
any region features, our model is beyond early
visual processing using center-surround filters or
the like (Marr, 1982). While the early stage
filters code image primitives (Marr, 1982), our
mechanism should help in object surface repre-
sentation. Since they collect contextual influ-
ences over a neighborhood, the neurons natu-



rally account for the statistical nature of the
local image characteristics that define regions.
This agrees with Julesz’s conjecture of segmen-
tation by image statistics (Julesz, 1962) without
any restriction to being sensitive only to the first
and second order image statistics. Julesz’s con-
cept of textons (Julesz, 1981) could be viewed in
this framework as any feature to which the par-
ticular intra-cortical interactions are sensitive
and discriminatory. Using orientation depen-
dent interactions between neurons, our model
agrees with previous ideas (Northdurft, 1994)
that (texture) segmentation is primarily driven
by orientation contrast. However the emergent
network behavior is collective and accommo-
dates characteristics of general regions beyond
elementary orientations, as in Fig. 6. Further-
more, the psychophysical phenomena of filling-
in (when one fails to notice a small blank region
within a textured region) could be viewed in our
framework as the instances when the network
fails to highlight enough the non-homogeneity
in inputs near the filled-in area.

Our pre-attentive segmentation without clas-
sification is quite primitive. It merely segments
surface regions from each other, whether or not
these regions belong to different visual objects.
Furthermore, by not classifying, it does not
characterize the region properties (such as by
the 24+1/2 dimensional surface representations
(Marr 1982)) more than what is already implic-
itly present in the raw image pixels or the cell
responses in V1. Hence, for example, our model
does not say whether a region is made of a trans-
parent surface on top of another surface.

Our framework of segmentation without clas-
sification suggests that one should find experi-
mental evidences of pre-attentive segmentation
preceding and dissociated from visual classifi-
cation/discrimination. Recent experimental ev-
idence from V1 (Lamme, Zipser, and Spekrei-
jse 1997, Zipser, private communication 1998)
shows that the modulation of neural activities
starts at the texture boundary and only later in-
cludes the figure surface, where the neural mod-
ulations take about 50 ms to develop after ini-
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tial cell responses (Zipser et al 1996, Zipser, pri-
vate communication, 1998). Some psychophys-
ical evidences (Scialfa and Joffe 1995) suggest
that information regarding (figure) target pres-
ence is available before information regarding
feature values of the targets. V2 lesions in
monkeys are shown to disrupt region content
discrimination but not region border detection
(Merigan, Mealey, and Maunsell, 1993). These
results are consistent with our suggestion. Fur-
thermore, neural modulation in V1, especially
those in the figure surface (Zipser 1998, private
communication), is strongly reduced or abol-
ished by anaesthesia or lesions in higher visual
areas (Lamme et al 1997), while experiments by
Gallant et al (1995) show that activity modula-
tion at texture boundaries is present even under
anaesthesia. Taken together, these experimen-
tal evidences suggest the plausibility of the fol-
lowing computational framework. Pre-attentive
segmentation without classification in V1 pre-
cedes region classification; region classification
after pre-attentive segmentation is initialized in
higher visual areas; the classification is then fed
back to V1 to give top-down influence and refine
the segmentation (perhaps to remove the bias
in the estimation of the border location in the
example of Fig. 4B), this latter process might
be attentive and can be viewed as segmentation
by classification; the bottom-up and top-down
loop can be iterated to improve both classifica-
tion and segmentation. Top-down and bottom-
up streams of processing have been studies by
many others (e.g., Grenander 1976, Carpenter
and Grossberg 1987, Ullman 1994, Dayan et al,
1995). Our model is of the first step in the
bottom up stream, which initializes the itera-
tive loop. The neural circuit in our model can
easily accommodate top-down feedback signals
which, in addition to the V1 mechanisms, selec-
tively enhance or suppress the neural activities
in V1 (see examples in Li 1998). However, we
have not yet modeled how higher visual centers
process the bottom up signals to generate the
feedback.

The model’s components and behavior are



based on and consistent with experimental evi-
dence (Rockland and Lund, 1983, White, 1989,
Douglas and Martin, 1990, Gilbert, 1992, Noth-
durft, 1994, Gallant et al, 1995). The exper-
imentally testable predictions of the model in-
clude the qualitative structure of the horizontal
connections as in Fig. 2B, the dependence of
the boundary highlights on the relative orienta-
tion between texture bars and texture borders
(e.g., in Fig. 3B), and the biases in the esti-
mated border location by the neural responses
(e.g., Fig. 4B). Since the model is quite simplis-
tic in the connection design, I expect that there
will be significant differences between the model
and physiological connections. For instance,
two linked bars interact in the model either via
monosynaptic excitation or disynaptic inhibi-
tion. In real cortex, two linked cells could often
interact via both excitation and inhibition, mak-
ing the overall strength of excitation or inhibi-
tion input contrast dependent (e.g., Hirsch and
Gilbert, 1991, see Li 1998 for analysis). Hence,
the excitation (or inhibition) in our model could
be interpreted as the abstraction of the pre-
dominance of excitation (or inhibition) between
two linked bars. Currently, different sources
of experimental data on the connection struc-
ture are not yet consistent with each other re-
garding the spatial and orientation dependence
of excitation and inhibition (Fitzpatrick 1996,
Cavanaugh, Bair, Movshon 1997, Kapadia, pri-
vate communication 1998, Hirsch and Gilbert
1991, Polat, Mizobe, Pettet, Kasamatsu, Norcia
1998), partly due to different experimental con-
ditions like input contrast levels or the nature of
stimulus elements (e.g., bars or gratings). Our
model performance is also quantitatively depen-
dent on input strength. Omne should bear this
fact in mind when viewing the comparisons be-
tween the model and experimental data in Figs.
(4, 5, 9).

The modulations of neural activity by cor-
tical interactions should have perceptual con-
sequences other than contour/region boundary
enhancement and figure pop-out. For instance,
the preferred orientation of the cells can shift
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depending on contextual bars. Under popula-
tion coding, this will lead to tilt illusion, i.e.,
the change in perceived orientation of the tar-
get bar. The perceived orientation of the target
bar could shift away or towards the orientation
of the contextual bars, depending on the spatial
arrangement (and the orientations) of the con-
textual bars. This is in contrast to the usual no-
tion that the orientation of the target bar tends
to shift away from those of the contextual bars.
Both our model and some recent psychophysical
study (Kapadia, private communication, 1998)
confirm such contextual dependent distortion in
perceived orientation. V1 cells indeed display
changes in orientation tunning under contextual
influences (Gilbert and Wiesel 1990), although
the magnitude and direction of the changes vary
from cell to cell.

Comparison with other models

There are many other related models. Many
cortical models are mainly concerned with con-
tour linking, and the reference Li (1998) has
a detailed citation of these models and com-
parisons with our model. For instance, Gross-
berg and his colleagues have developed models
of visual cortex over many years (Grossberg and
Mingolla 1985, Grossberg, Mingolla, and Ross,
1997). They proposed their ‘boundary contour
system’ as a model of intra-cortical and inter-
areal neural interactions in V1 and V2 and feed-
back from V2 to V1. The model aims to cap-
ture illusory contours which link line segments
and line endings, and presumably such linking
affects segmentation. Other models are more
concerned with regions, namely, to classify re-
gion features and then to segment regions by
comparing the classifications. To obtain tex-
ture region features, Malik and Perona (1990)
use local intra-cortical inhibition. Geman and
Geman built a model based on Markov ran-
dom fields to restore images, in which neigh-
boring image features influence each other sta-
tistically (Geman and Geman, 1984). Such lo-
cal interactions improve the outcomes from the
prior and preliminary feature classifications to
drive segmentation. Recently, Lee (1995) used



a Bayesian framework to infer the region fea-
tures and boundary signals from initial image
measurements using gabor filters. The feature
and boundary values influence each other to up-
date their values in iterative steps to decrease
an energy functional derived from the Bayesian
framework. Lee (1995) suggested hypothetically
that a V1 circuit may implement this bayesian
algorithm.

Our model contrasts to previous models as the
only one that models the effect of region bound-
ary highlights in V1. Hence, it is also the only
one that models contour enhancement and re-
gion boundary highlights in the same neural cir-
cuit. Equally, its instantiation in V1 means that
our model does not perform operations such as
the classification and smoothing of region fea-
tures and the sharpening of boundaries as car-
ried out in some other models (e.g., Lee 1995,
Malik and Perona 1990). Although there are
many simulation and computational models of
V1, if they are not designed for it, V1 models
are unlikely to perform region boundary high-
lights or contour enhancement. The reference
Li (1998) discussed the difficulties in a recurrent
network even for mere contour enhancement us-
ing only the elements and operations in V1. Our
experience also shows that explicit design is nec-
essary for a V1 contour enhancement model to
additionally perform region boundary highlights
(i.e., to meet conditions (1) and (2) in section 3).

Limitations and extensions of the model

Our model is still very primitive compared to
the true complexity of V1. We have yet to in-
clude multiscale sampling or the over-complete
input sampling strategy adopted by V1, or to
include color, time, or stereo input dimensions.
Also, the receptive field features used for our
bar/edges should be determined more precisely.
The details of the intra-cortical circuits within
and between hypercolumns should also be better
determined to match biological vision.

Multiscale sampling is needed not only be-
cause images contain multiscale features, but
also to model V1 responses to images from
flat surfaces slanted in depth — such a region
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should also be seen as “homogenous” or “trans-
lation invariant” by V1, such that it has uniform
saliency. Merely replicating and scaling the cur-
rent model to multiple scales is not sufficient for
this purpose. The computation requires inter-
actions between different scales. We also have
yet to find a better sampling distribution even
within a single scale. Currently, the model neu-
rons within the same hypercolumn have exactly
the same RF centers and the RFs from differ-
ent hypercolumns barely overlap. This sampling
arrangement is sparse compared with V1 sam-
pling. Fig. (10) demonstrates the current model
performance on a photo. The effects of single
scale and sparse sampling (alising) are appar-
ent in the model input image, which is more
difficult than the photo image for human to seg-
ment. However, the most salient model outputs
do include the vertical column borders as well as
some of the more conspicuous horizontal streaks
in the photo.

In addition to orientation and spatial loca-
tion, neurons in V1 are tuned for motion direc-
tion/speed, disparity, ocularity, scale, and color
(Hubel and Wiesel 1962, Livingstone and Hubel
1984). Our model should be extended to stereo,
time, and color dimensions. The horizontal con-
nections in the extended model will link edge
segments with compatible selectivities to scale,
color, ocular dominance, disparity, and motion
directions as well as orientations, as suggested
by experimental data (e.g., Gilbert 1992, Ts’o
and Gilbert 1988). The model should also ex-
pand to include details such as on and off cells,
cells of different RF phases, non-orientation se-
lective cells, end stopped cells, and more cell lay-
ers. These details should help for better quan-
titative match between the model and human
vision. For instance, Malik and Perona (1990)
showed using psychophysical observations that
the odd-symmetric receptive fields are not used
for pre-attentive segmentation. The design of
the horizontal connections between cells should
respect these facts.

Any given neural interaction will be more sen-
sitive to some region differences than others.



Therefore, the model sometimes finds it easier
or more difficult to segment some regions than
natural vision. Physiological and psychophysi-
cal measurements of the boundary effect for dif-
ferent types of textures can help to constrain the
connection patterns in an improved model. Ex-
periments also suggest that the connections may
be learnable or plastic (Karni and Sagi, 1991,
Sireteanu and Rieth 1991). It is desirable also
to study the learning algorithms to develop the
connections.

We currently model saliency at each location
quite coarsely by the activity of the most salient
bar. It is mainly an experimental question as
to how to best determine the saliency, and the
model should accordingly be modified. This is
particularly the case once the model includes
multiple scales, non-orientation selective cells,
and other visual input dimensions. The activi-
ties from different channels should somehow be
combined to determine the saliency at each lo-
cation of the visual field.

In summary, this paper proposes a computa-
tional framework for pre-attentive segmentation
— segmentation without classification. It intro-
duces a simple and biological plausible model of
V1 to implement the framework using mecha-
nisms of contextual influences via intra-cortical
interactions. Although the model is yet very
primitive compared to the real cortex, our re-
sults show the feasibility of the underlying ideas,
that region segmentation can occur without re-
gion classification, that breakdown of transla-
tion invariance can be used to segment regions,
that region segmentation and contour detection
can be addressed by the same mechanism, and
that low-level processing in V1 together with lo-
cal contextual interactions can contribute signif-
icantly to visual computations at global scales.

Appendix: Design analysis for horizon-
tal connections

Connections J and W are designed to satisfy
the 3 conditions listed in section 3. To illustrate,
consider the example of a homogenous input

when 6 = 0
otherwise 3)
of a bar oriented 6 at every sampling point. By
symmetry, a mean field solution (Z;, 7;) is also
independent of spatial location 7. For simplicity
assume Ty = 0 for @ # 0, and ignore all (z49, yi9)
with 0 # 0. Perturbations (z} = 2,5 — Z;5, Y} =
Y;5 — U;5) around the mean field solution follow

Z=AZ (4)

where Z = (2'7,y")". Matrix A results from
expanding equations (1) and (2) around the
mean field solution, it contains the horizontal
connections Ji5 ;5 and Wiz ;5 linking bar seg-
ments oriented all at #. Translation invariance
in J and W implies that every eigenvector of
A is a cosine wave in space for both z' and
y'. To ensure condition (1), either every eigen-
value of A should be negative so that no per-
turbation from the homogeneous mean field so-
lution is self-sustaining, or the eigenvalue with
largest positive real part should correspond to
the zero frequency cosine wave in space, in which
case the deviation from the mean field solution
tends to be homogeneous although it will oscil-
late over time (Li, 1998). Iso-orientation sup-
pression under supra-threshold input I is used
to satisfy condition (2). This requires that every
pyramidal cell z;7 in an iso-orientation surround
should receive stronger overall disynaptic inhi-
bition than monosynaptic excitation:

o Z Wig.jg > Z Jig.j0 (5)
j j

where o = 1(0)g, (¥,5) comes from the inhibitory
interneurons. The excitatory cells near a region
boundary lack a complete iso-orientation sur-
round, they are less suppressed and so exhibit
stronger responses, meeting condition (2). We



tested conditions (1) and (2) in simulations us-
ing these simple and other general input config-
urations including the cases when input within
a region are of the form I;y = Iy where I, is non-
zero for two orientation indices §. Condition (3)
is ensured by strong enough monosynaptic ex-
citation 3 e conour Jio,jor along any smooth con-
tour extending from 7, and enough disynaptic
inhibition between local, similarly oriented, and
non-aligned bars to avoid enhancement of the
noisy background (details in Li 1998), within
the constraints of conditions (1) and (2).
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Figure 1: The two regions have the same feature val-
ues. Traditional approaches to segmentation using feature
extraction and comparison have difficulty in segmenting the
regions.
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Visual space, edge detectors,
and their interactions
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Figure 2:  A: Visual inputs are sampled in a discrete
grid by edge/bar detectors, modeling RFs for V1 layer 2-3
cells. Each grid point has K neuron pairs (see C), one per
bar segment. All cells at a grid point share the same RF
center, but are tuned to different orientations spanning 180°,
thus modeling a hypercolumn. A bar segment in one hyper-
column can interact with another in a different hypercolumn
via monosynaptic excitation J (the solid arrow from one thick
bar to another), or disynaptic inhibition W (the dashed ar-
row to a thick dashed bar). See also C. B: A schematic of the
neural connection pattern from the center (thick solid) bar
to neighboring bars within a finite distance (a few RF sizes).
J’s contacts are shown by thin solid bars. W’s are shown by
thin dashed bars. All bars have the same connection pattern,
suitably translated and rotated from this one. C: An input
bar segment is associated with an interconnected pair of exci-
tatory and inhibitory cells, each model cell models abstractly
a local group of cells of the same type. The excitatory cell
receives visual input and sends output g () to higher cen-
ters. The inhibitory cell is an interneuron. The visual space
has toroidal (wrap-around) boundary conditions.



A:

C: Neural response levels
vs. columns above

D: Thresholded model output

Figure 3: An example of the segmentation performance of the model. A: Input Iy consists of two regions; each visible bar
has the same input strength. B: Model output for A, showing non-uniform output strengths (temporal averages of g, (zis))
for the edges. The input and output strengths are proportional to the bar widths. C: Average output strengths (saliencies)
vs. lateral locations of the columns in B, with the bar lengths proportional to the corresponding edge output strengthes. D:
The thresholded output from B for illustration, thre = 0.5. Boundary saliency measures (r,d) = (4.5,15.0).
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Figure 4: A, B, C: Additional examples of model segmentation. Each is an input image as in Fig. 3A followed immediately
below by the corresponding thresholded (strongest) model outputs as in Fig. 3D. In A, B, C respectively, the boundary
measures are: (r,d) = (1.4,9.0), (r,d) = (1.77,12.2), (r,d) = (1.05, 1.24), and thre = 0.77,0.902, 0.8775 to obtain the output
highlights. D: Plots of boundary strengths (r,d) (symbols ‘4’ and ‘o’ respectively) vs. orientation contrast at boundaries. A
data point for each given orientation contrast is the average of 2 or 3 examples of different texture bar orientations. Again,
each plotted region is only a small part of a larger extended image. Note that the most salient column in B is not exactly
on the boundary, though the boundary column (on its left) is only 6% less salient numerically, and ~ 70% more salient than
areas away from the boundary. Also, C contains two regions whose bar elements differ only slightly in orientation, giving a
perceptually weak vertical boundary in the middle. Because of the noise in the system, the saliencies of the bars in the same
column in A, B, C are not exactly the same, this is also the case in other figures.
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Flgure 9. The boundary strength changes with orientation noise and the spacings between the bars in the textures. A,

B, C:  Model inputs (I;¢) and outputs (g=(zis)) for two texture regions made of bars oriented, on average, respectively,
horizontally and vertically. Each bar’s orientation is randomly jittered from the average orientation by up to 15°, 30°, and
45°, respectively. The orientation noise makes the saliency values quite non-uniform near the boundary, making the boundary
measures (r,d) less meaningful. Boundary detection is difficult or impossible with orientation jitter > 30°. D, E: Model

inputs (Iip) and output (g.(zig)) highlights for two texture regions made of bars oriented horizontally and vertically. The
spacing between neighboring bars are 2 and 4, respectively, grid spacings. F: Plots of boundary strengthes (r,d) (symbol ‘+’
and ‘o’ respectively) vs. bar spacings for stimuli like D, E. To obtain output highlights in D, E respectively, thre = 0.92, 0.95.
Note that although the boundary saliency is only a fraction higher than the non-boundary saliency as bar spacing increases,
the boundary is still the most salient output when the region features are not noisy. The line widths for model outputs are
plotted with one scale for A, B, C and another for D, E.
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Figure 6: A, B, C: Model performance on regions with complex texture elements, and D: regions with stochastic texture
elements. Each plot is the model input (Iig) followed immediately below by the output (g.(z;0)) highlights. For A, B, C, D
respectively, the boundary measures r and d are (r,d) = (1.14,6.3), (r,d) = (1.1,2.0), (r,d) = (1.5,4.5), and (r,d) = (2.56, 5.6),
the threshold to generate the output highlights are thre = 0.91,0.9, 0.85, 0.56.
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Figure 7: Model behavior for other types of inputs. A: A small region pops out since all parts of it belong to the boundary.
The figure saliency is 0.336, which is 2.42 times of the average ground saliency. B: Exactly the same model circuit (and

parameters) performs contour enhancement. The input strength is Iip = 1.2. The contour segments’ saliencies are 0.42+0.03,
and the background elements’ saliencies are 0.184+0.08. To obtain the output highlights in A, B respectively, thre = 0.46, 0.73.
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B: Bar among crosses

A: Cross among bars
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Figure 8: Asymmetry in pop-out strength. A: The cross is 3.4 times as salient (measured as the saliency of the horizontal

bar in the cross) as the average background. B: The area near the central vertical bar is the most salient part in the image,

and is no more than 1.2 as salient as the average background. The target bar itself is actually a bit less salient than the

average background.
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A: Iso-orientation C: Random background
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Figure 9: Model behavior under inputs resembling those in physiological experiments. The input stimuli are composed of
a vertical (target) bar at the center surrounded by various contextual stimuli. All the visible bars have high contrast input
Iis =35 except for the target bar in D where I;6 = 1.2 is near threshold. A, B, C simulate the experiments of Knierim and
van Essen (1992) where a stimulus bar is surrounded by contextual textures of bars oriented parallel, orthogonal, or randomly
to it, respectively. The saliencies of the (center) target bars in A, B, C are, respectively, 0.23, 0.74, and 0.41 (averaged
over different random surrounds). An isolated bar of the same input strength would have a saliency 0.98. D simulates the
experiment by Kapadia et al (1995) where a low contrast (center) target bar is aligned with some high contrast contextual
bars to from a line in a background of randomly oriented high contrast bars. The target bar saliency is 0.39, about twice as
salient as an isolated bar at the same (low) input strength, and roughly as salient as a typical (high input strength) background
bar. Contour enhancement also holds in D when all bars have high input values, simulating the psychophysics experiment by
(Field, Hayes, and Hess 1993).
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t 4 with preferred orientation 6, the power 1/4

coarsely models some degree of contrast gain control. At each grid point, bars of almost all orientations have nonzero input

values I;g.
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Model behavior on a photo image. The input to the model is modeled as I;p =

Figure 10

ing poin

are the outputs from the even and odd gabor-like filters at grid sampl

lotted at each grid point in model

For display clarity, no more than 2 strongest input or output orientations are p
t and output above. The second orientation bar is plotted only if input or output values at the grid point

t uni-modal,

the whole input.

1S no

inpu

mn

3.0

and the second strongest modal is at least 30% in strength of the strongest one. The strongest I;p

horizontal streaks, which are often also conspicuous in the original image. Note that this photo is sampled against a blank

The more salient locations in the model output include some vertical borders of the columns in the input texture, as well as
background on the left and right, hence the left and right sides of the photo area are also highlighted.
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