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Abstract

Stimuli outside classical receptive �elds have been shown to exert signi�cant inuence over

the activities of neurons in primary visual cortex. We propose that contextual inuences

are used for pre-attentive visual segmentation, in a new framework called segmentation

without classi�cation. This means that segmentation of an image into regions occurs with-

out classi�cation of features within a region or comparison of features between regions.

This segmentation framework is simpler than previous computational approaches, making

it implementable by V1 mechanisms, though higher level visual mechanisms are needed

to re�ne its output. However, it easily handles a class of segmentation problems that

are tricky in conventional methods. The cortex computes global region boundaries by de-

tecting the breakdown of homogeneity or translation invariance in the input, using local

intra-cortical interactions mediated by the horizontal connections. The di�erence between

contextual inuences near and far from region boundaries makes neural activities near

region boundaries higher than elsewhere, making boundaries more salient for perceptual

pop-out. This proposal is implemented in a biologically based model of V1, and demon-

strated using examples of texture segmentation and �gure-ground segregation. The model

performs segmentation in exactly the same neural circuit that solves the dual problem of

the enhancement of contours, as is suggested by experimental observations. Its behavior is

compared with psychophysical and physiological data on segmentation, contour enhance-

ment, and contextual inuences. We discuss the implications of segmentation without

classi�cation and the predictions of our V1 model, and relate it to other phenomena such

as asymmetry in visual search.

Copyright c Massachusetts Institute of Technology, 1998

This report is the manuscript (except for a title change from \visual segmentation without classi�cation in primary visual
cortex") submitted to the journal Neural Computation on April 16th, 1998, as the revised version of the original manuscript
submitted on November 24th, 1997 to the same journal. The authors can be reached at M.I.T., Center for Biological and
Computational Learning, Cambridge MA 02139, USA. E-mail: zhaoping@ai.mit.edu



1. Introduction

In early stages of the visual system, individ-

ual neurons respond directly only to stimuli in

their classical receptive �elds (RFs)(Hubel and

Wiesel, 1962). These RFs sample the local con-

trast information in the input but are too small

to cover visual objects at a global scale. Re-

cent experiments show that the responses of pri-

mary cortical (V1) cells are signi�cantly inu-

enced by stimuli nearby and beyond their clas-

sical RFs (Allman, Miezin, and McGuinness,

1985, Knierim and Van Essen 1992, Gilbert,

1992, Kapadia, Ito, Gilbert, and Westheimer

1995, Sillito et al 1995, Lamme, 1995, Zipser,

Lamme, and Schiller 1996, Levitt and Lund

1997). These contextual inuences are in gen-

eral suppressive and depend on whether stimuli

within and beyond the RFs share the same ori-

entation (Allman et al, 1985, Knierim and Van

Essen 1992, Sillito et al 1995, Levitt and Lund

1997). In particular, the response to an opti-

mal bar in the RF is suppressed signi�cantly by

similarly oriented bars in the surround | iso-

orientation suppression (Knierim and Van Es-

sen 1992). The suppression is reduced when the

orientations of the surround bars are random or

di�erent from the bar in the RF (Knierim and

Van Essen 1992, Sillito et al 1995). However, if

the surround bars are aligned with the optimal

bar inside the RF to form a smooth contour,

then suppression becomes facilitation (Kapadia

et al 1995). The contextual inuences are ap-

parent within 10-20 ms after the cell's initial re-

sponse( Knierim and Van Essen 1992, Kapadia

et al 1995), suggesting that mechanisms within

V1 itself are responsible (see discussion later on

the di�erent time scales observed by Zipser et

al 1996). Horizontal intra-cortical connections

linking cells with non-overlapping RFs and sim-

ilar orientation preferences have been observed

and hypothesized as the underlying neural sub-

strate(Gilbert and Wiesel, 1983, Rockland and

Lund 1983, Gilbert, 1992). While the phenom-

ena and the mechanisms of the contextual in-

uences are studied experimentally and in some

models (e.g., Somers Todorov, Siapas, and Sur

1995, Stemmler, Usher, and Niebur, 1995), in-

sights into their computational roles have been

limited to mainly contour or feature linking (All-

man et al 1995, Gilbert, 1992, see more refer-

ences in Li 1998).

We propose that contextual inuences serve

the goal of pre-attentive visual segmentation or

grouping to infer global visual objects such as re-

gions and contours from local RF features. Lo-

cal features can group into regions, as in texture

segmentation; or into contours which may repre-

sent boundaries of underlying objects. We show

how region segmentation emerges from a sim-

ple but biologically-based model of V1 with only

local cortical interactions between cells within a

few RF sizes away from each other. Note that al-

though the horizontal intra-cortical connections

are termed as long range, they are still local with

respect to the whole visual �eld since the ax-

ons reach only a few millimeters, or a few hy-

percolumns or receptive �eld sizes, away from

the pre-synaptic cells. To attack the formidable

problem of segmentation in such a low level vi-

sual area, we introduce a new computational

framework | segmentation without classi�ca-

tion.

2. The problem of visual segmentation

Visual segmentation is de�ned as locating the

boundary between di�erent image regions. For

example, when regions are de�ned by their pixel

luminance values, center-surround �lters in the

retina can locate boundaries between regions by

comparing the classi�cation (in this case, lumi-

nance) values between neighboring image areas.

In general, regions are seldom classi�able by

pixel luminances, and image �lters are mainly

to extract image features rather than to segment

image regions(Haralick and Shapiro, 1992). For

general region segmentation, previous compu-

tational approaches have always assumed, im-

plicitly or explicitly, that segmentation requires

(1) feature extraction or classi�cation for ev-

ery small image area, and, (2) comparisons of

the classi�cation ags (feature values) between

neighboring image areas to locate the boundary

as where the classi�cation ags change (Haral-
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ick and Shapiro, 1992, Bergen 1991, Bergen and

Adelson, 1988, Malik and Perona 1990). This

framework can be summarized as segmentation

by classi�cation. Over the years, many such seg-

mentation algorithms have been developed both

for computer vision(Haralick and Shapiro, 1992)

and to model natural vision (Bergen and Adel-

son, 1988, Malik and Perona 1990). They are

all forms of segmentation by classi�cation, and

di�er chiey as to how the region features are ex-

tracted and classi�ed, whether it is by, e.g., im-

age statistics by pixel correlations, or the model

parameters in the Markov random �elds gener-

ating the image (Haralick and Shapiro, 1992), or

the outcomes from model neural �lters ( Bergen

and Adelson, 1988) or model neural interactions

(Malik and Perona 1990). In such approaches,

classi�cation is problematic and ambiguous near

boundaries between regions. This is because fea-

ture evaluations can only be performed in lo-

cal areas of the image which are assumed to be

sitting away from region boundaries, i.e., fea-

ture classi�cation presumes some degree of re-

gion segmentation. A priori, the locations of

the region boundaries are not known, and so

the feature values at these places will be am-

biguous. The probability that this ambiguity

happens can be reduced by choosing smaller im-

age areas for feature evaluation. However, this

in turn gives less accurate feature values, espe-

cially in textured regions, and can lead to there

being signi�cant di�erences in the feature val-

ues even within a region, and thus to false re-

gion boundaries. One seems inevitably to face a

fundamental dilemma| classi�cation presumes

segmentation, and segmentation presumes clas-

si�cation.

This dilemma can be dissolved by recognizing

that segmentation does not presume classi�ca-

tion. Natural vision can segment the two re-

gions in Fig. 1 even though they have the same

texture features (note that the plotted area is

only a small part of an extended image). In

this case, classi�cation of the region features is

neither su�cient, nor necessary, and segmenta-

tion is rather triggered by the sudden changes

near the region boundary which is problematic

in traditional approaches. In fact, even with dis-

tinguishable classi�cation ags for all image ar-

eas in any two regions (such as the `j' and ` '

in Fig. 3A), segmentation is not completed un-

til another processing step locates the boundary,

perhaps by searching for where the classi�cation

ags change. We propose that segmentation at

its pre-attentive bare minimum is segmentation

without classi�cation, i.e., segmentation with-

out explicitly knowing the feature contents of

the regions. This simpli�es the segmentation

process conceptually, making it plausible that

it can be performed by low level processings in

V1. This paper focuses on pre-attentive segmen-

tation. Additional processing is likely needed

to improve the resulting segmentation, e.g., by

re�ning the coarse boundaries detected at the

pre-attentive stage and classifying the contents

of the regions.

3. The principle and its implementation

The principle of segmentation without classi�-

cation is to detect region boundaries by detect-

ing the breakdown of translation invariance in

inputs. A single image region is assumed to be

de�ned by the homogeneity or translation in-

variance of the statistics of the image features,

no matter what the features are, or, for instance,

whether they are colored red or blue or whether

or not the texture elements are textons (Julesz,

1981). In general, this translation invariance

should include cases such as the image of a sur-

face slanted in depth, although the current im-

plementation of the principle has not yet been

generalized beyond images of fronto-parallel sur-

faces. Homogeneity is disrupted or broken at the

boundary of a region. In segmentation without

classi�cation, a mechanism signals the location

of this disruption without explicitly extracting

and comparing the features in image areas.

This principle is implemented in a model of

V1. Without loss of generality, the model fo-

cuses on texture segmentation, i.e., segmenta-

tion without color, motion, luminance, or stereo

cues. To focus on the segmentation problem, the

model includes mainly layer 2-3 orientation se-
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lective cells and ignores the mechanism by which

their receptive �elds are formed. Inputs to the

model are images �ltered by the edge- or bar-

like local RFs of V1 cells. (The terms `edge'

and `bar' will be used interchangeably.) The re-

sulting bar inputs are merely image primitives,

which are in principle like image pixel primi-

tives and are reversibly convertible from them.

They are not texture feature values, such as the

`+' or `x' patterns in Fig. 6D and the statistics

of their spatial arrangements, or the estimated

densities of bars of particular orientations, from

which one can not recover the original input im-

ages. To reiterate, this model does not extract

texture features in order to segment1. To avoid

confusions, this paper uses the term `edge' only

for local luminance contrast, a boundary of a re-

gion is termed `boundary' or `border' which may

or may not (especially for texture regions) cor-

respond to any `edges' in the image. The cells

inuence each other contextually via horizontal

intra-cortical connections (Rockland and Lund

1983, Gilbert and Wiesel, 1983, Gilbert, 1992),

transforming patterns of inputs to patterns of

cell responses. If cortical interactions are trans-

lation invariant and do not induce spontaneous

pattern formation (such as zebra stripes (Mein-

hardt, 1982)) through the spontaneous break-

down of translation symmetry, then the corti-

cal response to a homogenous region will itself

be homogeneous. However, if there is a region

boundary, then two neurons, one near and an-

other far from the boundary will experience dif-

ferent contextual inuences, and thus respond

di�erently. In the model, the cortical interac-

tions are designed (see below) such that the ac-

tivities of neurons near the boundaries will be

relatively higher. This makes the boundaries

relatively more salient, allowing them to pop

out perceptually for pre-attentive segmentation.

1In practice, in the presence of noise, it is not possible
to uniquely reconstruct the original pixel values in the input
image from the `edge' and `bar' variables. For simplicity, the
current implementation has not enforced this reversibility.
However, the principle of no classi�cation is adhered to by
not explicitly comparing (whether by di�erentiation or other
related manners) the `edge' and `bar' values between image
areas to �nd region boundaries

Experiments in V1 indeed show that activity

levels are robustly higher near simple texture

boundaries only 10-15 msec after the initial cell

responses (Nothdurft, 1994, Gallant, Van Essen,

and Nothdurft 1995).

Fig. 2 shows the elements of the model and

their interactions. At each location i there is a

model V1 hypercolumn composed of K neuron

pairs. Each pair (i; �) has RF center i and pre-

ferred orientation � = k�=K for k = 1; 2; :::K,

and is called (a neural representation of) an edge

segment. Based on experimental data (White,

1989, Douglas and Martin 1990), each edge seg-

ment consists of an excitatory and an inhibitory

neuron that are connected with each other, and

each model cell represents a collection of local

cells of similar types. The excitatory cell re-

ceives the visual input; its output quanti�es the

response or salience of the edge segment and

projects to higher visual areas. The inhibitory

cells are treated as interneurons. An edge of

input strength Îi� at i with orientation � in

the input image contribute to Ii� by an amount

Îi��(� � �), where �(� � �) = e�j���j=(�=8) is

the cell's orientation tuning curve. Based on

observations by Gilbert, Lund and their col-

leagues (Gilbert and Wiesel, 1983, Rockland

and Lund, 1983, Hirsch and Gilbert, 1991), hori-

zontal connections Ji�;j�0 (resp. Wi�;j�0) mediate

contextual inuences via monosynaptic excita-

tion (resp. disynaptic inhibition) from bar j�0

to i� which have nearby but di�erent RF cen-

ters, i 6= j, and similar orientation preferences,

� � �0. The membrane potentials follow the

equations:

_xi� = ��xxi� �
X
��

 (��)gy(yi;�+��) + Jogx(xi�)

+
X
j 6=i;�0

Ji�;j�0gx(xj�0) + Ii� + Io (1)

_yi� = ��yyi� + gx(xi�)

+
X
j 6=i;�0

Wi�;j�0gx(xj�0) + Ic (2)

where �xxi� and �yyi� model the decay to rest-

ing potential, gx(x) and gy(y) are sigmoid-like

functions modeling cells' �ring rates in response

to membrane potentials x and y, respectively,
3



 (��) is the spread of inhibition within a hyper-

column, Jogx(xi�) is self excitation, Ic and Io are

background inputs, including noise and inputs

modeling the general and local normalization of

activities (Heeger, 1992) (see Li (1998) for more

details). Visual input Ii� persists after onset,

and initializes the activity levels gx(xi�). Equa-

tions (1) and (2) specify how the activities are

then modi�ed (e�ectively within one membrane

time constant) by the contextual inuences. De-

pending on the visual stimuli, the system of-

ten settles into an oscillatory state (Gray and

Singer, 1989, Eckhorn, Bauer, Jordan, Brosch,

Kruse, Munk, and Reitboeck 1988), an intrin-

sic property of a population of recurrently con-

nected excitatory and inhibitory cells (see Li

(1998) for detailed parameters and dynamic

analysis of the model). Temporal averages of

gx(xi�) over several oscillation cycles (about 12

to 24 membrane time constants) are used as the

model's output. If the maxima over time of the

responses of the cells were used instead as the

model's output, the boundary e�ects shown in

this paper would usually be stronger. That dif-

ferent regions occupy di�erent oscillation phases

could be exploited for segmentation (Li, 1998),

although we do not do so here. The nature of

the computation performed by the model is de-

termined largely by the horizontal connections

J and W .

For view-point invariance, the connections are

local, and translation and rotation invariant

(Fig. 2B), i.e., every pyramidal cell has the

same horizontal connection pattern in its ego-

centric reference frame. The synaptic weights

are designed for the segmentation task while

staying consistent with experimental observa-

tions (Rockland and Lund 1983, Gilbert and

Wiesel, 1983, Hirsch and Gilbert 1991, Weliky,

Kandler, Fitzpatrick, and Katz 1995). In partic-

ular, J and W are chosen to satisfy the follow-

ing three conditions (Li, 1997): (1) the system

should not generate patterns spontaneously, i.e.,

homogenous input images give homogenous out-

puts, so that no illusory borders occur within

a single region, (2) neurons at region borders

should give relatively higher responses, and (3)

the same neural circuit should perform contour

enhancement. Condition (3) is not only required

by physiological facts (Knierim and Van Essen

1992, Kapadia et al, 1995), but is also desirable

because regions and their boundary contours

are complementary. The qualitative structure

of the connection pattern satisfying the condi-

tions is shown in Fig. 2B, and is thus a predic-

tion of our model (see Appendix and Li (1998)

for its derivation). Qualitatively, the connec-

tion pattern resembles a \bow tie": J predom-

inantly links cells with aligned RFs for contour

enhancement, and W predominantly links cells

with non-aligned RFs for surround suppression.

Both J andW link cells with similar orientation

preferences, as observed experimentally (Rock-

land and Lund 1983, Gilbert and Wiesel 1983,

Hirsch and Gilbert 1991, Weliky et al, 1995),

and their magnitudes decay with distance be-

tween RFs(Li, 1998).

Mean �eld techniques and dynamic stability

analysis (shown in Appendix) are used to de-

sign the horizontal connections that ensure the

3 conditions above. Conditions (1) and (2) are

strictly met only for (the particularly homoge-

nous) inputs Ii� within a region that are inde-

pendent of i, i.e., exactly the same inputs are

received at each grid point. When a region re-

ceives more complex input texture patterns such

as in stochastic or sparse texture regions (e.g.,

those in Fig. (6)), conditions (1) and (2) are

often met but not guaranteed. This is not nec-

essarily a aw in this model, since it is not clear

whether conditions (1) and (2) can always be

met for any types of homogenous inputs within

a region under the hardware constraints of the

model or the cortex. This is consistent with

the observations that sometimes a texture region

does not pop out of a background pre-attentively

in human vision (Bergen 1991). A range of

quantitatively di�erent connection patterns can

meet our 3 restrictive conditions. Of course, this

range depends on the particular structure and

parameters of the model such as its receptive

�eld sampling density. This makes our model
4



quantitatively imprecise compared to physiolog-

ical and psychophysical observations (see discus-

sions later).

4. Performance of the model

The model was applied to a variety of input

textures, as shown in examples in the �gures.

With two exceptions, the input values Îi� is the

same for all visible bars in each example so that

any di�erence in the outputs gx(xi�) of the bars

are solely due to the e�ects of the intra-cortical

interactions. The exceptions are the input taken

from a photo (Fig. 10), and the input in Fig.

(9D) which models an experiment on contour

enhancement (Kapadia et al 1995). The di�er-

ence in the outputs, which are interpreted as a

di�erence in saliencies, are signi�cant about one

membrane time constant after the initial neu-

ral response (Li, 1998). This agrees with ex-

perimental observations (Knierim and van Essen

1992, Kapadia et al 1995, Gallant et al 1995) if

this time constant is assumed to be of order 10

msec. The actual value Îi� used in all examples

are chosen to mimic the corresponding experi-

mental conditions. In this model the dynamic

range is Îi� = (1:0; 4:0) for an isolated bar to

drive the excitatory neuron from threshold ac-

tivation to saturation. Hence, we use Îi� = 1:2,

2:0, and 3:5 for low, intermediate, and high con-

trast input conditions used in experiments. Low

input levels are used to demonstrate contour en-

hancement | the visible bars in Figs. (7B) and

the target bar in Fig. (9D) (Kapadia et al 1995,

Kovacs and Julesz 1993). Intermediate levels

are used for all visible bars in texture segmenta-

tion and �gure-ground pop-out examples (Figs.

(3, 4, 5, 6, 7A, and 8)). High input levels are

used for all visible bars in Fig. (9A,B,C) and

the contextual (background) bars in Fig. (9D)

to model the high contrast conditions used in

physiological experiments that study contextual

inuence from textured and/or contour back-

grounds (Knierim and van Essen 1992, Kapadia

et al 1995). The input Ii� from a photo im-

age (Fig. (10)) is di�erent for di�erent i� with

Ii� � 3:0. The output saliency gx(xi�) ranges in

[0; 1]. The widths of the bars in the �gures are

proportional to input or output strengths. The

same model parameters (e.g., the dependence of

the synaptic weights on distances and orienta-

tions, the thresholds and gains in the functions

gx(:) and gy(:), and the level of input noises in

Io) are used for all the examples whether it is for

the texture segmentation, contour enhancement,

�gure-ground segregation, or combinations of

them. The only di�erence between di�erent ex-

amples are the di�erences in the model inputs

Ii� and possibly the di�erent image grid struc-

ture (Manhattan or orthogonal grids) for bet-

ter input sampling. All the model parameters

needed to reproduce the results are listed in the

Appendix of the reference (Li, 1998).

Fig. 3A shows a sample input containing

two regions. Fig. 3B shows the model out-

put. Note that the plotted region is only a

small part of, and extends continuously to, a

larger image. This is the case for all �gures

in this paper except Fig. (10). Fig. 3C plots

the average saliency S(c) of the bars in each

column c in Fig. 3B, indicating that the most

salient bars are indeed near the region bound-

ary. Fig. 3D con�rms that the boundary can be

identi�ed by thresholding the output activities

using a threshold, denoted as, say, thre = 0:5

in Fig. 3D, the fraction of the highest out-

put maxi�fgx(xi�)g in the image. Note that V1

does not perform such thresholding, it is per-

formed only for display purposes. Also, the

value of the threshold is example dependent for

better visualization. To quantify the relative

saliency of the boundary, de�ne the net saliency

at each grid point i to be that of the most ac-

tivated bar (max�fgx(xi�)g), let Speak be aver-

age saliency across the most salient grid column

parallel and near the boundary, and �S and �s be

the mean and standard deviation in the salien-

cies of non-boundary locations, de�ned as being

at least (say) 3 grid units away from the bound-

ary. De�ne (r � Speak= �S, d � (Speak � �S)=�s).

A salient boundary should give large values for

(r; d). One expects that at least one of r and

d should be comfortably larger than 1 for the

boundaries to be adequately salient. In Fig.
5



(3), (r; d) = (4:5; 15:0): Notes that the vertical

bars near the boundary are more salient than

the horizontal ones. This is because the vertical

bars run parallel to the boundary, and are there-

fore specially enhanced through the contour en-

hancement e�ect of the contextual inuences.

This is related to the psychophysical observation

that texture boundaries are stronger when the

texture elements on one side of them are paral-

lel to the boundaries (Walkson and Landy 1994).

Fig (4A) shows an example with the same ori-

entation contrast (90o) at the boundary but dif-

ferent orientations of the texture bars. Here the

saliency values distribute symmetrically across

the boundary and the boundary strength is a lit-

tle weaker. These model behaviors can be phys-

iologically tested.

Fig. 4 shows examples using other ori-

entations of the texture bars. The bound-

ary strength decreases with decreasing orienta-

tion contrast at the region border. It is very

weak when the orientation contrast is only 15o

(Fig.(4C)) | here translation invariance in in-

put is only weakly broken, making the bound-

ary very di�cult to detect pre-attentively. Note

also that the most salient location in an im-

age may not be exactly on the boundary (Fig.

4B), this should lead to a bias in the estima-

tion of the border location, as can be experi-

mentally tested. This also suggests that outputs

from pre-attentive segmentation need to be pro-

cessed further by the visual system. The bound-

ary strength also decreases if the orientations of

the texture elements are somewhat random or

the spacing between the elements increases (Fig.

(5)). Boundary detection is di�cult when ori-

entation noise > 30o or when the spacing be-

tween bar elements is more than 4 or 5 grid

points (or texture element sizes). These qual-

itative and quantitative results (on the cut o�

orientation contrast, orientation noise, and bar

spacings) compare quite well with human per-

formance on segmentation related tasks (Noth-

durft 1985, 1991).

This model also copes well with textures de-

�ned by complex or stochastic patterns (Fig.

(6)). In both Figs. 6A and 6B, the neighbor-

ing regions can be segmented even though they

have the same bar primitives and densities. In

particular, the two regions in Fig. 6A have ex-

actly the same features, just like that in Fig. 1,

and would be di�cult to segment using tradi-

tional approaches.

When a region is very small, all parts of it be-

long to the boundary and it pops out from the

background, as in Fig. 7A. In addition, Fig. 7B

con�rms that exactly the same model, with the

same elements and parameters, can also high-

light contours against a noisy background |

another example of a breakdown of translation

invariance.

Our model also accounts for the asymmetry

in pop-out strength observed in psychophysics

(Treisman and Gormican, 1988), i.e., item A

pops out among item B more easily than vice

versa. Fig. (8) demonstrates such an example

where a cross among bars pops out much more

readily than a bar among crosses. Such asym-

metry is quite natural in our framework | the

nature of breakdown of translation invariance in

the input is quite di�erent depending on which

one is the �gure or background.

The model replicates the results of physiolog-

ical experiments on contextual inuences from

beyond the classical receptive �elds (Knierim

and van Essen 1992, Kapadia et al, 1995). In

particular, Fig. (9A,B,C,D) demonstrate that

the response of a neuron to a bar of preferred

orientation in its receptive �eld is suppressed by

a textured surround but enhanced by colinear

contextual bars that form a line. As experimen-

tally observed (Knierim and van Essen 1992),

suppression in the model is strongest when the

surround bars are of the same orientation as

the center bar, is weaker when the surround

bars have random orientations, and is weakest

when the surround bars are oriented orthogo-

nally to the center bar. The relative degree of

suppression is quantitatively comparable to that

of the orientation contrast cells observed physi-

ologically (Knierim and van Essen 1992). Sim-

ilarly, Fig. (9D) closely simulates the enhance-
6



ment e�ect observed physiologically (Kapadia et

al 1995) when bars in the surround are aligned

with the central bar to form a line.

5. Summary and discussions

Summary of the results

This paper makes two main contributions.

First, we propose a computational framework

for pre-attentive segmentation | segmentation

without classi�cation. Second, we present a bi-

ologically based model of V1 which implements

the framework using contextual inuences, and

we thereby demonstrate the feasibility of the

framework.

Since it does not rely on classi�cation, our seg-

mentation framework is simpler than traditional

methods, which explicitly or implicitly require

classi�cation. Consequently, not only can our

framework be implemented using lower level vi-

sual mechanisms as in V1, but also, it avoids the

dilemma which plagues the traditional compu-

tational approaches | segmentation presumes

classi�cation, classi�cation presumes segmenta-

tion. A further consequence is that, our frame-

work can easily handle some segmentation ex-

amples such as those in Fig. (6A), for which the

two regions have the same classi�cation values,

that pose problems for the traditional compu-

tational approaches, but are easily segmentable

by human pre-attentive vision.

Since the computational framework is new,

this is the �rst model of V1 that captures the

e�ect of higher neural activities near region

boundaries, as well as its natural consequence

of pop-out of small �gures against backgrounds

and asymmetries in pop-out strengths between

choices of �gure and ground. The mechanism of

the model is the local intra-cortical interactions

that modify individual neural activities depend-

ing on the contextual visual stimuli, thus de-

tecting the region boundaries by detecting the

breakdown of translation invariance in inputs.

Furthermore, our model is the �rst to use the

same neural circuit for both the region bound-

ary e�ect and contour enhancement | individ-

ual contours in a noisy or non-noisy background

can also seen as examples of the breakdown of

translation invariance in inputs. Putting these

e�ects together, V1 is modeled as a saliency

network that highlights the conspicuous image

areas in inputs. These conspicuous areas in-

clude region boundaries, and smooth contours or

small �gures against backgrounds, thus serving

the purpose of pre-attentive segmentation. This

V1 model, with its intra-cortical interactions de-

signed for pre-attentive segmentation, success-

fully explains the contextual inuences beyond

the classical receptive �elds observed in phys-

iological experiments (Knierim and van Essen

1992, Kapadia et al 1995). Hence, we suggest

that one of the roles of contextual inuences is

pre-attentive segmentation.

Relation to other studies

It has recently been argued that texture anal-

ysis is performed at low levels of visual process-

ing (Bergen, 1991) | indeed �lter based models

(Bergen and Adelson 1988) and their non-linear

extensions (e.g., Malik and Perona (1990)) cap-

ture well much of the phenomenology of psy-

chophysical performance. However, all the pre-

vious models are in the traditional framework

of segmentation by classi�cation, and thus di�er

from our model in principle. For example, the

texture segmentation model of Malik and Per-

ona (1990) also employs neural-like (albeit much

less realistic) interactions in a parallel network.

However, their interactions are designed to clas-

sify or extract region features. Consequently,

the model requires a subsequent feature compar-

ison operation (by spatial di�erentiation) in or-

der to segment. It would thus have di�culties in

cases like Fig. (1), and would not naturally cap-

ture �gure pop-out, asymmetries between the

�gure and ground, or contour enhancement.

By locating the conspicuous image locations

without speci�c tuning to (or classi�cation of)

any region features, our model is beyond early

visual processing using center-surround �lters or

the like (Marr, 1982). While the early stage

�lters code image primitives (Marr, 1982), our

mechanism should help in object surface repre-

sentation. Since they collect contextual inu-

ences over a neighborhood, the neurons natu-
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rally account for the statistical nature of the

local image characteristics that de�ne regions.

This agrees with Julesz's conjecture of segmen-

tation by image statistics (Julesz, 1962) without

any restriction to being sensitive only to the �rst

and second order image statistics. Julesz's con-

cept of textons (Julesz, 1981) could be viewed in

this framework as any feature to which the par-

ticular intra-cortical interactions are sensitive

and discriminatory. Using orientation depen-

dent interactions between neurons, our model

agrees with previous ideas (Northdurft, 1994)

that (texture) segmentation is primarily driven

by orientation contrast. However the emergent

network behavior is collective and accommo-

dates characteristics of general regions beyond

elementary orientations, as in Fig. 6. Further-

more, the psychophysical phenomena of �lling-

in (when one fails to notice a small blank region

within a textured region) could be viewed in our

framework as the instances when the network

fails to highlight enough the non-homogeneity

in inputs near the �lled-in area.

Our pre-attentive segmentation without clas-

si�cation is quite primitive. It merely segments

surface regions from each other, whether or not

these regions belong to di�erent visual objects.

Furthermore, by not classifying, it does not

characterize the region properties (such as by

the 2+1/2 dimensional surface representations

(Marr 1982)) more than what is already implic-

itly present in the raw image pixels or the cell

responses in V1. Hence, for example, our model

does not say whether a region is made of a trans-

parent surface on top of another surface.

Our framework of segmentation without clas-

si�cation suggests that one should �nd experi-

mental evidences of pre-attentive segmentation

preceding and dissociated from visual classi�-

cation/discrimination. Recent experimental ev-

idence from V1 (Lamme, Zipser, and Spekrei-

jse 1997, Zipser, private communication 1998)

shows that the modulation of neural activities

starts at the texture boundary and only later in-

cludes the �gure surface, where the neural mod-

ulations take about 50 ms to develop after ini-

tial cell responses (Zipser et al 1996, Zipser, pri-

vate communication, 1998). Some psychophys-

ical evidences (Scialfa and Jo�e 1995) suggest

that information regarding (�gure) target pres-

ence is available before information regarding

feature values of the targets. V2 lesions in

monkeys are shown to disrupt region content

discrimination but not region border detection

(Merigan, Mealey, and Maunsell, 1993). These

results are consistent with our suggestion. Fur-

thermore, neural modulation in V1, especially

those in the �gure surface (Zipser 1998, private

communication), is strongly reduced or abol-

ished by anaesthesia or lesions in higher visual

areas (Lamme et al 1997), while experiments by

Gallant et al (1995) show that activity modula-

tion at texture boundaries is present even under

anaesthesia. Taken together, these experimen-

tal evidences suggest the plausibility of the fol-

lowing computational framework. Pre-attentive

segmentation without classi�cation in V1 pre-

cedes region classi�cation; region classi�cation

after pre-attentive segmentation is initialized in

higher visual areas; the classi�cation is then fed

back to V1 to give top-down inuence and re�ne

the segmentation (perhaps to remove the bias

in the estimation of the border location in the

example of Fig. 4B), this latter process might

be attentive and can be viewed as segmentation

by classi�cation; the bottom-up and top-down

loop can be iterated to improve both classi�ca-

tion and segmentation. Top-down and bottom-

up streams of processing have been studies by

many others (e.g., Grenander 1976, Carpenter

and Grossberg 1987, Ullman 1994, Dayan et al,

1995). Our model is of the �rst step in the

bottom up stream, which initializes the itera-

tive loop. The neural circuit in our model can

easily accommodate top-down feedback signals

which, in addition to the V1 mechanisms, selec-

tively enhance or suppress the neural activities

in V1 (see examples in Li 1998). However, we

have not yet modeled how higher visual centers

process the bottom up signals to generate the

feedback.

The model's components and behavior are
8



based on and consistent with experimental evi-

dence (Rockland and Lund, 1983, White, 1989,

Douglas and Martin, 1990, Gilbert, 1992, Noth-

durft, 1994, Gallant et al, 1995). The exper-

imentally testable predictions of the model in-

clude the qualitative structure of the horizontal

connections as in Fig. 2B, the dependence of

the boundary highlights on the relative orienta-

tion between texture bars and texture borders

(e.g., in Fig. 3B), and the biases in the esti-

mated border location by the neural responses

(e.g., Fig. 4B). Since the model is quite simplis-

tic in the connection design, I expect that there

will be signi�cant di�erences between the model

and physiological connections. For instance,

two linked bars interact in the model either via

monosynaptic excitation or disynaptic inhibi-

tion. In real cortex, two linked cells could often

interact via both excitation and inhibition, mak-

ing the overall strength of excitation or inhibi-

tion input contrast dependent (e.g., Hirsch and

Gilbert, 1991, see Li 1998 for analysis). Hence,

the excitation (or inhibition) in our model could

be interpreted as the abstraction of the pre-

dominance of excitation (or inhibition) between

two linked bars. Currently, di�erent sources

of experimental data on the connection struc-

ture are not yet consistent with each other re-

garding the spatial and orientation dependence

of excitation and inhibition (Fitzpatrick 1996,

Cavanaugh, Bair, Movshon 1997, Kapadia, pri-

vate communication 1998, Hirsch and Gilbert

1991, Polat, Mizobe, Pettet, Kasamatsu, Norcia

1998), partly due to di�erent experimental con-

ditions like input contrast levels or the nature of

stimulus elements (e.g., bars or gratings). Our

model performance is also quantitatively depen-

dent on input strength. One should bear this

fact in mind when viewing the comparisons be-

tween the model and experimental data in Figs.

(4, 5, 9).

The modulations of neural activity by cor-

tical interactions should have perceptual con-

sequences other than contour/region boundary

enhancement and �gure pop-out. For instance,

the preferred orientation of the cells can shift

depending on contextual bars. Under popula-

tion coding, this will lead to tilt illusion, i.e.,

the change in perceived orientation of the tar-

get bar. The perceived orientation of the target

bar could shift away or towards the orientation

of the contextual bars, depending on the spatial

arrangement (and the orientations) of the con-

textual bars. This is in contrast to the usual no-

tion that the orientation of the target bar tends

to shift away from those of the contextual bars.

Both our model and some recent psychophysical

study (Kapadia, private communication, 1998)

con�rm such contextual dependent distortion in

perceived orientation. V1 cells indeed display

changes in orientation tunning under contextual

inuences (Gilbert and Wiesel 1990), although

the magnitude and direction of the changes vary

from cell to cell.

Comparison with other models

There are many other related models. Many

cortical models are mainly concerned with con-

tour linking, and the reference Li (1998) has

a detailed citation of these models and com-

parisons with our model. For instance, Gross-

berg and his colleagues have developed models

of visual cortex over many years (Grossberg and

Mingolla 1985, Grossberg, Mingolla, and Ross,

1997). They proposed their `boundary contour

system' as a model of intra-cortical and inter-

areal neural interactions in V1 and V2 and feed-

back from V2 to V1. The model aims to cap-

ture illusory contours which link line segments

and line endings, and presumably such linking

a�ects segmentation. Other models are more

concerned with regions, namely, to classify re-

gion features and then to segment regions by

comparing the classi�cations. To obtain tex-

ture region features, Malik and Perona (1990)

use local intra-cortical inhibition. Geman and

Geman built a model based on Markov ran-

dom �elds to restore images, in which neigh-

boring image features inuence each other sta-

tistically (Geman and Geman, 1984). Such lo-

cal interactions improve the outcomes from the

prior and preliminary feature classi�cations to

drive segmentation. Recently, Lee (1995) used
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a Bayesian framework to infer the region fea-

tures and boundary signals from initial image

measurements using gabor �lters. The feature

and boundary values inuence each other to up-

date their values in iterative steps to decrease

an energy functional derived from the Bayesian

framework. Lee (1995) suggested hypothetically

that a V1 circuit may implement this bayesian

algorithm.

Our model contrasts to previous models as the

only one that models the e�ect of region bound-

ary highlights in V1. Hence, it is also the only

one that models contour enhancement and re-

gion boundary highlights in the same neural cir-

cuit. Equally, its instantiation in V1 means that

our model does not perform operations such as

the classi�cation and smoothing of region fea-

tures and the sharpening of boundaries as car-

ried out in some other models (e.g., Lee 1995,

Malik and Perona 1990). Although there are

many simulation and computational models of

V1, if they are not designed for it, V1 models

are unlikely to perform region boundary high-

lights or contour enhancement. The reference

Li (1998) discussed the di�culties in a recurrent

network even for mere contour enhancement us-

ing only the elements and operations in V1. Our

experience also shows that explicit design is nec-

essary for a V1 contour enhancement model to

additionally perform region boundary highlights

(i.e., to meet conditions (1) and (2) in section 3).

Limitations and extensions of the model

Our model is still very primitive compared to

the true complexity of V1. We have yet to in-

clude multiscale sampling or the over-complete

input sampling strategy adopted by V1, or to

include color, time, or stereo input dimensions.

Also, the receptive �eld features used for our

bar/edges should be determined more precisely.

The details of the intra-cortical circuits within

and between hypercolumns should also be better

determined to match biological vision.

Multiscale sampling is needed not only be-

cause images contain multiscale features, but

also to model V1 responses to images from

at surfaces slanted in depth | such a region

should also be seen as \homogenous" or \trans-

lation invariant" by V1, such that it has uniform

saliency. Merely replicating and scaling the cur-

rent model to multiple scales is not su�cient for

this purpose. The computation requires inter-

actions between di�erent scales. We also have

yet to �nd a better sampling distribution even

within a single scale. Currently, the model neu-

rons within the same hypercolumn have exactly

the same RF centers and the RFs from di�er-

ent hypercolumns barely overlap. This sampling

arrangement is sparse compared with V1 sam-

pling. Fig. (10) demonstrates the current model

performance on a photo. The e�ects of single

scale and sparse sampling (alising) are appar-

ent in the model input image, which is more

di�cult than the photo image for human to seg-

ment. However, the most salient model outputs

do include the vertical column borders as well as

some of the more conspicuous horizontal streaks

in the photo.

In addition to orientation and spatial loca-

tion, neurons in V1 are tuned for motion direc-

tion/speed, disparity, ocularity, scale, and color

(Hubel and Wiesel 1962, Livingstone and Hubel

1984). Our model should be extended to stereo,

time, and color dimensions. The horizontal con-

nections in the extended model will link edge

segments with compatible selectivities to scale,

color, ocular dominance, disparity, and motion

directions as well as orientations, as suggested

by experimental data (e.g., Gilbert 1992, Ts'o

and Gilbert 1988). The model should also ex-

pand to include details such as on and o� cells,

cells of di�erent RF phases, non-orientation se-

lective cells, end stopped cells, and more cell lay-

ers. These details should help for better quan-

titative match between the model and human

vision. For instance, Malik and Perona (1990)

showed using psychophysical observations that

the odd-symmetric receptive �elds are not used

for pre-attentive segmentation. The design of

the horizontal connections between cells should

respect these facts.

Any given neural interaction will be more sen-

sitive to some region di�erences than others.
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Therefore, the model sometimes �nds it easier

or more di�cult to segment some regions than

natural vision. Physiological and psychophysi-

cal measurements of the boundary e�ect for dif-

ferent types of textures can help to constrain the

connection patterns in an improved model. Ex-

periments also suggest that the connections may

be learnable or plastic (Karni and Sagi, 1991,

Sireteanu and Rieth 1991). It is desirable also

to study the learning algorithms to develop the

connections.

We currently model saliency at each location

quite coarsely by the activity of the most salient

bar. It is mainly an experimental question as

to how to best determine the saliency, and the

model should accordingly be modi�ed. This is

particularly the case once the model includes

multiple scales, non-orientation selective cells,

and other visual input dimensions. The activi-

ties from di�erent channels should somehow be

combined to determine the saliency at each lo-

cation of the visual �eld.

In summary, this paper proposes a computa-

tional framework for pre-attentive segmentation

| segmentation without classi�cation. It intro-

duces a simple and biological plausible model of

V1 to implement the framework using mecha-

nisms of contextual inuences via intra-cortical

interactions. Although the model is yet very

primitive compared to the real cortex, our re-

sults show the feasibility of the underlying ideas,

that region segmentation can occur without re-

gion classi�cation, that breakdown of transla-

tion invariance can be used to segment regions,

that region segmentation and contour detection

can be addressed by the same mechanism, and

that low-level processing in V1 together with lo-

cal contextual interactions can contribute signif-

icantly to visual computations at global scales.

Appendix: Design analysis for horizon-

tal connections

Connections J and W are designed to satisfy

the 3 conditions listed in section 3. To illustrate,

consider the example of a homogenous input

Ii� =

(
�I; when � = ��

0; otherwise
(3)

of a bar oriented �� at every sampling point. By

symmetry, a mean �eld solution (�xi�; �yi�) is also

independent of spatial location i. For simplicity

assume �xi� = 0 for � 6= ��, and ignore all (xi�; yi�)

with � 6= ��. Perturbations (x0i � xi�� � �xi��; y
0

i �
yi�� � �yi��) around the mean �eld solution follow

_Z = AZ (4)

where Z = (x0T ; y0T )T . Matrix A results from

expanding equations (1) and (2) around the

mean �eld solution, it contains the horizontal

connections Ji��;j�� and Wi��;j�� linking bar seg-

ments oriented all at ��. Translation invariance

in J and W implies that every eigenvector of

A is a cosine wave in space for both x0 and

y0. To ensure condition (1), either every eigen-

value of A should be negative so that no per-

turbation from the homogeneous mean �eld so-

lution is self-sustaining, or the eigenvalue with

largest positive real part should correspond to

the zero frequency cosine wave in space, in which

case the deviation from the mean �eld solution

tends to be homogeneous although it will oscil-

late over time (Li, 1998). Iso-orientation sup-

pression under supra-threshold input �I is used

to satisfy condition (2). This requires that every

pyramidal cell xi�� in an iso-orientation surround

should receive stronger overall disynaptic inhi-

bition than monosynaptic excitation:

�
X
j

Wi��;j�� >
X
j

Ji��;j�� (5)

where � �  (0)g0y(�yi��) comes from the inhibitory

interneurons. The excitatory cells near a region

boundary lack a complete iso-orientation sur-

round, they are less suppressed and so exhibit

stronger responses, meeting condition (2). We
11



tested conditions (1) and (2) in simulations us-

ing these simple and other general input con�g-

urations including the cases when input within

a region are of the form Ii� � �I� where �I� is non-

zero for two orientation indices �. Condition (3)

is ensured by strong enough monosynaptic ex-

citation
P

j�0
2contour

Ji�;j�0 along any smooth con-

tour extending from i�, and enough disynaptic

inhibition between local, similarly oriented, and

non-aligned bars to avoid enhancement of the

noisy background (details in Li 1998), within

the constraints of conditions (1) and (2).
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Region 1 Region 2

Figure 1: The two regions have the same feature val-
ues. Traditional approaches to segmentation using feature
extraction and comparison have di�culty in segmenting the
regions.
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Figure 2: A: Visual inputs are sampled in a discrete
grid by edge/bar detectors, modeling RFs for V1 layer 2-3
cells. Each grid point has K neuron pairs (see C), one per
bar segment. All cells at a grid point share the same RF
center, but are tuned to di�erent orientations spanning 180o,
thus modeling a hypercolumn. A bar segment in one hyper-
column can interact with another in a di�erent hypercolumn
via monosynaptic excitation J (the solid arrow from one thick
bar to another), or disynaptic inhibition W (the dashed ar-
row to a thick dashed bar). See also C. B: A schematic of the
neural connection pattern from the center (thick solid) bar
to neighboring bars within a �nite distance (a few RF sizes).
J 's contacts are shown by thin solid bars. W 's are shown by
thin dashed bars. All bars have the same connection pattern,
suitably translated and rotated from this one. C: An input
bar segment is associated with an interconnected pair of exci-
tatory and inhibitory cells, each model cell models abstractly
a local group of cells of the same type. The excitatory cell
receives visual input and sends output gx(xi�) to higher cen-
ters. The inhibitory cell is an interneuron. The visual space
has toroidal (wrap-around) boundary conditions.
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A: Input image (Îi�) to model

B: Model output

C: Neural response levels
vs. columns above

D: Thresholded model output

Figure 3: An example of the segmentation performance of the model. A: Input Îi� consists of two regions; each visible bar
has the same input strength. B: Model output for A, showing non-uniform output strengths (temporal averages of gx(xi�))
for the edges. The input and output strengths are proportional to the bar widths. C: Average output strengths (saliencies)
vs. lateral locations of the columns in B, with the bar lengths proportional to the corresponding edge output strengthes. D:
The thresholded output from B for illustration, thre = 0:5. Boundary saliency measures (r; d) = (4:5; 15:0).
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Figure 4: A, B, C: Additional examples of model segmentation. Each is an input image as in Fig. 3A followed immediately
below by the corresponding thresholded (strongest) model outputs as in Fig. 3D. In A, B, C respectively, the boundary
measures are: (r; d) = (1:4; 9:0), (r; d) = (1:77; 12:2), (r; d) = (1:05; 1:24), and thre = 0:77; 0:902; 0:8775 to obtain the output
highlights. D: Plots of boundary strengths (r,d) (symbols `+' and `o' respectively) vs. orientation contrast at boundaries. A
data point for each given orientation contrast is the average of 2 or 3 examples of di�erent texture bar orientations. Again,
each plotted region is only a small part of a larger extended image. Note that the most salient column in B is not exactly
on the boundary, though the boundary column (on its left) is only 6% less salient numerically, and � 70% more salient than
areas away from the boundary. Also, C contains two regions whose bar elements di�er only slightly in orientation, giving a
perceptually weak vertical boundary in the middle. Because of the noise in the system, the saliencies of the bars in the same
column in A, B, C are not exactly the same, this is also the case in other �gures.
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B: orientation jitter 30o: input

C: orientation jitter 45o: input

D: bar spacing = 2: input

E: bar spacing = 4: input
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Figure 5: The boundary strength changes with orientation noise and the spacings between the bars in the textures. A,

B, C: Model inputs (Îi�) and outputs (gx(xi�)) for two texture regions made of bars oriented, on average, respectively,
horizontally and vertically. Each bar's orientation is randomly jittered from the average orientation by up to 15o, 30o, and
45o, respectively. The orientation noise makes the saliency values quite non-uniform near the boundary, making the boundary
measures (r; d) less meaningful. Boundary detection is di�cult or impossible with orientation jitter > 30o. D, E: Model

inputs (Îi�) and output (gx(xi�)) highlights for two texture regions made of bars oriented horizontally and vertically. The
spacing between neighboring bars are 2 and 4, respectively, grid spacings. F: Plots of boundary strengthes (r; d) (symbol `+'
and `o' respectively) vs. bar spacings for stimuli like D, E. To obtain output highlights in D, E respectively, thre = 0:92; 0:95.
Note that although the boundary saliency is only a fraction higher than the non-boundary saliency as bar spacing increases,
the boundary is still the most salient output when the region features are not noisy. The line widths for model outputs are
plotted with one scale for A, B, C and another for D, E.
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A
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D

Figure 6: A, B, C: Model performance on regions with complex texture elements, and D: regions with stochastic texture

elements. Each plot is the model input (Îi�) followed immediately below by the output (gx(xi�)) highlights. For A, B, C, D
respectively, the boundary measures r and d are (r; d) = (1:14; 6:3), (r; d) = (1:1; 2:0), (r; d) = (1:5; 4:5), and (r; d) = (2:56; 5:6),
the threshold to generate the output highlights are thre = 0:91; 0:9; 0:85; 0:56.
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A
Input (Îi�)

Output highlights

B
Input (Îi�)

Output highlights

Figure 7: Model behavior for other types of inputs. A: A small region pops out since all parts of it belong to the boundary.
The �gure saliency is 0.336, which is 2.42 times of the average ground saliency. B: Exactly the same model circuit (and

parameters) performs contour enhancement. The input strength is Îi� = 1:2. The contour segments' saliencies are 0:42�0:03,
and the background elements' saliencies are 0:18�0:08. To obtain the output highlights inA, B respectively, thre = 0:46; 0:73.
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A: Cross among bars

Input (Îi�)

Output

Input (Îi�)

Output

B: Bar among crosses

Figure 8: Asymmetry in pop-out strength. A: The cross is 3.4 times as salient (measured as the saliency of the horizontal
bar in the cross) as the average background. B: The area near the central vertical bar is the most salient part in the image,
and is no more than 1.2 as salient as the average background. The target bar itself is actually a bit less salient than the
average background.
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A: Iso-orientation

Input (Îi�)
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B: Cross orientation

Input (Îi�)

Output

C: Random background

Input (Îi�)

Output

D: Line and noise

Input (Îi�)
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Figure 9: Model behavior under inputs resembling those in physiological experiments. The input stimuli are composed of
a vertical (target) bar at the center surrounded by various contextual stimuli. All the visible bars have high contrast input

Îi� = 3:5 except for the target bar in D where Îi� = 1:2 is near threshold. A, B, C simulate the experiments of Knierim and
van Essen (1992) where a stimulus bar is surrounded by contextual textures of bars oriented parallel, orthogonal, or randomly
to it, respectively. The saliencies of the (center) target bars in A, B, C are, respectively, 0:23, 0:74, and 0:41 (averaged
over di�erent random surrounds). An isolated bar of the same input strength would have a saliency 0:98. D simulates the
experiment by Kapadia et al (1995) where a low contrast (center) target bar is aligned with some high contrast contextual
bars to from a line in a background of randomly oriented high contrast bars. The target bar saliency is 0:39, about twice as
salient as an isolated bar at the same (low) input strength, and roughly as salient as a typical (high input strength) background
bar. Contour enhancement also holds in D when all bars have high input values, simulating the psychophysics experiment by
(Field, Hayes, and Hess 1993).
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Original image Model input (Ii�) Model Output

Figure 10: Model behavior on a photo image. The input to the model is modeled as Ii� = (e2 + o2)1=4, where e and o
are the outputs from the even and odd gabor-like �lters at grid sampling point i with preferred orientation �, the power 1=4
coarsely models some degree of contrast gain control. At each grid point, bars of almost all orientations have nonzero input
values Ii�. For display clarity, no more than 2 strongest input or output orientations are plotted at each grid point in model
input and output above. The second orientation bar is plotted only if input or output values at the grid point is not uni-modal,
and the second strongest modal is at least 30% in strength of the strongest one. The strongest Ii� = 3:0 in the whole input.
The more salient locations in the model output include some vertical borders of the columns in the input texture, as well as
horizontal streaks, which are often also conspicuous in the original image. Note that this photo is sampled against a blank
background on the left and right, hence the left and right sides of the photo area are also highlighted.
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