
Interactive Supercomputing with MITMatlab

Parry Husbands

Laboratory for Computer Science

Massachusetts Institute of Technology

545 Technology Square Room 218

Cambridge MA 02139 USA

Charles L. Isbell Jr.

Arti�cial Intelligence Laboratory

Massachusetts Institute of Technology

545 Technology Square Room 719

Cambridge MA 02139 USA

Alan Edelman

Laboratory for Computer Science

Massachusetts Institute of Technology

545 Technology Square Room 257

Cambridge MA 02139 USA

Abstract

This paper describes MITMatlab, a system that enables users of supercomputers to

transparently work on large data sets within Matlab. MITMatlab communicates with

an external server that is responsible for storing and operating on the data. Through

the use of Matlab's object oriented features, we can handle this data as though it

were \in" Matlab. For example, we can type [u,s,v] = svds(a,5) in Matlab and get

results regardless of whether the matrix a has �fty or �fty million non-zero elements.

We present the structure and details of our implementation along with some examples

showing MITMatlab in action.

1 Introduction

This paper describes MITMatlab, a system that enables users of supercomputers to work in

parallel transparently on large data sets within Matlab. MITMatlab is based on the Parallel

Problems Server (PPServer)[8], a standalone linear algebra server that provides a mechanism

for executing distributed memory algorithms on large data sets. This work is motivated by

the desire to bring the many bene�ts of interactive environments to supercomputers while

maintaining the e�ciency and power of highly optimized computational libraries. Currently,

when developing scienti�c applications on parallel machines, programmers use traditional

languanges such as C and Fortran and either program in an explicitly parallel way or rely

on their compiler to achieve good performance. Programming this way is typically di�cult

to debug and tune. This is in sharp contrast to the workstation world where, if the problem

size is small, the application is quickly written in an interactive system such as Matlab.

1



MITMatlab provides a transparent way for Matlab users to interact with the PPServer.

Through the use of Matlab classes and operator overloading, we can type [u,s,v] = svds(a,5)

in MITMatlab and expect the singular triplets regardless of whether the sparse matrix a is

a Matlab matrix with �fty non-zero elements or contains �fty million non-zero elements and

is actually distributed among a number of machines working in tandem.

This document describes the structure and organization of our system as well as impor-

tant details of our implementation. In Section 2, we discuss the Parallel Problems Server,

the computational centerpiece of our system. Section 3 introduces the Matlab classes that

are used. Section 4 contains sample MITMatlab sessions along with a discussion of the per-

formance that we obtain. Our approach is then contrasted with other \parallel Matlabs" in

Section 5. A glimpse of the future of MITMatlab s provided in Section 6 and we conclude

with a discussion of the implications of our system in Section 7.

2 The Parallel Problems Server

The Parallel Problems Server forms the foundation of our work. It runs on any Unix-like

platform supporting the MPI message passing library [4]. Simply, it is a compute server

for large matrices. It contains functions for creating and removing distributed dense and

sparse matrices, performing elementary matrix operations, and loading and storing matrices

from/to disk using a portable format. Because matrices are created on the PPServer itself

functions are also provided for transferring matrix sections to and from a client.

PPServer Matrices are two-dimensional and single precision. Dense matrices can be

distributed by row or by column. Sparse matrices are distributed by column. Replicated

dense matrices are also provided, though very few operations use them.

The PPServer communicates with clients using a simple request-response protocol. A

client requests that an action be performed by issuing a command with the appropriate

arguments, the server executes that command, and then noti�es the client that the action is

complete.

The PPServer is directly extensible via compiled libraries called packages. The PPServer

implements a robust protocol for communicating with packages. Clients (and other packages)

can load and remove packages on-the-
y, as well as execute commands within packages.

The PPServer provides a library of calls that enables package programmers access to

direct information about the PPServer and its matrices. Programmers can thus write MPI

code that operates directly on the PPServer matrices. Each package represents its own

namespace, de�ning a set of functions and visible function names. This not only supports

data encapulation, but also allows users to hide a subset of functions in one package by

loading another that de�nes the same function names. Finally, packages support common

parallel idioms (like applying a function to every element of a matrix), making it easier to

add common functionality.

All but a few PPServer commands are implemented as packages, including basic matrix

operations. Many highly-optimized public libraries have been realized as packages using ap-

propriate wrapper functions. These packages include ScaLAPACK [2], S3L (Sun's optimized

version of ScaLAPACK), PARPACK [9], and Petsc [5].

For a more complete description of the Parallel Problems Server, please see [8].

2



3 MITMatlab

By directly using the PPServer's client communication interface it is possible to access all of

the PPServer's functionality from Matlab. Calls made directly to the PPServer from within

Matlab are of the form:

[error, errorstr, out1, ..., outn] = ppclient('cmd', arg1, ..., argn);

where ppclient is a small MEX function that implements the client-server communica-

tion protocol, argi is the list of arguments, outi is the list or return arguments and error

and errorstr contain information about any errors encountered.

We endeavor to make interaction with the PPServer as transparent as possible for the

user. In principle, a typical Matlab user should never have to make a call to ppclient herself.

Further, current Matlab programs should not have to be rewritten to take advantage of the

PPServer. To these ends, we make use of Matlab 5's object-oriented features.

By de�ning Matlab classes that represent local stand-ins for objects that really exist on

the PPServer, we can use Matlab's operator overloading features to ensure a transparent user

experience. Although these new objects act like normal matrices to a user, they actually

trigger operations on the PPServer instead of within Matlab.

3.1 New Classes

Matlab classes are de�ned for the dense and sparse PPServer matrix types, referred to as

ddense and dsparse objects, respectively. The local objects contain the size and the name,

or ID, of a particular PPServer matrix. It is the ID that is passed along to the PPServer.

3.1.1 Constructors

A constructor is a function that creates an object of some class or type. We have de�ned

many constructors in Matlab that create the ddense and dsparse matrices that correspond

to PPerver matrices. These are described in Table 1 below.

a=dsparse('file') Load a sparse matrix from �le

a=dsparse(m,n) Create an empty mxn sparse matrix

a=ddense('file'[,dist]) Load a dense matrix with optional

distribution dist

a=ddense(m,n[,dist]) Create an empty dense matrix

a=drand(m,n,dist) Create a [0,1]-uniformly distributed

dense matrix

a=drandn(m,n,dist) Create a normally distributed random matrix

a=dones(m,n,dist) Create a matrix full of 1s

Table 1: Distributed Matrix Constructors. There are several functions provided for

creating PPServer objects. In Section 3.3 with describe transparent ways of invoking these

constructors.

3



3.2 Operator Overloading

With the classes de�ned, we can overload common Matlab operations so that they work with

the distributed objects. Overloading a function for a particular class requires only writing an

m-�le with the same name as the Matlab function to be overloaded that de�nes a function

that takes and returns the same number of arguments. It is within this �le that calls to

ppclient are made in order to perform the appropriate computation. Table 2 lists functions

we have overloaded for dsparse and ddense matrices.

ddense +,-,*,.*,./,n,inv,svds,svd,eig,hess,schur,
qr,sum,cumsum,sort,exp,fft,imagesc,log

dsparse *,svds,sum,nnz

Table 2: Overloaded Distributed Matrix Operations.

Setting and retrieving array sections (using Matlab's syntax) also work transparently for

ddense matrices. For dsparse matrices, individual elements can be retrieved and set.

3.3 p: Towards transparent constructors

One problem with the constructors described in Table 2 is that they do not directly corre-

spond to Matlab's matrix constructors such as zeros or rand. Users must learn a new set

of functions for creating distributed objects. To maintain transparency in the constructors,

we introduce a new class: the layout object.

Layout objects behave exactly like integers, except that they enable us to overload

Matlab's constructors (such as rand). If rand(100,layout(100)) is entered, our over-

loaded constructor is called and a column distributed matrix is created in the server. If

rand(layout(100),100) is entered, then the matrix is row distributed.

Although this seems cumbersome, it is possible to use the layout class using the global

function p. Its value is layout(1) and so 100*p is identical to layout(100). Therefore

rand(100,100*p) and rand(100*p,100) are identical to the examples above. In this way,

rand, randn, zeros, ones, eye, sprand, and sprandn can all be called with p.

The use of p is not limited to just constructors. When matrix inquiry functions such as

size return layout objects, these objects continue to propagate. Thus previously written

Matlab functions that call constructors will automatically execute \in parallel" without

modi�cation.

For example, Figure 1 shows the code for Matlab's built in function hilb. The call

hilb(n) produces the n � n Hilbert matrix (hij = 1

i+j�1
). When n is a layout object, a

parallel array results:

� J=1:n in line 1 creates a PPServer object with 1; 2; � � � ; n and places it in J. Note that

this behavior does not interfere with the semantics of for loops (for i=1:n) as Matlab

assigns to i the value of each column of 1:n: the numbers 1; 2; : : : ; n.

4



1 function H=hilb(n)

2 J = 1:n;

3 J = J(ones(n,1),:);

4 I = J';

5 E = ones(n,n);

6 H = E./(I+J-1);

Figure 1: Matlab code for producing Hilbert matrices. When n is a layout object,

each of the constructors creates a PPServer object instead of a Matlab object.

� ones(n,1) in line 2 produces a PPServer matrix.

� Emulation of Matlab's indexing functions results in the correct execution of line 3.

� In line 5, E is generated on the PPServer because of the overloading of ones.

� Finally H is also a PPServer matrix (line 6) because of proper overloading of elementary

matrix operations.

We have also been able to execute much of Nicholas Higham's Matrix Test Toolbox [6]

without any modi�cation. Much of the work of this task involved supporting the multitude

of Matlab's indexing capabilities. Successes include cauchy, circul, clement, cycol, dingdong,

frank, kahan, lehmer, parter, pei, and triw. Some routines (such as hadamard and wilk)

that return explicit Matlab matrices cannot be overloaded in this way. Others (kms, orthog,

seqm, signm, and smoke) need support for complex numbers, an important extension not

currently in the PPServer.

In examining the routines in the toolbox, it is clear that even with the capabilities of the

PPServer it is not feasible to create very large instances of some of the matrices. For example,

in double precision, pascal(800) contains Inf. Further, functions that make extensive use

of element-wise operations (such as pascal), will not make full use of the parallelism of the

PPServer.

4 MITMatlab in Action

MITMatlab currently runs on clusters of Symmetric Multiprocessors from Sun Microsystems

and Digital Equipment Corporation residing at MIT's Laboratory for Computer Science, as

well as clusters of Intel PCs at MIT's Arti�cal Intelligence Laboratory. In this section, we

show screen dumps of MITMatlab to demonstrate its functionality. Most of these examples

used four processors of an eight processor, 512 MB Sun Ultra Enterprise 5000 Server.

Sparse Linear Algebra The major sparse matrix operation that we provide is the sparse

singular value decomposition, svds from PARPACK. This routine and others are shown

in Figure 2.

5



Figure 2: MITMatlab Sparse Functionality.

Dense Linear Algebra Most of the dense matrix functionality comes from ScaLAPACK.

A few functions, most notably inv, use S3L. These routines are demonstrated in Figure

3.

Miscellaneous Matlab contains a host of utility routines that make programming easier.

We have tried to incorporate some of the most common ones in the PPServer. Figure

4 shows some of these in action.

4.1 Performance

While the e�ciency of PPServer naturally depends on the algorithms used for the operations,

there are really two main factors that de�ne the performance of the MITMatlab system.

First, Matlab has to communicate with the PPServer: a message with a function to be called

and its arguments must be sent, and the return message must be translated into Matlab 5.

In our experiments, this incurs a round trip time of approximately 2 milliseconds. This is

insigni�cant for most operations on large matrices (such as singular value decompositions

and matrix multiplications) but greatly a�ects the retrieving and setting of small pieces of

matrices.

Second, matrices may have to be re-distributed prior to computations. For example, if a

row distributed matrix is added to a column distributed matrix, elements have to be sent to

the correct processors so that the addition can be local.

6



Figure 3: Examples of MITMatlab Dense Matrix Functionality

Figure 4: Miscellaneous MITMatlab functions.

7



5 Related Work

Both RCS [1] and NetSolve [3] provide facilities that enable interactive clients to access

remote compute servers. The clients send over the function name and the data to be worked

on, the server computes, and the results are sent back to the client. We believe that our

system is di�erent in two important respects. First, our client (Matlab) is not responsible for

storing the data. In an environment such as a cluster of SMPs, this is an advantage: we can

easily work with data sets that are much larger that the memory of a single machine. Such

data sets are distributed in the PPServer across the machines of the cluster. Second, we

provide transparent access from Matlab to the server's operations. NetSolve, for example,

requires that users explicitly call the server to execute operations.

Other systems have been proposed that add message passing features to Matlab. Mul-

tiMatlab [10] and the Parallel Toolbox for Matlab [7] make it possible to manage a group

of Matlab processes on a supercomputer. Here Matlab is extended to include send. re-

ceive, and some global operations. However, applications must still be developed using a

message-passing style and computation makes use of Matlab's provided algorithms.

Other \parallel Matlab" systems include the DP-Toolbox, Paramat, and Matpar.

6 Further Work

It is our hope that MITMatlab can be a useful environment for a wide variety of users. To

this end, we are porting as many packages as we can so as to provide as much functionality

as possible. Other improvements, however, will need changes to Matlab and the server.

6.1 Garbage Collection

By far, the most di�cult feature to implement with MITMatlab is automatic garbage collec-

tion. Garbage collection is the process of reclaimingmemory space that is no longer accessible

by a program. Although Languages such as Lisp and Java have sophisticated garbage collec-

tion mechanisms, even languages such as C++ and Fortran do garbage collection of a kind

when local variable space is freed after it has gone out of lexical scope.

While Matlab 5 provides support for object-oriented programming, it does not yet imple-

ment true user-de�ned destructors. As a result, there is no way for an object to be noti�ed

automatically when it is about to be deleted, either explicting via clear or implicitly by

going out of scope. To make matters worse, there is no way to obtain a list of all currently

de�ned variables within a function. These combine to make it impossible implement an

automatic garbage collector.

In the worst case, PPMatlab users are thus burdened with having to explicitly clear

variables that are not wanted (using the ppclear function). Complicating things even further

is the need to break up complex expressions like e=a+b+c+d to avoid creating garbage when

subexpressions (such as a+b) are evaluated within Matlab, creating \temporary" objects.

To reduce some of this programming e�ort, we have implemented a semi-automatic mech-

anism for garbage collection. We provide a function called ppscope that returns a time

8



stamp. When ppgc is called with a time stamp created by ppscope, all variables created

since that time that are not in ppgc's argument list are deleted. For example,

SCOPE=ppscope;

g=(a+b+c+d)*e + f;

ppgc(SCOPE,g);

deletes all of the temporary variables that were created in the complex assignment to g.

6.2 PPServer Improvements

Currently the PPServer supports single precision, two-dimensional matrices distributed ei-

ther by column or row. Sparse matrices are further restricted to be column distributed.

While these choices have simpli�ed initial implementation and served the purposes of our

group e�ectively, it seems to wise to expand our choices.

Generalized block cyclic distributions (�a la ScaLAPACK) often lead to better algorithm

performance and so are planned for future versions of the PPServer. Matlab 5 implements

higher rank objects (n-dimensional matrices) and we hope provide the same. Support for

double precision and complex numbers is also planned.

Finally, we intend to provide a mechanism for adding user-de�ned data types to the

PPServer as a way of supplementing our ability to add user code via the package system.

For example, it would useful to allow packages to de�ne symmetric and banded matrix types,

or \matrix-free" linear operators.

7 Conclusion

We have argued that MITMatlab enables portable, high-performance interactive supercom-

puting through the use of the Parallel Problems Server and the new Matlab 5 classes. The

PPServer provides a powerful, uniform mechanism for writing and accessing optimized algo-

rithms, and via it client communication protocal makes it possible to implement transparent

integration with su�ciently powerful clients, such as Matlab 5. Further, the overhead of

using the PPServer as a backend is insigni�cant for the operations for which it was designed;

namely, operations on large matrices.

With such a tool, researchers and students can now use Matlab as something more than

just a way for prototyping algorithms and working on small problems. MITMatlab makes it

possible to interactively operate on and visualise large data sets.

This style of computing represents a radical departure from traditional supercomputing

where users submit jobs to batch queues and their results get saved for later analysis. While

MITMatlab can certainly operate in such an environment (through the use of Matlab scripts)

much of its power comes from its interactivity. We therefore hope to explore how tools such

as MITMatlab can operate e�ectively in batch installations.

9



Acknowledgements

Parry Husbands is supported by a fellowship from Sun Microsystems. Charles Isbell is

supported by a fellowship from AT&T Labs/Research. Most of this research was performed

on clusters of SMPs provided by Sun Microsystems and Digital Corp.

References

[1] P. Arbenz, W. Gander, and M. Oettli. The Remote Computation System. Technical

Report 245, ETH Zurich, 1996.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhilon, J. Don-

garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley.

ScaLAPACK Users' Guide. http://www.netlib.org/scalapack/slug/scalapack slug.html,

May 1997.

[3] Henri Casanova and Jack Dongarra. NetSolve: A Network Server for Solving Compu-

tational Science Problems. In Proceedings of SuperComputing 1996, 1996.

[4] William Gropp, Ewing Lusk, and Anthong Skjellum. Using MPI: Portable Parallel

Programming with the Message-Passing Interface. The MIT Press, 1994.

[5] PETSc Group. PETSc - The Portable, Extensible Toolkit for Scienti�c Computation.

http://www.mcs.anl.gov/home/gropp/petsc.html.

[6] Nicholas Higham. The Test Matrix Toolbox, 3.0.

http://www.ma.man.ac.uk/~higham/testmat.html.

[7] J. Hollingsworth, K. Liu, and P. Pauca. Parallel Toolbox for MATLAB PT v. 1.00:

Manual and Reference Pages. Wake Forest University, 1996.

[8] Parry Husbands and Charles Isbell. The Parallel Problems Server: A Client-Server

Model for Interactive Large Scale Scienti�c Computation. In Proceedings of VECPAR98,

June 1998.

[9] K. J. Maschho� and D. C. Sorensen. A Portable Implementation of ARPACK for

Distributed Memory Parallel Computers. In Preliminary Proceedings of the Copper

Mountain Conference on Iterative Methods, 1996.

[10] Anne E. Trefethen, Vijay S. Menon, Chi-Chao Chang, Gregorz J. Czajkowski, Chris

Myers, and Lloyd N. Trefethen. MultiMATLAB: MATLAB on Multiple Processors.

http://www.cs.cornell.edu/Info/People/lnt/multimatlab.html, 1996.

10


