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Abstract

A Support Vector Machine (SVM) algorithm for multivariate density estimation is de-

veloped based on regularization principles and bounds on the convergence of empirical

distribution functions. The algorithm is compared to Gaussian Mixture Models (GMMs).

Our algorithm outperforms GMMs for data drawn from mixtures of gaussians in IR2 and

IR6. Our algorithm is also automated with respect to parameters.
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1 Introduction

Estimating probability densities from a set of observed data points is a basic problem in statis-

tics. In this paper we formulate a novel algorithm for multivariate density estimation that is
mathematically well-founded, shows promise in preliminary experiments, and is automated with

respect to parameter setting.
Traditional approaches to estimating densities have been parametric. One assumes that the data

are drawn from a parametric family of distributions and one then estimates the parameters of
the family based upon the maximum likelihood principle. Gaussian Mixture Models (GMMs)

are a particular case of the parametric approach. It is well known, even by peeople using this
approach, that it is mathematically problematic [1] [11].

The problem of density estimation is an inverse operator problem which is ill-posed and stochas-

tic. These problems are amenable to regularization approaches. The classical approach of the
Parzen's window technique [6] can be derived from Tikhonov regularization [9], unfortunately
this technique has not yielded good results for high-dimensional problems. We apply the residual
method [7] of regularization to the density problem where the residual is set based on bounds on

the convergence of empirical distribution functions. Setting the error functional in the residual
method to a norm in a Reproducing Kernel Hilbert Space (RKHS) results in a Support Vector
Machine (SVM) formulation. Previously, an SVM approach to density estimation was attempted
[13], however it was only applied to univariate density estimation and performed very badly for
the multivariate problem. Our algorithm works for both multivariate and univariate problems.

We also present experimental results that show better performance than a GMM approach for 2
and 6 dimensional data.

2 A Support Vector Machine (SVM) approach

2.1 Density estimation

A probability density, p(t), is de�ned as the solution of the following equationZ
x

�1
p(t) dt = F (x); (1)

where F (x) is the distribution function F (x) = IPf� < xg, � is a random variable. Estimating

a probability density from data means solving this integral equation on a given set of densities
p(t; �), � 2 �, when the distribution function F (x) is unknown and given a random independent

sample fxig`i=1 obtained from this distribution.
The empirical distribution function

F`(x) =
1

`

`X
i=1

�(x� xi); (2)

is a good approximation of the actual distribution function F (x). The rate of convergence of

this approximation is known asymptotically. For the univariate case, the random variable k

k =
p
` sup

x

jF (x)� F`(x)j =
p
`jjF (x)� F`(x)jj1;

is independent of the distribution function.

Hence one can consider the problem of density estimation as a problem of solving equation (1)

using F`(x) instead of F (x). F`(x) converges to F (x) at a fast rate, O(1=
p
`).
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2.2 The density estimation problem is stochastic and ill-posed

It is known that the problem of solving linear integral equation

Af = F

is ill-posed when the sequence F`(x) of approximations are used on the right hand side instead

of F (x).

Two forms of regularization can be used to solve ill-posed problems using approximations jjF (x)�
F`(x)jj = �`. The idea of these methods is to introduce the so called regularizing functional 
(f)

(semi-continuous, positive functional for which 
(f) � c is a compactum for all positive c) and

de�ne the solution f which is a trade-o� between the value of the functional 
(f) and accuracy

jjAf � F`jj.
The two forms of this trade-o� or regularization turn out asymptotically equivalent [12], they

are the methods of Tikhonov [9] and Phillips [7] respectively,

min
f

�
jjAf � F`jj2 + 
`
(f)

�
; 
` > 0;

min
f


(f) s:t: jjAf � F`jj < "`; "` > 0;

where for certain conditions on constants �`, 
`, and "` the sequence of approximations converges
to the desired solution.

Both principles can be generalized for the stochastic case [11], in particular for the Tikhonov
method it was shown that if function F`(x) converges in probability to F (x) and 
` ! 0 then for

any positive � and � there exists a positive number n(�; �) such that for ` > n(�; �) the following

inequality holds
P (�E1

(f; f`) > �) � P (�E2
(F;F`) >

p

`�) (3)

where �E1
(f; f`); �E1

(f; f`) are metrics in the space of functions f and F .
Since the empirical distribution function F`(x) converges in probability to F (x) from equation
(3) one concludes that estimating the density by solving integral equation (1) using F`(x) is

always consistent.
The main problem in density estimation using a �nite number of observations is specifying the

regularization parameters.

2.3 Regularization method for density estimation

We solve the density estimation problem using the Philips' regularization form. We minimize
the regularization functional 
(f) subject to constraint

jjAf � F`jj � �`;

where �` is the known discrepancy between F (x) and F`(x).

Usually it is not easy to evaluate �`. However for the problem of density estimation one can
obtain an exact estimate of �`.

As we discussed in section 2.1 for the one dimensional case the random variable k =
p
`jjF (x)�

F`(x)jj1 has an universal distribution. Therefore one can choose �` =
cp
`
where c is a constant,
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for example the median of this distribution 0:6. For the multivariate case with probability 1� �

the inequality

�` � c(�)
�
`
�k(d)

�

holds true where k(d) is de�ned by the dimensionality d of the space [4] [8]. These types of

bounds are used to set the regularization parameter.

2.4 SVM for density estimation

To use the support vector method for the density estimation problem we look for a solution f in
the set of functions that belong to some Reproducing Kernel Hilbert Space (RKHS) where we

de�ne the regularization functional 
(f) as a norm in the RKHS


(f) = jjf jj2
H
: (4)

We minimize the functional (4) subject to constraints in a set of functions f 2 H. It is known

[3] that the solution of the optimization problem for f 2 H has a form

f(x) =
`X

i=1

�iK(xi; x)

where the coe�cients minimize the functional


(�) =
`X

i=1

�
2
i

(5)

subject to constraints
jjF̂ � F`jj1 � �;

where F̂ (x) =
R
x

1 p̂(t)dt. Minimizing (5) can be thought of as �nding the smoothest function

F̂ (x) which is within an �-tube of F`(x).
A diagnostic is needed to check whether an approximation F̂ (x) exists that stays within the
�-tube. This is done by adding slack variables, �i � 0. The addition of the slack variables to
functional (5) and properties of the RKHS give us the following functional to minimize (which

is identical to the functional minimized for SVMs for inverse operator problems [10])

min
�;�i

jj�jj2 + C

`X
i=1

�i (6)

subject to

jF̂ (xi)� Fl(xi)j � � + �i; 8 xi; (7)

where �i are slack variables, C is set to in�nity (in implementations C is set to a large number),

and since we want to estimate a density the following constraints are added:

`X
i=1

�i = 1 ; �i � 0: (8)
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Minimizing functional (6) with respect to the constraints in equations (7) and (8) is a quadratic

programming problem with linear constraints and can be solved in either a primal or dual for-

mulation [2]. The solution has the form

p̂(t; �) =
`X

i=1

�iK(t; xi; �);

where K(t; xi; �) are kernel functions and � is another regularization parameter and most of the

�i's are typically zero.
The extension to the the multivariate case, xi 2 IRd, only involves constructing a multivariate

empirical distribution function

F`(x) =
`X

i=1

dY
j=1

�(xj � x
j

i
); (9)

where xj

i
is the jth component of the point xi. Again the solution will have the form

p̂(t; �) =
NX
i=1

�iK(t;xi; �); (10)

where N are the points xi for which �i is nonzero, these are the Support Vectors, in general
N � `. The parameter �, an example of which is the variance of a gaussian, is set by a line

search: we select the largest � for which there exists an estimate within a �-tube of the empirical
distribution function.
Note that this algorithm has only one free parameter � which is set based on bounds on the
convergence of F`(x) to F (x).

2.5 Comparison to Gaussian Mixture Models (GMMs)

When the kernel functions are gaussians the SVM solution is a linear combination of gaussians

just like the GMM case. The di�erence between the two cases is how the inverse operator
problem is solved. In the GMM case one uses the expectation maximization (EM) algorithm to
estimate the parameters that maximize the log-likelihood. However, this maximummay not exist,

from Basu and Micchelli \Generally a maximum likelihood does not exist." [1]. Regularization
heuristics are imposed to deal with this problem. The two basic heuristics are to set a lower

bound on the variance of the gaussians and also to specify an upper bound on the number of
gaussians in the model. The problem is that there is no rigorous way to set these bounds which

serve as the regularization parameters.
Both the SVM and GMM methods require regularization to e�ectively solve the density estima-
tion problem. The problem for the GMM approach is that it is di�cult to set the regularization

parameters in a mathematically rigorous way. In the SVM method the only free regularization

parameter �` is set based upon the convergence properties of empirical distribution functions.

3 Simulations

In this section we apply our algorithm to a 2-dimensional density estimation problem and a

12-dimensional density estimation problem. We compare the results to those achieved by a

GMM.
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3.1 2-dimensional case

Training data for 100 trials was generated by randomly sampling 200 data points for each trial
from the following distribution

p(x; y) =
1

8�
e
�((x�1)2=2+(y�1)2=8) +

1

8�
e
�((x+1)2=8+(y+1)2=2)

:

For the test data 1000 points were sampled from the above distribution. We applied our algorithm

using a gaussian kernel

K(ftx; tyg; fxi; yig; �) = 1

2��2
e
�((tx�xi)2+(ty�yi)2)=2�2;

and � = :6p
200

. We compared our algorithm to that of a GMM. The GMM algorithm consisited of a

vector quantization and k-means clustering step followed by the expectation maximization (EM)
algorithm to compute the maximum likelihood. The GMM required as parameters the maximum
number of gaussians allowed and the minimum variance allowed. We set the maximum number

of gaussians to 4 and 2 and the minimum variance allowed to :01. For each trial we computed
the `1 error or average absolute error between the estimate and true distribution. Figure (1a)

shows that our algorithm does slightly better than the GMM with two gaussians and much better
than the GMM with four gaussians. Figure (2) plots the true density and the three estimated
densities for the �rst trial.

3.2 6-dimensional case

Training data for 50 trials was generated by randomly sampling 600 data points for each trial

from the following distribution

p(x) =
1

24�3

�
1

detj�1je
� 1

2
(x��1)T��11

(x��1) +
1

detj�2je
� 1

2
(x��2)T��12

(x��2) (11)

+
1

detj�3je
� 1

2
(x��3)T��13

(x��3)
�

where x 2 IR6, the covariance matrices are diagonal with the following elements

�1 = f1:0; 2:0; 1:0; 2:0; 1:0; 2:0g,
�2 = f2:0; 1:0; 2:0; 1:0; 2:0; 1:0g,
�3 = f2:0; 1:0; 2:0; 1:0; 2:0; 1:0g,
�1 = f1:0; 1:0; 1:0; 1:0; 1:0; 1:0g,
�2 = f�1:0;�1:0;�1:0;�1:0;�1:0;�1:0g,
�3 = f0:0; 0:0; 0:0; 0:0; 0:0; 0:0g.
For the test data 6000 points were sampled from the above distribution. We applied our algorithm

using a gaussian kernel

K(t;xi; �) =
1

8�3�6
e
�jjt�xijj2=2�2;

and � = :5

6001=3
. We again compared our algorithm to that of a GMM. We set the maximum

number of gaussians to 8 and 4 and the minimum variance allowed to :01. For each trial we
computed the `

1 error or average absolute error between the estimate and true distribution.

Figure (1b) shows that our algorithm does slightly better than the GMM with four gaussians

and much better than the GMM with eight gaussians.
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Figure 1: A boxplot of (a) the `
1 error over 100 trials for SVM, GMM with 2 gaussians, and

GMM with 4 gaussians in the two dimensional case and (b) the `1 error over 50 trials for SVM,

GMM with 4 gaussians, and GMM with 8 gaussians in the six dimensional case.
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Figure 2: For the �rst trial in the two dimensional case (a) the true density (b) the SVM estimate

(c) the GMM estimate with 2 or fewer gaussians (d) the GMM estimate with 4 or fewer gaussians.
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4 Future work

In order to apply this algorithm to high dimensional problems with many data points in the

training set we will implement the dual formulation using the decomposition algorithm of Osuna
et. al. [5]. We also need a better understanding of which bounds to use to obtain the � parameter.

We will look at speech data as well as simulated data to examine general convergence behavior
for practical problems so as to determine this parameter.
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