
ARTIFICIAL INTELLIGENCE LABORATORY

and

CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING

DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES

A.I. Memo No. 1658 May 1999
C.B.C.L Paper No. 173

Visual Speech Synthesis by Morphing Visemes

Tony Ezzat and Tomaso Poggio
This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

The pathname for this publication is: ai-publications/1500-1999/AIM-1658.ps

Abstract

We present MikeTalk, a text-to-audiovisual speech synthesizer which converts input text into an audiovisual
speech stream. MikeTalk is built using visemes, which are a small set of images spanning a large range of mouth
shapes. The visemes are acquired from a recorded visual corpus of a human subject which is specifically designed
to elicit one instantiation of each viseme. Using optical flow methods, correspondence from every viseme to every
other viseme is computed automatically. By morphing along this correspondence, a smooth transition between
viseme images may be generated. A complete visual utterance is constructed by concatenating viseme transitions.
Finally, phoneme and timing information extracted from a text-to-speech synthesizer is exploited to determine which
viseme transitions to use, and the rate at which the morphing process should occur. In this manner, we are able to
synchronize the visual speech stream with the audio speech stream, and hence give the impression of a photorealistic
talking face.

Copyright c© Massachusetts Institute of Technology, 1999

This report describers research done at the Center for Biological & Computational Learning and the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. This research was sponsored by the Office of Naval Research under contract No. N00014-
93-1-0385 and contract No. N00014-95-1-0600 under contract No. IIS-9800032. Additional support is provided by: AT&T, Central
Research Institute of Electric Power Industry, Eastman Kodak Company, Daimler-Benz AG, Digital Equipment Corporation, Honda
R&D Co., Ltd., NEC Fund, Nippon Telegraph & Telephone, and Siemens Corporate Research, Inc.



1 Introduction

The goal of the work described in this paper is to
develop a text-to-audiovisual speech synthesizer called
MikeTalk. MikeTalk is similar to a standard text-to-
speech synthesizer in that it converts text into an audio
speech stream. However, MikeTalk also produces an
accompanying visual stream composed of a talking face
enunciating that text. An overview of our system is
shown in Figure 1.
Text-to-visual (TTVS) speech synthesis systems are

attracting an increased amount of interest in the recent
years, and this interest is driven by the possible deploy-
ment of these systems as visual desktop agents, digital
actors, and virtual avatars. In addition, they may also
have potential uses in special effects, very low bitrate
coding schemes (MPEG4), and would also be of inter-
est to psychologists who wish to study visual speech
production and perception.
In this work, we are particularly interested in build-

ing a TTVS system where the facial animation is video-
realistic: that is, we desire our talking facial model
to look as much as possible as if it were a videocam-
era recording of a human subject, and not that of a
cartoon-like human character.
In addition, we choose to focus our efforts on the

issues related to the synthesis of the visual speech
stream, and not on audio synthesis. For the task of
converting text to audio, we have incorporated into
our work the Festival speech synthesis system, which
was developed by Alan Black, Paul Taylor, and col-
leagues at the University of Edinburgh [6]. Festival is
freely downloadable for non-commercial purposes, and
is written in a modular and extensible fashion, which
allows us to experiment with various facial animation
algorithms.
The Festival TTS system, as with most speech syn-

thesizers, divides the problem of converting text to
speech into two sub-tasks, shown in pink in Figure 1:
first, a natural language processing (NLP) unit con-
verts the input text into a set of output streams that
contain relevant phonetic, timing, and other intona-
tional parameters. Second, an audio signal processing
unit converts the NLP output streams into an audio
stream in which the input text is enunciated.
Within this framework, our goal in this work, as

depicted in red in Figure 1, is two-fold: first, to de-
velop a visual speech module that takes as input the
phonetic and timing output streams genererated by
Festival’s NLP unit, and produces as output a visual
speech stream of a face enunciating the input text. Sec-
ondly, to develop a lip-sync module that synchronizes
the playback of the audio and visual streams.

"one"
Text NLP

Audio
Speech

Processing/w−uh−n/

lip−sync

Visual 
Speech

Processing

Video

Audio

Figure 1. Overview of the MikeTalk TTVS sys-
tem.

We discuss the facial animation module in Sections
2 through 6, and the lip-sync module in Section 7.

2 Background and Motivation

The main research issue underlying the construction
of a TTVS visual stream is the nature of the facial
model to use. One approach is to model the face us-
ing traditional 3D modeling methods. Parke [22] was
one of the earliest to adopt such an approach by creat-
ing a polygonal facial model. The face was animated
by interpolating the location of various points on the
polygonal grid. Parke’s software and topology were
subsequently given new speech and expression control
software by Pearce, Wyvill, Wyvill, & Hill [23]. With
this software, the user could type a string of phonemes
that were then converted to control parameters which
changed over time to produce the animation sequence.
Each phoneme was represented in a table by 11 control
parameters, and the system made a transition between
two phonemes by interpolating between the control pa-
rameters. Recent work on TTVS systems that is based
on Parke’s models include the work of Cohen & Mas-
saro [10] and LeGoff & Benoit [16].
To increase the visual realism of the underlying fa-

cial model, the facial geometry is frequently scanned in
using three-dimensional or laser scanners such as those
manufactured by Cyberware. Additionally, a texture-
map of the face extracted by the Cyberware scanner
may be mapped onto the three-dimentional geometry
[15]. More advanced dynamic, muscle-based animation
mechanisms were demonstrated by Waters [26].

1



Despite these improvements, the generated facial an-
imations still lack video realism. One Cyberware tex-
ture scan alone does not suffice to capture the complex
time-varying appearance of a human face, and usually
is not able to capture the 3D structure of human hair.
Furthermore, overlaying the texture scan on top of a
3D polygonal or muscle-based model exposes the de-
ficiencies of these models in terms of their ability to
animate human motion.
An alternative approach is to model the talking face

using image-based techniques, where the talking facial
model is constructed using a collection of images cap-
tured of the human subject. These methods have the
potential of achieving very high levels of videorealism,
and are inspired by the recent success of similar sample-
based methods for speech synthesis [19].
Bregler, Covell, el al. [7] describe such an image-

based approach in which the talking facial model is
composed of a set of audiovisual sequences extracted
from a larger audiovisual corpus. Each one of these
short sequences is a triphone segment, and a large
database with all the acquired triphones is built. A new
audiovisual sentence is constructed by concatenating
the appropriate triphone sequences from the database
together. To handle all the possible triphone contexts,
however, the system requires a library with tens and
possibly hundreds of thousands of images, which seems
to be an overly-redundant sampling of human lip con-
figurations.
Cosatto and Graf [11] describe an approach which

attempts to reduce this redundancy by parameterizing
the space of lip positions. The imposed dimensions of
this lip space are lip width, position of the upper lip,
and position of the lower lip. This 3-dimensional lip
space is then populated by using the images from the
recorded corpus. Synthesis is performed by traversing
trajectories in this imposed lip space. The trajectories
are created using Cohen-Massaro’s coarticulation rules
[10]. If the lip space is not populated densely, the an-
imations produced may be jerky. The authors use a
pixelwise blend to smooth the transitions between the
lip images, but this can produce undesirable ghosting
effects.
An even simpler image-based lip representation was

used by Scott, Kagels, et al. [24] [27]. Their facial
model is composed of a set of 40-50 visemes, which are
the visual manifestation of phonemes. To animate the
face, a 2D morphing algorithm is developed which is
capable of transitioning smoothly between the various
mouth shapes. While this produces smooth transitions
between the visemes, the morphing algorithm itself re-
quires considerable user intervention, making the pro-
cess tedious and complicated.

/f/

/n/

/w/ /oo/

/ii/

/uh/

Figure 2. The MikeTalk facial model.

Our work explores further the use of this viseme-
morphing representation for synthesis of human visual
speech. Instead of using a manual morphing method,
however, we employ a method developed by Beymer,
Shashua, Poggio [5]. This morphing algorithm required
little or no user intervention, and was shown to be ca-
pable of modeling rigid facial transformations such as
pose changes, as well as non-rigid transformations such
as smiles.

3 Our Facial Model

Our facial modelling approach may best be summa-
rized as an image-based, morphing method, and is close
in spirit to the work of [5] [24] [27]. We summarize the
three main aspects of our facial model as follows:

Corpus and Viseme Acquisition: First, a visual
corpus of a subject enunciating a set of key words
is initially recorded. Each key word is chosen
so that it visually instantiates one American En-
glish phoneme. Because there are 40-50 Ameri-
can English phonemes [20], the subject is asked to
enunciate 40-50 words. One single image for each
phoneme is subsequently identified and manually
extracted from the corpus sequence. In this work,
we use the term viseme to denote the lip image
extracted for each phoneme. A few of the viseme
images are depicted in Figure 2.

Viseme Morph Transformation: Secondly, we
construct, in a manner described in more detail

2



below, a morph transformation from each viseme
image to every other viseme image. This trans-
formation allows us to smoothly and realistically
transition between any two visemes, creating in-
termediate lip shape images between the two end-
points. For N visemes in our final viseme set, we
define N2 such transformations. The arrows be-
tween the viseme images in Figure 2 are a figura-
tive depiction of these transformations.

Concatenation Finally, to construct a novel visual
utterance, we concatenate viseme morphs. For ex-
ample, in terms of Figure 2, the utterance for the
word one is constructed by morphing from \w\
viseme to the \uh\ viseme, followed by a morph
from the \uh\ viseme to the \n\ viseme. For any
input text, we determine the appropriate sequence
of viseme morphs to make, as well as the rate of
the transformations by utilizing the output of the
natural language processing unit of the Festival
TTS system.

In a graph-theoretic sense, our facial model may be
viewed as an N-node clique, where each node repre-
sents one viseme, and the directed edges between nodes
represent the N2 viseme transformations. From an ani-
mator’s perspective, the visemes in our model represent
keyframes, and our transformations represent a method
of interpolating between them.
In the following sections, we describe the various

aspects of our approach in detail.

4 Corpus and Viseme Data Acquisition

The basic underlying assumption of our facial syn-
thesis approach is that the complete set of mouth
shapes associated with human speech may be reason-
ably spanned by a finite set of visemes. The term
viseme itself was coined initially by Fisher [12] as an
amalgamation of the words “visual” and “phoneme”.
To date, there has been no precise definition for the
term, but in general it has come to refer to a speech
segment that is visually contrastive from another. In
this work, we define a viseme to be a static lip shape
image that is visually contrastive from another.
Given the assumption that visual speech is spanned

by a set of visemes, we would like to design a particular
visual corpus which elicits one instantiation for each
viseme. One possible strategy to adopt is to assume a
one-to-one mapping between the set of phonemes and
the set of visemes, and design the corpus so that there
is at least one word uttered which instantiates each
phoneme.

This one-to-one strategy is a reasonable approach
in light of the fact that we plan on using the Festival
TTS system to produce the audiovisual sequence. In
doing so, Festival’s NLP unit will produce a stream
of phonemes corresponding to the input text. Con-
sequently, there is a need to map from the set of
phonemes used by the TTS to a set of visemes so as
to produce the visual stream. A one-to-one mapping
between phonemes and visemes thus ensures that a
unique viseme image is associated with each phoneme
label. Since most speech textbooks and dictionaries
contain a list of phonemes and example words which
instantiate them, the corpus may thus be designed to
contain those example words.
Our recorded corpus is shown in Figure 3. The

example words uttered are obtained from [20], and
are generally categorized into example words which in-
stantiate consonantal, monophthong vocalic, and diph-
thong vocalic phonemes. After the whole corpus is
recorded and digitized, one lip image is extracted as
an instance of that viseme. In general, the viseme im-
age extracted was chosen as the image occurring at the
point where the lips were judged to be at their extremal
position for that sound.
It should be noted that diphthongs are treated in

a special manner in this work. Since diphthongs are
vocalic phonemes which involve a quick transition be-
tween two underlying vowel nuclei, it was decided that
two viseme images were necessary to model that diph-
thong visually: one to represent the first vowel nucleus,
and the other to represent the second. Consequently,
we extract two images for every diphthong from the
recorded corpus.
The one-to-one mapping strategy thus leads to the

extraction of 52 viseme images in all: 24 represent-
ing the consonants, 12 representing the monophthongs,
and 16 representing the diphthongs.
Since a large number of the extracted visemes looked

similar, it was decided to further reduce the viseme
set by grouping them together. This was done in a
subjective manner, by comparing the viseme images
visually to assess their similarity. This is in keep-
ing with the current viseme literature, which indicates
that the mapping between phonemes and visemes is,
in fact, many-to-one: there are many phonemes which
look alike visually, and hence they fall into the same
visemic category. This is particularly true, for exam-
ple, in cases where two sounds are identical in man-
ner and place of articulation, but differ only in voicing
characteristics. For example, \b\ and \p\ are two bil-
abial stops which differ only in the fact that the former
is voiced while the latter is voiceless.This difference,
however, does not manifest itself visually, and hence

3



the two phonemes should be placed in the same visemic
category. In grouping the visemes subjectively, the au-
thors were guided by the conclusions in [21] for the
case of consonantal visemes, and in [18] for the case of
vocalic visemes.
It is also important to point out that that the

map from phonemes to visemes is also one-to-many:
the same phoneme can have many different visual
forms. This phenomenon is termed coarticulation, and
it occurs because the neighboring phonemic context in
which a sound is uttered influences the lip shape for
that sound. For example, the viseme associated with
\t\ differs depending on whether the speaker is ut-
tering the word two or the word tea. In the former
case, the \t\ viseme assumes a rounded shape in an-
ticipation of the upcoming \uu\ sound, while the lat-
ter assumes a more spread shape in anticipation of the
upcoming \ii\ sound. To date, and largely due to
the large number of influencing factors, the nature and
scope of coarticulation remains an open research prob-
lem. The reader is referred to [10] for an in-depth dis-
cussion on the theories behind coarticulation, and to
[21] for a study on consonantal perception in various
vocalic contexts. At the present stage of our work, we
have decided for the sake of simplicity to ignore coar-
ticulation effects,
The final reduced set of visemes are shown in Figures

4 and 5. Note that while our figures display only the
region around the mouth, our viseme imagery capture
the entire face.

In all, there are 16 final visemes. Six visemes repre-
sent the 24 consonantal phonemes. Seven visemes rep-
resent the 12 monophthong phonemes. In the case of
diphthongs, it was found that all vowel nuclei could be
represented by corresponding monophthong visemes.
The only exception to this occurred in the case of two
nuclei: the second nucleus of the \au\ dipththong,
which we call the \w-au\ viseme, and the first nu-
cleus of the \ou\ dipththong, which we call the \o-ou\
viseme. Finally, one extra viseme was included to rep-
resent silence, which we call \#\.

5 Viseme Morphing

In constructing a visual speech stream, it is not suffi-
cient to simply display the viseme images in sequence.
Doing so would create the disturbing illusion of very
abrupt mouth movement, since the viseme images differ
significantly from each other in shape. Consequently, a
mechanism of transitioning from each viseme image to
every other viseme image is needed, and this transition
must be smooth and realistic.
In this work, a morphing technique was adopted to

 bead
bid
bed
bad

body
father
bud

baud
book
boot

about
bird

 ii
i
e
a
o
aa
uh
oo
u

uu
@

@@ tea
key
veal
then
zeal

garage
feel
thin
seal

shore
head
jeep

chore

ride
light
wide
yacht
might
night
song
bite
dog
get
pet

monophthongs

diphthongs

r
l
w
y
m
n

ng
b
d
g
p

consonants

t
k
v

dh
z

zh
f

th
s

sh
h
jh
ch

boat
bait
bout
bide
boyd
there
near
moor

ou
ei
au
ai
oi

e@
i@
u@

Figure 3. The recorded visual corpus. The un-
derlined portion of each example word iden-
tifies the target phoneme being recorded. To
the left of each example word is the phone-
mic transcription label being used.

create this transition. Morphing was first popularized
by Beier & Neely [3] in the context of generating tran-
sitions between different faces for Michael Jackson’s
Black or White music video. Given two images I0 and
I1, morphing generates intermediate images Iα, where
α is a parameter ranging from 0 to 1. These interme-
diate images are generated by warping I0 towards I1,
warping I1 towards I0, and cross-dissolving the warped
images to produce the final desired image. Intuitively,
warping maybe viewed as an interpolation in shape,
while cross-dissolving maybe viewed as an interpola-
tion in texture.

In the following sections, we discuss each of the
above steps in detail, and describe their effect on
viseme images in particular.

4



/p, b, m/ /f, v/ /t,d,s,z,th,dh/

/w,r/ /ch,jh,sh,zh/ /k,g,n,l,ng,h,y/

Figure 4. The 6 consonant visemes

5.1 Correspondence

As a first step, all morphing methods require the
specification of correspondence maps C0 : I0 ⇒ I1 and
C1 : I1 ⇒ I0 relating the images I0 and I1 to each
other. These maps serve to ensure that the subsequent
warping process preserves the desired correspondence
between the geometric attributes of the objects to be
morphed.
In this work, we choose to represent the correspon-

dence maps using relative displacement vectors:

C0(p0) = {d0→1
x (p0), d0→1

y (p0)} (1)

C1(p1) = {d1→0
x (p1), d1→0

y (p1)} (2)

A pixel in image I0 at position p0 = (x, y) corresponds
to a pixel in image I1 at position (x + d0→1

x (x, y), y +
d0→1

y (x, y)). Likewise, a pixel in image I1 at position
p1 = (x, y) corresponds to a pixel in image I0 at po-
sition (x+ d1→0

x (x, y), y + d1→0
y (x, y)). As discussed in

[25], two maps are usually required because one map
by itself may not be one-to-one.
The specification of the correspondence maps C0

and C1 between the images is typically the hardest
part of the morph. Previous methods [3] [24] [14]
have adopted feature-based approaches, in which a set
of high-level shape features common to both images
is specified. The correspondences for the rest of the
points are determined using interpolation.
When it is done by hand, however, this feature spec-

ification process can become quite tedious and compli-
cated, especially in cases when a large amount of im-
agery is involved. In addition, the process of specifying
the feature regions usually requires choosing among a

/i, ii/ /e,a/ /aa,o/

/uh, @/ /@@/ /oo/

/u, uu/ /w−au/ /o−ou/

/#/

Figure 5. The 7 monophthong visemes, 2
diphthong visemes, and the silence viseme.

large number of fairly arbitrary geometric primitives
such as points, line segments, arcs, circles, and meshes.
However, in our case the images to be morphed be-

long to one single object that is undergoing motion: a
talking face. The problem of specifying correspondence
between two images thus reduces to the problem of es-
timating the motion field of the underlying moving ob-
ject! This observation, made in [5] and [9], is extremely
significant because it allows us to make use of a large
number of automatic motion estimation algorithms for
the purpose of computing the desired correspondence
between two images. In this work, we make use of op-
tical flow algorithms to estimate this motion.

5.2 Optical Flow

Optical flow [13] was originally formulated in the
context of measuring the apparent motion of objects
in images. This apparent motion is captured as a two-
dimensional array of displacement vectors, in the same
exact format shown in Equations 1 and 2. Given two
images I0 and I1, computing optical flow with I0 as ref-
erence image produces a correspondence map C0, while

5



computing optical flow with I1 as reference produces a
correspondence map C1.
Optical flow is thus of clear importance because it

allows for the automatic determination of correspon-
dence maps. In addition, since each pixel is effectively
a feature point, optical flow allows us to bypass the
need for choosing any of the afore-mentioned geomet-
ric feature primitives. In this sense, optical flow is said
to produce dense, pixel correspondence.
There is currently a vast literature on this subject

(see for example [2] for a recent review), and several dif-
ferent methods for computing flow have been proposed
and implemented. In this work, we utilize the coarse-
to-fine, gradient-based optical flow algorithms devel-
oped by [4]. These algorithms compute the desired
flow displacements using the spatial and temporal im-
age derivatives. In addition, they embed the flow esti-
mation procedure in a multiscale pyramidal framework
[8], where initial displacement estimates are obtained
at coarse resolutions, and then propagated to higher
resolution levels of the pyramid. Given the size of our
viseme imagery, we have found that these methods are
capable of estimating displacements on the order of 5
pixels between two images.
For even larger displacements between visemes, we

have found that a flow concatenation procedure is ex-
tremely useful in estimating correspondence. Since the
original visual corpus is digitized at 30 fps, there are
many intermediate frames that lie between the chosen
viseme images. The pixel motions between these con-
secutive frames are small, and hence the gradient-based
optical flow method is able to estimate the displace-
ments. Consequently, we compute a series of consecu-
tive optical flow vectors between each intermediate im-
age and its successor, and concatenate them all into one
large flow vector that defines the global transformation
between the chosen visemes. Details of our flow con-
catenation procedure itself are found in the appendix.
It is not practical, however, to compute concate-

nated optical flow between viseme images that are very
far apart in the recorded visual corpus. The repeated
concatenation that would be involved across the hun-
dreds of intermediate frames leads to a considerably
degraded final flow. Consequently, we have found that
the best procedure for obtaining good correspondences
between visemes is actually a mixture of both direct and
concatenated flow computations: typically, an interme-
diate frame is chosen that is simultaneously similar in
shape to the chosen starting viseme, and also close in
distance to the chosen ending viseme. Direct optical
flow is then computed between the starting viseme and
this intermediate frame, and concatenated optical flow
is computed from the intermediate up to the ending

for j = 0. . .height,
for i = 0. . .width,

x = RND (i + αdx(i,j) );
y = RND (j + αdy(i,j) );
if (x,y) are within the image

Iwarped(x,y) = I(i,j);
}

Figure 6. FORWARD WARP algorithm,
which warps I forward along flow vectors αdx
and αdy to produce Iwarped.

viseme. The final flow from the starting viseme to the
ending viseme is then itself a concatenation of both of
these direct and concatenated subflows.

5.3 Forward Warping

Given two viseme images I0 and I1, the first step of
our morphing algorithm is to compute the correspon-
dence map C0(p0) = {d0→1

x (p0), d0→1
y (p0)} as dis-

cussed in the previous section, and then to forward
warp I0 along that correspondence.
Forward warping may be viewed as “pushing” the

pixels of I0 along the computed flow vectors. By scal-
ing the flow vectors uniformly by the parameter α be-
tween 0 and 1, one can produce a series of warped in-
termediate images Iwarped

0 (α) which approximate the
transformation between visemes I0 and I1. Formally,
the forward warp W0 and the warped image Iwarped

0

are computed as

W0(p0, α) = p0 + αC0(p0) (3)

Iwarped
0 (W0(p0, α)) = I0(p0) (4)

A procedural version of our forward warp is shown in
Figure 6.
Several such intermediate warps are shown in Fig-

ure 7a, where I0 is the \m\ viseme and I1 is the \aa\
viseme. The black holes which appear in the intermedi-
ate images occur in cases where a destination pixel was
not filled in with any source pixel value. The main rea-
son for this is that the computed optical flow displace-
ments exhibit nonzero divergence, particularly around
the region where the mouth is expanding.
In symmetric fashion, it is also possible to forward

warp I1 towards I0. First, the reverse correspondence
map C1 is estimated by computing optical flow from I1

towards I0. The forward warpW1 and warped interme-
diate image Iwarped

1 (β) are then generated analogously
as in Equations 7 and 8:

6



A)

B)

C)

D)

Figure 7. A) Forward warping viseme I0 (first image) towards I1. B) Forward warping viseme I1 (last
image) towards I0. C) Morphing the images in I0 and I1 together. D) The same morphed images as
in C), after hole-filling and median-filtering. Note that our morphing algorithm operates on the entire
facial image, although we only show the region around the mouth for clarity.

W1(p1, β) = p1 + βC1(p1) (5)

Iwarped
1 (W1(p1, β)) = I1(p1) (6)

Note that in order to align the two forward warps with
respect to each other, β is set to 1 − α. In this man-
ner, as α moves from 0 to 1, the warped intermediates
Iwarped
1 (1−α) start out with the fully warped versions
and move towards the viseme I1. Several intermedi-
ate images of this reverse forward warp are shown in
Figure 7b.

5.4 Morphing

Because forward warping can only move pixels
around, it cannot model the appearance of new pixel
texture. As is evident from the sequence in Figure 7a,
a forward warp of viseme I0 along the flow vectors of C0

can never produce a final image that looks like viseme
I1, since viseme I1 itself contains a large amount of
novel texture from the inside of the mouth.
Morphing overcomes this “novel pixel texture” prob-

lem by combining the texture found in both forward

warps. This combination is performed by scaling
the warped intermediate images with respective cross-
dissolve or blending parameters, and then adding to
produce the final morphed image Imorph(α):

Imorph(p, α) =

(1− α)Iwarped
0 (p, α) + αIwarped

1 (p, (1− α)) (7)

By interpolating the blending parameters the morph
“fades out” the warped versions of the starting viseme
and “fades in” the warped versions of the ending
viseme. The blending process thus allows the two
warps to be effectively combined, and the “new” pixels
of the second viseme to become involved in the viseme
transition itself.
Due to the presence of holes in the warped interme-

diates, we adopt a slightly more sophisticated blend-
ing mechanism: Whenever one forward warp predicts
a pixel value in an intermediate image while the other
leaves a hole, we set the final pixel value in the morphed
image to be the same as that predicted by the single
warp, without any blending. Whenever both forward
warps predict pixel values in an intermediate image, we

7



resort to the standard blending approach of Equation
7. Holes are detected in the images by pre-filling the
destination images with a special reserved color prior
to warping. Our morphed intermediate image is thus
synthesized as:

Imorph(p, α) ={
Iwarped
0 (p, α) if Iwarped

1 (p, (1 − α)) is a hole

Iwarped
1 (p, (1 − α)) if Iwarped

0 (p, α) is a hole

(1 − α)Iwarped
0 (p, α) + αIwarped

1 (p, (1 − α)) otherwise

}

Figure 7c depicts several morphed images constructed
in this manner. Note that our morphing algorithm
operates on the entire facial image, although we only
show the region around the mouth for clarity.
As may be seen in the images of Figure 7c, there are

locations for which neither warp predicts a pixel value,
leaving a set of visible holes in the morphed images.
To remedy this, a hole-filling algorithm proposed in [9]
was adopted. The algorithm traverses the destination
image in scanline order and fills in the holes by interpo-
lating linearly between their non-hole endpoints. This
approach works reasonably well whenever the holes are
small in size, which is the case here.
In addition, the morphed image occasionally ex-

hibits “salt-and-pepper”-type noise. This occurs when-
ever there is a slight mismatch in the brightness val-
ues of neighboring pixels predicted by different viseme
endpoints. To remove this, we convolve the hole-filled
morphed image with a 3-by-3 median filter [17]. Figure
7d shows the same set of morphed intermediates as in
Figure 7c, but with the holes filled and median-filtered.
Overall, we have found that the above morphing

approach produces remarkably realistic transitions be-
tween a wide variety of viseme imagery, including the
typically “hard” morph transitions between open and
closed mouths shown in Figure 7. It should be noted
that our algorithm is essentially linear, in the sense
that the warping and blending functions depend lin-
early on the parameter α. As in [5] [14], it is pos-
sible to use more complicated, non-linear warping and
blending functions. We discuss the utility of using such
functions briefly in the next section.

6 Morph Concatenation

To construct a visual stream in which a word or a
sentence is uttered, we simply concatenate the appro-
priate viseme morphs together. For example, the word
one, which has a phonetic transcription of \w-uh-n\,
is composed of the two viseme morphs \w-uh\ and
\uh-n\ put together and played seamlessly one right

after the other. It should be noted that while this con-
catenation method guarantees G0 geometric continu-
ity, it does not guarantee continuity of speed, velocity,
or acceleration. Future work must address this issue,
since discontinuities in mouth motion are objectionable
to the viewer. More advanced morph transition rates
[14] are required to deal with this issue.

7 Audiovisual Synchronization

As discussed earlier, we have incorporated the Fes-
tival TTS system [6] into our work. In a manner that
is completely analogous to our method for concatenat-
ing viseme morphs, Festival constructs the final au-
dio speech stream by concatenating diphones together.
Diphones are short audio sequences which sample the
transitions between the middle of one phone to the
middle of another phone. Given the presence of about
40-50 phonemes in English, most diphone-based TTS
systems record a corpus of about 1600-2500 diphones.
Shown figuratively at the top in figure 8 is an audio
stream for the word one, which is composed of the di-
phones \w-uh\ and \uh-n\ concatenated together.
In order to produce a visual speech stream in syn-

chrony with the audio speech stream, our lip-sync mod-
ule first extracts the duration of each diphone Di as
computed by the audio module. We denote this du-
ration (in seconds) as l(Di). Additionally, we com-
pute the total duration T of the audio stream as
T =

∑N
i=1 l(Di).

Next, the lip-sync module creates an intermediate
stream, called the viseme transition stream. A viseme
transition is defined to be the collection of two end-
point visemes and the optical flow correspondences be-
tween them. The lip-sync module loads the appropriate
viseme transitions into the viseme transition stream by
examining the audio diphones. For example, if Di is a
\uh-n\ diphone, then the corresponding viseme tran-
sition Vi loaded by the lip-sync module is composed of
the \uh\ viseme, the \n\ viseme, and the optical flow
vectors between them.
Two additional attributes are also computed for

each viseme transition. The first is the duration of each
viseme transition, l(Vi), which is set to be equal to the
duration of the corresponding diphone l(Di). For rea-
sons that will become clear shortly, it is also useful to
compute the start index in time of each viseme transi-
tion. We denote this as s(Vi), and compute it as

s(Vi) =
{
0 i = 0
s(Vi−1) + l(Vi−1) otherwise

}
(8)

Thirdly, the lip-sync module creates the video

8



diphone /w−uh/ diphone /uh−n/

1/F 1/F 1/F 1/F 1/F 1/F 1/F
1 2 3 4 5 6 7 8

AUDIO

VISEME

VIDEO

TRANSITION

Figure 8. LIP-SYNC diagram

stream, which is composed of a sequence of frames
which sample the chosen viseme transitions. Given a
chosen frame rate F , the lip-sync module is required to
create TF frames. As shown in figure 8, this naturally
implies that the start index in time of the k’th frame
is

s(Fk) = k/F (9)

Given the start index of each viseme transition (Equa-
tion 8) and the start index of each frame (Equation
9), the lip-sync algorithm determines how to synthe-
size each frame Fk by setting the morph parameter αk

for that frame to be

αk =
s(Fk)− s(Vi)

l(Vi)
if s(Fk)− s(Vi) < l(Vi)

(10)
The morph parameter is thus simply the length of time
elapsed from the start of a viseme transition to the
frame, divided by the entire duration of the viseme
transition itself. The condition on the right hand
side of Equation 10 is there to ensure that the cor-
rect viseme is chosen to synthesize a particular frame.
In terms of figure 8, this condition would ensure that
frames 1, 2, 3, and 4 are synthesized from the \w-uh\
viseme transition, while frames 5, 6, 7, 8 are synthe-
sized from the \uh-n\ viseme transition.
As a final step, each frame is synthesized using the

morph algorithm discussed in Section 5.4.
We have found that the use of TTS timing and

phonemic information in this manner produces very
good quality lip synchronization between the audio and
the video. However, since the video sampling rate is
constant and independent of mouth displacements, fre-
quent undersampling of large mouth movement occurs,
which can be very objectionable to the viewer. Ac-
cordingly, we have found it necessary to increase our
sampling rate adaptively based on the optical flow vec-

tors in each viseme transition. In a scheme similar
to one suggested by [9], we pre-compute the maximal
offset vector for each viseme transition, and use it to
determine if our constant sampling rate undersamples
a viseme transition. If so, then we add more samples to
the viseme transition until the motion rate is brought
down to an acceptable level. Typically, we’ve found
that oversampling a viseme transition to ensure no
more than 2.5-3.0 pixel displacements between frames
leads to acceptably smooth mouth motion. When a
viseme transition is oversampled, the corresponding au-
dio diphone is lengthened to ensure that synchrony be-
tween audio and video is maintained.

8 Summary

In summary, our talking facial model may be viewed
as a collection of viseme imagery and the set of optical
flow vectors defining the morph transition paths from
every viseme to every other viseme.
We briefly summarize the individual steps involved

in the construction of our facial model:

Recording the Visual Corpus: First, a visual cor-
pus of a subject enunciating a set of key words is
recorded. An initial one-to-one mapping between
phonemes and visemes is assumed, and the sub-
ject is asked to enunciate 40-50 words. One single
image for each viseme is identified and extracted
manually from the corpus. The viseme set is then
subjectively reduced to a final set of 16 visemes.

Building the Flow Database: Thirdly, we build a
database of optical flow vectors that specify the
morph transition from each viseme image to every
other viseme image. Since there are 16 visemes
in our final viseme set, a total of 256 optical flow
vectors are computed.

Synthesizing the New Audiovisual Sentence:
Finally, we utilize a text-to-speech system [6] to
convert input text into a string of phonemes, along
with duration information for each phoneme. Us-
ing this information, we determine the appropriate
sequence of viseme transitions to make, as well as
the rate of the transformations. The final visual
sequence is composed of a concatenation of the
viseme transitions, played in synchrony with the
audio speech signal generated by the TTS system.

9 Results

We have synthesized several audiovisual sen-
tences to test our overall approach for visual

9



speech synthesis and audio synchronization de-
scribed above. Our results may be viewed by
accessing our World Wide Web home page at
http://cuneus.ai.mit.edu:8000/research/
miketalk/miketalk.html. The first author may also
be contacted for a video tape which depicts the results
of this work.

10 Discussion

On the positive side, our use of actual images as
visemes allows to achieve a significant level of video-
realism in the final facial model. And since we only
need to sample the visemes themselves, and not all the
possible transitions paths between them, the size of
the visual corpus which needs to be recorded is small.
The transitions between the visemes are computed in
an off-line manner automatically using our optical flow
techniques.
The use of concatenated optical flow as a method

to compute correspondence between visemes automat-
ically seems to work very well, allowing us to over-
come the difficulties associated with other correspon-
dence methods which are manual and very tedious. In
addition, the representation of a viseme transition as
an optical flow vector allows us to morph as many in-
termediate images as necessary to maintain synchrony
with the audio produced by the TTS.
Despite these advantages, there is clearly a large

amount of further work to be done. First, there is
no coarticulation model included in our facial synthe-
sis method. This has the effect of producing visual
speech that looks overly articulated. There is a clear
need to use more sophisticated techniques to learn the
dynamics of facial mouth motion.
Also, there is a clear need to incorporate into our

work nonverbal mechanisms in visual speech commu-
nication such as eye blinks, eye gaze changes, eye-
brow movements, and head nods. These communica-
tion mechanisms would serve to make the talking facial
model more lifelike.
Since our method is image-based, we are constrained

by the pose of the face in the imagery captured. Fu-
ture work must address the need to synthesize the talk-
ing facial model in different poses, and various recent
image-based warping and morphing methods may be
explored in this regard [1] [25].

References

[1] S. Avidan, T. Evgeniou, A. Shashua, and T. Poggio.
Image-based view synthesis by combining trilinear ten-

sors and learning techniques. In VRST ’97 Proceed-
ings, pages 103–109, Lausanne, Switzerland, 1997.

[2] J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Perfor-
mance of optical flow techniques. International Jour-
nal of Computer Vision, 12(1):43–77, 1994.

[3] Thaddeus Beier and Shawn Neely. Feature-based im-
age metamorphosis. In SIGGRAPH ’92 Proceedings,
pages 35–42, Chicago, IL, 1992.

[4] J.R. Bergen and R. Hingorani. Hierarchical motion-
based frame rate conversion. Technical report, David
Sarnoff Research Center, Princeton, New Jersey, April
1990.

[5] D. Beymer, A. Shashua, and T. Poggio. Example based
image analysis and synthesis. Technical Report 1431,
MIT AI Lab, 1993.

[6] A. Black and P. Taylor. The Festival Speech Synthesis
System. University of Edinburgh, 1997.

[7] C. Bregler, M. Covell, and M. Slaney. Video rewrite:
Driving visual speech with audio. In SIGGRAPH ’97
Proceedings, Los Angeles, CA, August 1997.

[8] Peter J. Burt and Edward H. Adelson. The laplacian
pyramid as a compact image code. IEEE Trans. on
Communications, COM-31(4):532–540, April 1983.

[9] Shenchang Eric Chen and Lance Williams. View inter-
polation for image synthesis. In SIGGRAPH ’93 Pro-
ceedings, pages 279–288, Anaheim, CA, August 1993.

[10] M. M. Cohen and D. W. Massaro. Modeling coarticu-
lation in synthetic visual speech. In N. M. Thalmann
and D. Thalmann, editors, Models and Techniques in
Computer Animation, pages 139–156. Springer-Verlag,
Tokyo, 1993.

[11] E. Cosatto and H. Graf. Sample-based synthesis of
photorealistic talking heads. In Proceedings of Com-
puter Animation ’98, pages 103–110, Philadelphia,
Pennsylvania, 1998.

[12] C. G. Fisher. Confusions among visually perceived
consonants. Jour. Speech and Hearing Research,
11:796–804, 1968.

[13] B. K. P. Horn and B. G. Schunck. Determining optical
flow. Artificial Intelligence, 17:185–203, 1981.

[14] S. Y. Lee, K. Y. Chwa, S. Y. Shin, and G. Wolberg. Im-
age metemorphosis using snakes and free-form defor-
mations. In SIGGRAPH ’92 Proceedings, pages 439–
448, 1992.

[15] Y. Lee, D. Terzopoulos, and K. Waters. Realistic mod-
eling for facial animation. In SIGGRAPH ’95 Pro-
ceedings, pages 55–62, Los Angeles, California, August
1995.

[16] B. LeGoff and C. Benoit. A text-to-audiovisual-speech
synthesizer for french. In Proceedings of the Interna-
tional Conference on Spoken Language Processing (IC-
SLP), Philadelphia, USA, October 1996.

10



[17] J. Lim. Two-dimensional signal and image processing.
Prentice Hall, Englewood Cliffs, New Jersey, 1990.

[18] A. Montgomery and P. Jackson. Physical character-
istics of the lips underlying vowel lipreading perfor-
mance. Jour. Acoust. Soc. Am., 73(6):2134–2144, June
1983.

[19] E. Moulines and F. Charpentier. Pitch-synchronous
waveform processing techniques for text-to-speech syn-
thesis using diphones. Speech Communication, 9:453–
467, 1990.

[20] J. Olive, A. Greenwood, and J. Coleman. Acoustics
of American English Speech: A Dynamic Approach.
Springer-Verlag, New York, USA, 1993.

[21] E. Owens and B. Blazek. Visemes observed by hearing-
impaired and normal-hearing adult viewers. Jour.
Speech and Hearing Research, 28:381–393, September
1985.

[22] F. I. Parke. A parametric model of human faces. PhD
thesis, University of Utah, 1974.

[23] A. Pearce, B. Wyvill, G. Wyvill, and D. Hill. Speech
and expression: A computer solution to face anima-
tion. In Graphics Interface, 1986.

[24] K.C. Scott, D.S. Kagels, S.H. Watson, H. Rom, J.R.
Wright, M. Lee, and K.J. Hussey. Synthesis of speaker
facial movement to match selected speech sequences.
In Proceedings of the Fifth Australian Conference on
Speech Science and Technology, volume 2, pages 620–
625, December 1994.

[25] S. Seitz and C. Dyer. View morphing. In SIGGRAPH
’96 Proceedings, pages 21–30, 1996.

[26] K. Waters. A muscle model for animating three-
dimensional facial expressions. In SIGGRAPH ’87
Proceedings, pages 17–24, July 1987.

[27] S.H. Watson, J.R. Wright, K.C. Scott, D.S. Kagels,
D. Freda, and K.J. Hussey. An advanced morphing al-
gorithm for interpolating phoneme images to simulate
speech. Jet Propulsion Laboratory, California Institute
of Technology, 1997.

[28] G. Wolberg. Digital Image Warping. IEEE Computer
Society Press, Los Alamitos, CA., 1990.

A Appendix: Flow Concatenation

We briefly discuss the details of the flow concate-
nation algorithm mentioned in section 5.2. Given a
series of consecutive images I0, I1, . . . In, we would like
to construct the correspondence map C0(n) relating I0

to In. Direct application of the optical flow algorithm
may fail because the displacements in the images are
too large. Because the images I0, I1, . . . In are the re-
sult of a dense sampling process, the motion between
consecutive frames is small, and hence we can com-
pute optical flow between the consecutive frames to
yield C01, C12, . . . C(n−1)n. The goal is to concatenate
C01, C12, . . . C(n−1)n together to yield an approxima-
tion to the desired C0(n) map. We can view this prob-
lem as the algebraic problem of adding vector fields.
We focus on the case of the 3 images Ii−1, Ii, Ii+1

and the correspondences C(i−1)i, Ci(i+1), since the con-
catenation algorithm is simply is an iterative applica-
tion of this 3-frame base case. Note that it is not cor-
rect to construct C(i−1)(i+1)(p) as the simple addition
of C(i−1)i(p) + Ci(i+1)(p) because the two flow fields
are with respect to two different reference images, Ii−1

and Ii. Vector addition needs to be performed with
respect to a common origin.
Our concatenation thus proceeds in two steps: to

place all vector fields in the same reference frame, the
correspondence map Ci(i+1) itself is warped backwards
[28] along C(i−1)i to create Cwarped

i(i+1) . Now Cwarped
i(i+1) and

C(i−1)i are both added to produce an approximation
to the desired concatenated correspondence:

C(i−1)(i+1)(p) = C(i−1)i(p) + Cwarped
i(i+1) (p) (11)

A procedural version of our backwarp warp is shown
in figure 9. BILINEAR refers to bilinear interpolation of
the 4 pixel values closest to the point (x,y)

for j = 0. . .height,
for i = 0. . .width,

x = i + dx(i,j);
y = j + dy(i,j);
Iwarped(i,j) = BILINEAR (I, x, y);

Figure 9. BACKWARD WARP algorithm,
which warps I backwards along dx and dy to
produce Iwarped

There are two algorithmic variants for concate-
nation of n images, shown below. The first
variant, CONCATENATION-DOWN, iteratively

11



computes
concatenated flows C(n−1)(n), C(n−2)(n), . . . , C0(n) us-
ing the method discussed above. The desired fi-
nal concatenated flow is C0(n). The second vari-
ant,CONCATENATION-UP, iteratively computes
concatenated flows C0(1), C0(2), . . . , C0(n). The desired
final concatenated flow is C0(n).

for i = n-1 downto 0 do,
if i = n - 1 then

compute Ci(n)(p) using optical flow
else

compute Ci(i+1)(p) using optical flow
warp C(i+1)n(p) backwards along Ci(i+1)(p)

to produce Cwarped
(i+1)n (p)

set Ci(n)(p) = Ci(i+1)(p) + Cwarped
(i+1)n (p)

Figure 10. CONCATENATION-DOWN al-
gorithm

for i = 1 to n do,
if i = 1 then

compute C0(i)(p) using optical flow
else

compute C(i−1)i(p) using optical flow
warp C(i−1)i(p) backwards along C0(i−1)(p)

to produce Cwarped
(i−1)i (p)

set C0(i)(p) = C0(i−1)(p) + Cwarped
(i−1)i (p)

Figure 11. CONCATENATION-UP algo-
rithm

12


