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In this paper we study the recognition of topologically
invariant properties of patterns by use of finite, rectangular 2-
dimensional, iterative arrays of finlte state automata (hereafter
called medular arrays.) The use of modular arrays as pattern
recognition devices has been studied by Atrubin [l] and by Unger [2].

Our aim 1s to show that modular arrays can not only recognize a
large wvatiety of topological Iinvariants, but can do so in times that
are almost minimal for a certain class of machines.

We begin by describing our model of the modular array as a
pattern recognition device and presgsenting a simple but time consuming
method of recognizing conmectivicy, Next we introduce a fundamental
transformation of patterns and prove several interesting properties
of the transformation. Finally, we apply the transformation to modular
arrays to obtain fast methods of recognizing a wide variety of
tepelegical invariants.




Modular Arrays
Consider a finite, rectangular, 2-dimensional, iterative array

of deterministic finite state automata. Such an array 1s pictured
belew with the automata represented by squares.
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The automata used in such 2 comstruction are called modules and

the entire arrangement is called a modular array. We assume that

all of the modules in the array are identical and have been placed in
the array with uniform criemtation. Each module iz connected directly
to ita four nearest melghbors. The array functions synchronously with
the state of a module at time t + 1 being a function of the state of
it and its four nelghhors at time £,

The above description assumes that every module im the array has
four nearest neighbors while in the dipgram above it appears that the
modules on the edges and corners of the array have fewer than four
neighbors.

We assume that in fact these boundary modules do have four nearest
neighbors where the neighbors not pictured above are special one state
automata called edge markera. The use of edge markers allows a module
to determine whether or not it iz on the boundary of the array and to
behave accordingly. The state transition diagram of a module thus
explicitly contains descriptions of the behavier of that module in each
of the sixteen possible situations in which it can find itself with
respect to the edges of an array.

To operate a modular array as a recognition computer for black

and white patterns one designates two module gtates as initial states



corresponding to black and white. Ar time t = 0 every module in the
array is placed in onme of the two initial states and the pattern of
gtates thus created represents the pattern to be processed. Beginning
with the initial state representing the pattern, the array proceeds
from state Co state until finally a designated module in the array

{we will always use the northwest corner module) enters one or the
other of two specially designated decision states thus indicating
whether the pattern is accepted or rejected. The decision states

are assumed to be terminal in the sense that once a module enters

guch a state it remains in that state forever.

Remarl, We always require the array to come to a definite accept or
reject decision. This requirement is justified by the fact that given
any module M with a designated accept state (but not necessarily =
reject state) there is a module M* with am accept and a reject state
such that the M* arrays will accept enactly those patterns accepted

by the M arrays and reject enactly those patterns which are never
accepted by the M arrays. (This result is most easily shown wias

the equivalence mentioned below between modular arrays and linear
bounded sutomata although it can be proved directly and must be done
g0 1f Ciming considerations are important.)

Assume we have a predicate  defined on all finite, rectangular
black and white patterns. A module M is said to recognize b 1if the
modular arrays constructed from M accept enactly those patterns for
which ¢ 1s true and reject all others. The class of all predicates
which are recognizable by modular arrays form a boolean algebra,
contains all predicate which are true for only finitely many patterns,
and 1s equal to the class of all predicates which are recognizable by
Z-dimensional linear bounded automata.

Bemark. A Z-dimensional linear-bounded automaton iz 2 finite state
deterministic automston which is allowed to walk about on & pattern,

read and write on the pattern with symbols from some finite alphabet



and sense the edges of the array. If the automaton eventually halts
in an accepting state, it 1s said to accept the patterm, otherwisze it
is said to reject the pattern. It is not difficult to see that modular
arrays can simulate linear bounded automats and wica versa. Using this
equivalence ope can show by a4 disgonalization arpument that there are
effectively recognizable predicates which cannot be recognized by any
module.,

Given a module M which recognizes a predicate | we will ke
interested in how "fast" M is able to carry out this recognition.
Given any pattern P, let £, (F) be the amount of time reguired by an
M-array toe accept or reject P. The time tH{P} will vary from patterm
to pattern, but in general one would expect %ﬂ{P} to incresse a3 the
number of squares in the pattern increases,
Let ;H(n,m) = max [HH(P] | P is an n x m pattern }.
Then, ﬂﬁ is called the guarantesd maximal time for M to recognize |.

In the following section we will use the guaranteed maximal time as
our criterion of how fast a given module recognizes a given predicate.
Hote that the amount of time required for a signal to travel from the
southeast to the northwest corner of an n x m array is approximately
n + m. Thus for reasonable predicates a guaranteed maximal time of
approximately n + m 1s optimal.

We conclude this section by mentioning a result which we call
the speed-up theorem. This result states that given any module M
which recoginizes z predicate ¢, and given any real number ¢ > O
exists & module M* guch that

fH* (o m) = (L + &){m + n) + - fﬂﬂn,m)

for all mjm.



Sketch of Proof. The M* - array spends approximately (1 = ¢)(m + )

units of time packing the original pattern into the northwest portion
of the array so that each module im that portion is responsible for
a large block of squares in the criginal pattern. The next 2= - (n+m)
units of time are used for an application of the firing squad problem.
When the firing squad goes off, the packed portion of the M*-array
begins simulating the action of the M-array om the pattern, but because
of its packed nature it is able to do so at a higher rate of speed. A
description of the firing squad problem can be found in Balzer [3] and
the use of packing to speed up arrays is discussed im Cole [&4].

A& guaranteed maximal  time of the form fH{n,mJ = am+ b n+ g
is said to be linear. A corollary of the speed wp theorem is that
if & predicate can be recognized with a linear gusranteed maximal time,
then for any =*o it can be recognized with a guaranteed maximal time
of (L + 2)({m + n). Therefore in view of our remarks above about {m + n)
being optimal (module a constant), we see that a linear guaranteed
maximal time is "almost" optimal. The purpose of this paper is to show
that a wide variety of topologically invariant predicates can be

recognlzed with a2 linear gusranteed maximal time.



Becognition of Connectivity

We now describe a simple method of receognizing connectivity by
modular arrays. That is, we wish to describe a module M which
recognizes J-connected. Rather than describe M explicitly via a
state diagram or state Cransition table, we will describe M
implicitly by describing the action of an M-array on a typical
pattern. It will be left to the reader to convince himself that
cne could write down a state description of a4 module M such that
any M-array would carry ont the grocess described.

Initially (t=o) the pattern 1s introduced into the array.

The northwest corner module immediately emits a scanning signal s
which begins to scan the array row by row in a back and forth manner
until it encounters a black square., This stage of the process is
illustrated in the following figures.

At the point at which g encounters the first black square two
things happen. First of all a chain reaction of erasure 1s set off
within the component of the pattern to which the black square belongs.
The black square which was struck by 5 turns white and emits an erase
signal & to each of its four neighbors. The & signals are ignored by



white squares but an e signal striking a black square cauwses it to
turn white and emit ¢ signals to its four neighbors.

Inm this manner the entire component iz erased. The second
thing which happens when g encounters the first black square is
that s changes into a waiting signal w. The waiting signal
continues the same zig-zag scanning motion which s had been using
but does not interact with eicther black or white squares or with
& signals which are propogating around the array in various directions.
The w signal eventually completes the scam of the array and strikes
one of the bottom corners of the array. At this point the erasure
of the compenent is guaranteed to be complete. (Why?).

The first three stages of the erasure process are shown in the

following figure.
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When w strikes the corner at the end of its scan, the pattern
contains one less component than it did te begin with. 41l that
remains to be done is to see if the remaining pattern is blank. This
ls accomplished by having the w signal rebound from the last corner
as an accept signal a which seans up the array searching for a black
square.

If a encounters & black square it is converted into a reject
signal r which heads directly for the northwest corner to cause a

reject. If Eldnesn't encounter a black square, it eventually strikes



the northwest corner causing an accept.

The case of the blank figure is handled by having the s signal
rebound as a when it completes its scan.

The module implicitly described abowve recognizes connectivity
with & puaranteed maximal time approximately Znm  and hepce iz not
optimal. The reader is challenged to find a faster method of
recognizing connectivity before reading the next sectiom. By a
faster method we mean of course a method with a linear gusranteed
maximal time. A good {or bad, depending on your point of view)
example to keep in mind while searching for a linear method iz the

pattern illustrated below which has length and area of about % nm.




A Fundamental Tranaformation

In this section we present a simple transformation of black and
white patterns which will have important applications to the recognition
of tepological invariants by modular arrays. The transformation will be
studied in its own right in this section and 1ts applications will be
discussed in the following section.

We first introduce some notation and terminology. Let P be a
pattern with n rows and m columns. We gay P 1s an o ¥ m pattern and
introduce coordinates by numbering the rows from top to bobtom, the
columns from left to right and assigning the coordinate (i,j) to the
square in the i=th row and j-th column. Twe squares (i,j) and (p,q}
are said to be adjacent if |i-p| + |ij-ql £ 1  and are said to be
neighboring i1f f[i-p| =< 1 and |j-g] = 1. Twe black squares are
connected if there is a chain of pairwise adjacent black squares
beginning with one and ending with the other. Two white squares are
connected if there is a chain of pairwise neighboring white sguares
beginning with one and ending with the other. Note the asymmetric
definition of connectedness for black and for white squares. Some such
asymmetric definition is necessary 1f one {8 to retain such "nice"
properties as the Jordan Curve Theorem.

Bemark. A notion of conpectedness which is symmetric with respect

to black and white can be obtained by assuming that sach sguare "touches"
all of the neighboring squares except the oneés to the northeasst and the
southwest. This netien which is derived from = hexsgonally partitiomad
pattern is, however, asymmetric with regard to direction.

The equivalence classes of black squares under the relation
"connected" are called the components of P, The following definitions
are motivated by our sssumption that the pattern lies on a white
background. The equivalence clasges of white sguares under the relation
"connected" which do net contain squares on the border (that is sgquares
in rows l or m or in columns 1 or n) are called holes. The remaining

equivalence classes of white squares are lumped together into a class of
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white squares called the background. A componeént or hole which contains only
ofte square 1s sald te be ilsolated, otherwise non-iszolated,

Given & square in a pattern, the eight neighboring squares are referred
to as the northern neighbor, the north-eastern neighbor, the eastern neighbor,

and g0 on,
We now describe a transformation T which takes eny n x m pattern P into

a ew n xm pactern T (F). The transformation may be thought of as taking
place in three steps.

Step 1. Color a2ll southeast caorner
squares of the black zubpattern red,
{(That is if a square is bléck and its
eastern and southern neighbors are white,
color 1t red.)

Step 2. Color all southeast corner
gquares of the white subfigure black.

{That is 1if a square is white and its _ R
eagtern and southern neighbors are R
black and its scutheastern neighbor Rl | B
is either red or black, coler it black.)
.], Step 3

Step 3. Coler all red squares white.

We now informally describe the properties of T. The remainder of this
section will Be devoted to proving these properties. If one considers repeated
applications of T to a pattern, one observes thet each component is reduced to
an igolated component which then disappears. Distinct components remain distinct
and either vanish at different points or at the same point at different times.
Similarly, each hole is reduced to an isolated hole which then wanishes with
distinct holes remaining distinct and vanishing at different points or different
times. It is easy to calculate exactly how many applications of T will be
required te reduce a component or hole to a single square and exactly where that
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square will be, The entire pattern, no matter how complex, will be
reduced to the all yhite background in less than n + m applications
of T.

To begin prowing the above statements we pneed some way of
relating the components of F te these of T{P}., This iz done in the
next three propositions by uslng the concept of a stationary polnt.
A sguare X is called a staticnary point of P Lf it Is bBlack Io both
P and T(P). Hote that the stationmary points are exactly those black
squares in P which are not southeast corners of the black subpattern
of P.

Froposition 1. Every non-isolated component of P contains a
atationary point.
Proof: Lat C be a non—isolated component and let X be
a northwest corner of C. Then X must be a
stationary point for otherwise 1t would also
be a southeast corner and hence C = {X} would
be isolated.
Proposition 2. Two stationary peoints are connected inm P If and only

if they are connected in T{F).

Froof: [==] Let x and y be two stationary points of P
which are connected. Then by definition there
exists & seguence }], Xy rees ® af distinet
pairwise adjacent black sgquares
such that x = x, and y = X, We use induction

onn. Lf n=1 then x is adjacent te v and we
are done. If n = 2 then elther %, 1s alsc a
stationary point in which case we are done, or

¥, is a8 southeast corner. In the latter case

we have the situation depicted (next page),
possibly with x and v interchanged, and one sees
that the square £ will be black T{P) no matter
what its color in P. Thus % and vy are connected
in T(F}.
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P T(P)

How assume n 3 3. Observe that any chain of
digtinct palrwise adjacent black squares cannot
contain twe conmsecutive southeast cormers. Thus
either ®.o_p 9 X i a stationary point and
wWe may app}y the ifidiction hypothesis to the chain
KD, seey Xy and T s oeres E where k is eicther

n-1ormn- 2. Thus x is connected to ¥ in T(P)

via xk.

[@=1] Suppose x and v are connected in T(P) and

let oo By oweey X be a sequence of pairwise

adjacent black squares in P(T) such that x = %
and ¥y = X . Again we use Inductlon and again the
cages for m =1 and n = 2 with x, a stationary

1

point {of P} are trivisl, so assume n = 2 and %

is not a stationary point. Then xy must hawve been

white im P since it iz black in T(P). Hence %) st

have satisfied the conditions in step 2 of the
description of T and the situation depicted below
must have obtained in P.
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We know that x and v are adjacent to x and are

stationary points, so it will be sufficient to
show that all statlonary points which are sdjacent

to % are connected te each other.

Now if a is a stationary point, then a is not a
southeast corner in P and hence both a and al are
black in F. Thus & is connected to ®. A similar
grgument holds for b. Thus all stationary points
in P are connected to £. This completes the case
for n = Z.

The remaining cases for m 3 3 follow again from

the phservaticn that either x , or x . 1= a

gtationary point (although different reagoning
must be used to make this observatlion now since

'xﬂ, s X is a chain in T{P)).

Cowbining propositions 1 and 2 with the observation
that every black square in T(P)} is elther a
stationary point of P or is adjaceant to a statlonary
point we hawve shown.
Proposition 3. There is a canonical 1 = 1 correspendence between the
non=isolated components of P and the compeonents of T(F).
We now state without proof the corresponding proposition for holes which
can be proved by methods similar to those above. However, a slightly
different concept thafd that of stationary point must be used since some

holazs such as that illustrated below, have no stationary points,
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Propogition &.

Thera is a cononical 1 - 1 correspomdence between

the non-isolate holes of P and the holes of T(P).
Given a pattern one can construct an associated Crée which represents
the containment relationships between the background, the components

and the holes. A pattern and its assoclated tree are shown below.

OI010.
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patterns which have iscmorphic trees are said to be topologically
eguivalent. The following proposition should be obvious by now.
Froposition 5. If P contains ne isclated compenents or holes,
then P and T(P) are topoleogically equivalent.

Two

We now show how to compute the number of applications of T required

to reduce a component to a single square and where that square will

lie. Identical results can be proved for holes using simllar arguments.

Given a component C of a pattern P, let

T#(C) = C L1
{C) = the canonical imape of T L(C) under T fer k = o
(provided it exists)

n(C) = min {i| row i intersects Cl
wit) = min {}| column j} intersects C!
5e(C) = max {i+]| (1i,1)e C}

Hote that n{C), w{C), and se(C) represemt three lines forming
a triangle such that € lies within the triangle and touches

gach line as shown on next page.
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Wa will show that the component wanishes at the square Indicated by the

dottad lines and that the number of applications of T required to

achiave this is proportional to the distance from this square te the

sa line.

Proposition 6.

3
=
g
[

Proposition 7.

If C is a non-isclated compoment, then

n(T(C)) = n(C)
wiT{C)) = wiC)
ga(T{CY1)} = ae{C)=1

[n{T(C)) = n{C)] It is clear that n{T{(C)}) z n(C)
gince each black asquare in T{C)} ia elther a
stationary point {of F) or is the western
neighbor of a statienary point. On the other
hand, 1f {i,j) is the western most poimt of C
which lies in row a{C}, then {i,j} must be =
stationary point and hence n(T(C)) £ n(C).
[w{T(C)) = w (C}]. This result follows
immediately from the above and the northwest
gymmetry of T,

[8e(T{(C)} = se(C)]. Any square (i,j) in C

such that 4 + j§ = se {(C) must be 8 south east
cornet of C and hence is adjacent to 8 stacionary
point {PF.49) such that P+ = se(l) =1. Thus
ge(T(C)) = se(C)-1. On the other all such sguares
(1,1} do not appear in T(C), so se(TC)) g se(C)-1.

If C 18 a non-isolated component and k(C) =

ge (C) - n(C) - w(C), then T5“V(¢) is an isolated compoment located

at (n{C}, wiCl).



Proof !

Corollary:

Proof:

16,

By proposition 6 we have k(T(C)) = ki(C)-1.

Thus by induction k(TE(C) (€)Y = k(C) - k(C) =0
which can only hold for an isolated EDEEE ent.

That component must be leocated at (n(T (C)},
w(TE(C) (£1)) = (n{C), w(C)) again by propesition 6.

-1
If P iz an nxm pattern, then T"‘H.f|1 (Py 1z the =11

white figure.

apply Proposition 7 and the fact that k(C)<n+m2
for any component C of F.
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Fast Recognition of Topolegical Invariants,

The transformation, T, described in the previous section forms the
basizs of the recognition schemes to be presented in this section. These
recognition schemes all have linear guaranteed maximal times and hence
by the remarks above can be considered near optimal metheds.

In all of the recognition schemes described below, the modular
array is thought of as consisting of two layers, & lower, transormation
layer which carries ocut successive transformations of the initial pattern,
and an upper, chservation layer which watches the transformations taking
place, gathers and processes information, and finally comes to a decision
about the pattern,

The transformation can be carried out in the lower layer of the
array at the rate of cne transformation every three units of time,
thus becoming dermant after 3 (m + n - 1) units of time (if not sooner},

At time £t = o {mod 3) the pattérn is represented in the lower
layer. By time t = 1 those squares which are to turn red have done so.
By time t = ? each black square has entered a state which net only
indicates that it is black but also indicates what state its southern
neighbor is in, thus making available te each white square the
necessary information for the fimal step. By the t =3 = o the
transformation 1s complete. The process Is illustrated below.
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It now remains to describe the observation laver for each predicate
to be recognized. The observation layers all watech for the disappearance
of components or holes in the lower layer and generabte appropriate
signals at each such disappearance. These signals are then processed
and a decision iz reached, In some cases it is necessary for the
northwest corner module to know that it has received all the information
required for a decision. In these cases the southeast corner module
sends out & timing signal which propogates through the array at am
approprlate rate. When the timing signals reaches the morthwest corner
module, all ather signals must have preceded it.

We now list some specific predicate which can be recognized in
this manner. "The pattern is conmected": Zignals are only generated by
vanishing components. As each signal is generated it heads for the northwest
mpdule, The figure is rejected if more than one such sipgnal is
received.

"411 components are simply connected":  Apply the method above
te holes rather than components and reject any figure with one or more
holes.

The two predicates sbove are examples of the general predicate.
"The pattern contalns at least 1 and no more than j components and &t
lease k and no more than 1 holes." This predicate is easily
recognized for any 0 £ 4i,j,k,1 < = by simple modification of the
shove techniques.

Fow consider the predicate, "ap component contazins more that one
hole." This predicate 1s npot in the abowve form but may be recognized
by hawving the cbservatlion layer keep each hole signal positioned
above the component in which the hole was located. If a component
eontalns twe or more holes, the hole signals must eventaully bump
inte each other as the component is reduced to a single square. Two
bumping holes cause a reject signal. A hole signal located over a

component vanishes when the component vanishes,
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The technigque of keeping sighal positioned above components
or holes gives rise to o plethord of predicates, one of which is
"every component which is contained in a hele in ancther component
iz simply conmected." By building a large enocugh signal set in
the observation layer one can recognize any predicate of the form.
"The pattern 1s toplogically equivalent to the pattern P" for any
fixed pattern P.
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