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Abstract

When training Support Vector Machines (SVMs) over non-separable data sets, one sets
the threshold b using any dual cost coefficient that is strictly between the bounds of 0 and
C. We show that there exist SVM training problems with dual optimal solutions with
all coefficients at bounds, but that all such problems are degenerate in the sense that the
“optimal separating hyperplane” is given by w = 0, and the resulting (degenerate) SVM
will classify all future points identically (to the class that supplies more training data). We
also derive necessary and sufficient conditions on the input data for this to occur. Finally,
we show that an SVM training problem can always be made degenerate by the addition of
a single data point belonging to a certain unbounded polyhedron, which we characterize in
terms of its extreme points and rays.
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1 Introduction

We are given l examples (x1, y1), . . . , (xl, yl), with xi ∈ IRn and yi ∈ {−1, 1} for all i. The SVM
training problem is to find a hyperplane and threshold (w, b) that separates the positive and
negative examples with maximum margin, penalizing misclassifications linearly in a user-selected
penalty parameter C > 0.1 This formulation was introduced in [2]. For a good introduction to
SVMs and the nonlinear programming problems involved in their training, see [3] or [1]. We
train an SVM by solving either of the following pair of dual quadratic programs:

(P) min 1
2
‖w‖2 + C(

∑�
i=1 ξi) (D) max Λ · 1− 1

2
ΛDΛ

w, b,Ξ Λ
yi(w · xi + b) ≥ 1− ξi Λ · y = 0

ξi ≥ 0 λi ≤ C
λi ≥ 0

D is the symmetric positive semidefinite matrix defined by Dij ≡ yiyjxi · xj . Throughout
this note, we use the convention that if an equation contains i as an unsummed subscript, the
corresponding equation is replicated for all i ∈ {1, . . . , l}.
In practice, the dual program is solved.2 However, for this pair of primal-dual problems, the KKT
conditions are necessary and sufficient to characterize optimal solutions. Therefore, w, b,Ξ, and
Λ represent a pair of primal and dual optimal solutions if and only if they satisfy the KKT
conditions. Additionally, any primal and dual feasible solutions with identical objective values
are primal and dual optimal. The KKT conditions (for the primal problem) are as follows:

w−
�∑

i=1

λiyixi = 0 (1)

�∑
i=1

λiyi = 0 (2)

C − λi − µi = 0 (3)

yi(xi ·w + b)− 1 + ξi ≥ 0 (4)

λi{yi(xi ·w + b)− 1 + ξi} = 0 (5)

µiξi = 0 (6)

ξi, λi, µi ≥ 0 (7)

The µi are Lagrange multipliers associated with the ξi; they do not appear explicitly in either (P)
or (D). The KKT conditions will be our major tool for investigating the properties of solutions
to (P) and (D).
Suppose that we have solved (D) and possess a dual optimal solution Λ. Equation (1) allows us
to determine w for the associated primal optimal solution. Further suppose that there exists an
i such that 0 < λi < C. Then, by equation (3), ui > 0, and by equation (6), ξi = 0. Because
λi �= 0, equation (5) tells us that yi(xi ·w + b) − 1 + ξi = 0. Using ξi = 0, we see that we can
determine the threshold b using the equation b = 1− yi(xi ·w).

1Actually, we penalize linearly points for which yi(w · xi + b) < 1; such points are not actually “misclassifica-
tions” unless yi(w · xi + b) < 0.

2SVMs in general use a nonlinear kernel mapping. In this note, we explore the linear simplification in order
to gain insight into SVM behavior. Our analysis holds identically in the nonlinear case.
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Once b is known, we can determine the ξi by noting that ξi = 0 if λi �= C (by equations (3) and
(6)), and that ξi = 1 − yi(xi ·w + b) otherwise (by equation (5)). However, this is not strictly
necessary, as it is w and b that must be known in order to classify future instances.
We note that our ability to determine b and Ξ is crucially dependent on the existence of a
λi strictly between 0 and C. Additionally, the optimality conditions, and therefore the SVM
training algorithm derived in Osuna’s thesis [3], depend on the existence of such a λi as well.
On page 49 of his thesis Osuna states that “We have not found a proof yet of the existence of
such λi, or conditions under which it does not exist.” Other discussions of SVM’s ( [1], [2]) also
implicitly assume the existence of such a λi.
In this paper, we show that there need not exist a λi strictly between bounds. Such cases are
a subset of degenerate SVM training problems: those problems where the optimal separating
“hyperplane” is w = 0, and the optimal solution is to assign all future points to the same class.
We derive a strong characterization of SVM degeneracy in terms of conditions on the input data.
We go on to show that any SVM training problems can be made degenerate via the addition
of a single training point, and that, assuming the two classes are of different cardinalities, this
new training point can fall anywhere in a certain unbounded polyhedron. We provide a strong
characterization of this polyhedron, and give a mild condition which will insure non-degeneracy.

2 Support Vector Machine Degeneracy

In this section, we explore SVM training problems with a dual optimal solution satisfying λi ∈
{0, C} for all i.
We begin by noting and dismissing the trivial example where all training points belong to the
same class, say class 1. In this case, it is easily seen that Λ = 0, Ξ = 0, w = 0, and b = 1
represent primal and dual optimal solutions, both with objective value 0.

Definition 1 A vector Λ is a {0, C}-solution for an SVM training problem P if Λ solves (D),
λi ∈ {0, C} for all i and Λ �= 0 (note that this includes cases where λi = C for all i).

We demonstrate the existence of problems having {0, C}-solutions with an example where the
data lie in IR2:

x y
(2, 3) 1
(2, 2) −1
(1, 2) 1
(1, 3) −1

D =




13 −10 8 −11
−10 8 −6 8

8 −6 5 −7
−11 8 −7 10




Suppose C = 10. The reader may easily verify that Λ = (10, 10, 10, 10), w = 0, b = −1,
Ξ = (0, 2, 0, 2) are feasible primal and dual solutions, both with objective value 40, and are
therefore optimal. Actually, given our choice of Λ and w, we may set b anywhere in the closed
interval [−1, 1], and set Ξ = (1 + b, 1− b, 1 + b, 1− b).
We have demonstrated the possibility of {0, C}-solutions, but the above example seems highly
abnormal. The data are distributed at the four corners of a unit square centered at (1.5, 2.5), with
opposite corners being of the same class. The “optimal separating hyperplane” is w = 0, which
is not a hyperplane at all. We now proceed to formally show that all SVM training problems
which admit {0, C}-solutions are degenerate in this sense.
The following lemma is obvious from inspection of the KKT conditions:
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Lemma 2 Suppose that Λ is a {0, C}-solution to an SVM training problem P1 with C = C1.
Given a new SVM training problem P2 with identical input data and C = C2, (C2/C1) ·Λ is dual
optimal for P2. The corresponding primal optimal solution(s) is (are) unchanged.

We see that {0, C}-solutions are not dependent on a particular choice of C. This in turn implies
the following:

Lemma 3 If Λ is a {0, C}-solution to an SVM training problem P, D ·Λ = 0.

Proof:Since D is symmetric positive semidefinite, we can write D = RΣRT , where Σ is a
diagonal matrix with the (nonnegative) eigenvalues of D in descending order on the diagonal, R
is an orthogonal basis of corresponding eigenvectors of D, and RRT = I. If D ·Λ �= 0, then for
some index k, σk ≥ 0 and Rk ·Λ �= 0.
For any value of C, let ΛC be the {0, C}-solution obtained by adjusting Λ appropriately. This
solution is dual optimal for a problem having input data identical to P, with a new value of C,
by Lemma 2.

ΛCDΛC =
l∑

j=1

σj‖Rj ·ΛC‖2

≥ σk‖Rk ·ΛC‖2

= σkC
2‖Rk ·Λ1‖2

Define S to be the number of non-zero elements in Λ. As we vary C, the optimal dual objective
value of our family of {0, C}-solutions is given by:

fΛ(C) = ΛC · 1− 1

2
ΛCDΛC

≤ SC − 1

2
σkC

2‖Rk ·Λ1‖2

However, if

C∗ >
2S

σk‖Rk ·Λ1‖2

fΛ(C
∗) < 0. This is a contradiction, for Λ = 0 is feasible in P with objective value zero, and

zero is therefore a lower bound on the value of any optimal solution to P, regardless of the value
of C. 2

Theorem 4 If Λ is a {0, C}-solution to an SVM training problem P, w = 0 in all primal
optimal solutions.

Proof:

Any optimal solution must, along with Λ, satisfy the KKT conditions. Exploiting this, we see:
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0 = D ·Λ
=⇒ 0 = ΛDΛ

=
l∑

i=1

l∑
j=1

λiDijλj

=
l∑

i=1

l∑
j=1

λiyiyjxixjλj

= (
l∑

i=1

λiyixi) · (
l∑

j=1

λjyjxj)

= w ·w
=⇒ w = 0

2

This is a key result. It states that if our dual problem admits a {0, C}-solution, the “optimal
separating hyperplane” is w = 0. In other words, it is of no value to construct a hyperplane
at all, no matter how expensive misclassifications are, and the optimal classifier will classify all
future data points using only the threshold b. Our data must be arranged in such a way that
we may as well “de-metrize” our space by throwing away all information about where our data
points are located, and classify all points identically.
The converse of this statement is false: given an SVM training problem P that admits a primal
solution with w = 0, it is not necessarily the case that all dual optimal solutions are {0, C}-
solutions, nor even that a {0, C}-solution necessarily exists, as the following example, constructed
from the first example by “splitting” a data point into two new points whose average is one of
the original points, shows:

x y
(2, 3) 1
(2, 2) −1
(1, 1.5) 1
(1, 2.5) 1
(1, 3) −1

D =




13 −10 6.5 9.5 −11
−10 8 −5 −7 8
6.5 −5 3.25 4.75 −5.5
9.5 −7 4.75 7.25 −8.5

−11 8 −5.5 −8.5 10




Again letting C = 10, the reader may verify that setting Λ = (10, 10, 5, 5, 10), w = 0, b = −1,
Ξ = (0, 20, 0, 20, 0, 0) are feasible primal and dual solutions, both with objective value 40, and
are therefore optimal. With more effort, the reader may verify that Λ = {10, 10, 5, 5, 10} is the
unique optimal solution to the dual problem, and therefore no {0, C}-solution exists.
Although our initial motivation was to study problems with optimal solutions having every dual
coefficient λi at bounds, we gain additional insight by studying the following, broader class of
problems.

Definition 5 An SVM training problem P is degenerate if there exists an optimal primal
solution to P in which w = 0.

By Theorem 4, any problem that admits a {0, C}-solution is degenerate. As in the {0, C}-
solution case, one can use the KKT conditions to easily show that the degeneracy of an SVM
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training problem is independent of the particular choice of the parameter C, and that w = 0 in
all primal optimal solutions of a degenerate training problem.
For degenerate SVM training problems, even though there is no optimal separating hyperplane
in the normal sense, we still call those data points that contribute to the “expansion” w = 0
with λi �= 0 support vectors. Given an SVM training problem P, define Ki to be the index set
of points in class i, i ∈ {1,−1}.

Lemma 6 Given a degenerate SVM training problem P, assume without loss of generality that
|K-1| ≤ |K1|. Then all points in class −1 are support vectors; furthermore, λi = C if i ∈ K-1.
Additionally, if |K-1| = |K1|, the (unique) dual optimal solution is Λ = C.

Proof:Because w = 0, the primal constraints reduce to:

yib ≥ 1− ξi

If |K-1| < |K1|, the optimal value of b is 1, and ξi is positive for i ∈ |K-1|. Therefore, λi = C for
i ∈ K-1 (by Equations 6 and 3).
Assume |K-1| = |K1|. We may (optimally) choose b anywhere in the range [−1, 1]. If b ≤ 0, all
points in class 1 have λi = C, and if b ≥ 0, all points in class −1 have λi = C. In either case,
there are at least |K-1| points in a single class satisfying λi = C. But equation ( 2) says that the
sum of the λi for each class must be equal, and since no λi may be greater then C, we conclude
that every λi is equal to C in both classes. 2

Finally, we derive conditions on the input data for a degenerate SVM training problem P.

Theorem 7 Given an SVM training problem P, assume without loss of generality that |K-1| ≤
|K1|. Then:
a. P is degenerate if and only if there exists a set of multipliers Ω for the points in K1 satisfying:

0 ≤ ωi ≤ 1
∑

i∈K-1
xi =

∑
i∈K1

ωixi

∑
i∈K1

ωi = |K-1|

b. P admits a {0, C}-solution if and only if P is degenerate and the ωi in part (a) may all be
chosen to be 0 or 1.

Proof:

(a, ⇒) Suppose P is degenerate. Consider a modification of P with identical input data, but
C = 1; this problem is also degenerate. All points in class −1 are support vectors, and their
associated λi are at 1, by Lemma 6. Letting Λ be any dual optimal solution to P, we see that
letting ωi = λi for i ∈ K1 and applying Equation ( 2) demonstrates the existence of the ωi.
(a, ⇐) Given ωi satisfying the condition, we easily see that λi = C for i ∈ K-1, λi = ωiC for
i ∈ K1 induces a pair of optimal primal and dual solutions to P with w = 0 using the KKT
conditions.
(b, ⇒) Given a {0, C}-solution, w = 0 in an associated primal solution by Theorem 4, and
setting ωi = λi/C for i ∈ K1 satisfies the requirements on Ω.
(b, ⇐) Let λi = ωiC for i ∈ K1, and apply the KKT conditions. 2
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3 The Degenerating Polyhedron

Theorem 7 indicates that it is always possible to make an SVM training problem degenerate by
adding a single new data point. We now proceed to characterize the set of individual points
whose addition will make a given problem degenerate. For the remainder of this section, we
assume that |K-1| ≤ |K1|, and we denote

∑
i∈K-1 xi by V, and |K-1| by n.

Suppose we choose, for each i ∈ K1, an ωi ∈ [0, 1], satisfying n − 1 ≤ ∑
i∈K1

ωi < n. It is clear
from the conditions of Theorem 7 that if we add a new data point

xc =

V − ∑
i∈K1

ωixi

n− ∑
i∈K1

ωi

that the problem becomes degenerate, where the new point has a multiplier given by ωc =
n−∑

i∈K1
ωi, and that all single points whose additions would make the problem degenerate can

be found in such a manner. We denote the set of points so obtained by XD.
We introduce the following notation. For k ≤ n, we let Sk denote the set containing all possible
sums of k points in K1. Given a point s ∈ Sk, we define an indicator function χs : K1 → {0, 1}
with the property χs(xi) = 1 if and only if xi is one of the k points of K1 that were summed to
make x.
The region XD is in fact a polyhedron whose extreme points and extreme rays are of the form
V − x for x ∈ Sn−1 and §n, respectively. More specifically, we have the following theorem; the
proof is not difficult, but it is rather technical, and we defer it to Appendix A:

Theorem 8 Given a non-degenerate problem P, consider the polyhedron

PD ≡ {(V− sp) +(V− xr) | λsp, αsr ≥ 0,= 1}

Then PD = XD.

An example is shown in Figure 1. On the one hand, the idea that the addition of a single data
point can make an SVM training problem degenerate seems to bode ill for the usefulness of the
method. Indeed, SVMs are in some sense not robust. This is a consequence of the fact that
because errors are penalized in the L1 norm, a single outlier can have arbitrarily large effects
on the separating hyperplane. However, the fact that we are able to precisely characterize the
“degenerating” polyhedron allows us to provide a positive result as well. We begin by noting that
in the example of Figure 1, the entire polyhedron of points whose addition make the problem
degenerate is located well away from the initial data. This is not a coincidence. Indeed, using
Theorem 8, we may easily derive the following theorem:

Theorem 9 Given a non-degnerate problem P with |K−1| ≤ |K1|, suppose there exists a hyper-
plane w through V/n, the center of mass of K−1, such that all points in K1 lie on one side of w,
and the closest distance between a point in K1 and w is d. Then all points in the “degenerating”
polyhedron PD lie at least (|K−1| − 1) ∗ d from w on the other side of w from K1.

Using Theorem 7 we can easily show that if the center of mass of the points in the smaller
class (V/n) does not lie in the convex hull of the points in the larger class, our problem is not
degenerate, and we may apply Theorem 9 to bound below the distance at which an outlier would
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Figure 1: A sample problem, and the “degenerating” polyhedron

have to lie from V/n in order to make the problem degenerate. We conclude that if the class
with larger cardinality lies well away from and entirely to one side of a hyperplane through the
center of mass of the class of smaller cardinality, our problem is nondegenerate, and any single
point we could add to make the problem degenerate would be an extreme outlier, lying on the
opposite side of the smaller class from the larger class.

4 Nonlinear SVMs and Further Remarks

The conditions we have derived so far apply to the construction of a linear decision surface.
It should be clear that similar arguments apply to nonlinear kernels. In particular, degenerate
SVMs will occur if and only if the data satisfy the conditions of Theorem 7 after undergoing the
nonlinear mapping to the high-dimensional space. It is not necessary that the data be degenerate
in the original input space, although examples could be derived where they were degenerate in
both spaces, for a particular kernel choice. The important message of Theorem 7, however, is
that while degenerate SVMs are possible, the requirements on the input data are so stringent that
one should never expect to encounter them in practice. On another note, if a degenerate SVM
does occur, one simply sets the threshold b to 1 or −1, depending on which class contributes more
points to the training set. Thus in all cases, we are able to determine the threshold b. Of course,
the wisdom of this approach depends on the data distribution. If our two classes lie largely on
top of each other, than classifying according to the larger class may indeed be the best we can
do (assuming our examples were drawn randomly from the input distribution). If, instead, our
dataset looks more like that of Figure 1, we are better off removing outliers and resolving.
Finally, a brief remark on complexity is in order. The quadratic program (D) can be solved
in polynomial time, and solving this program will allow us to determine whether a given SVM
training problem P is degenerate. However, the problem of determining whether or not a {0, C}-
solution exists is not so easy. Certainly, if P is not degenerate, no {0, C}-solution exists, but
the converse is false. Determining the existence of a {0, C}-solution may be quite difficult: if
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we require the xi to lie in IR1, determining whether a {0, C}-solution exists is already equivalent
to solving the weakly NP-complete problem SUBSET-SUM (see [4] for more information on
NP-completeness).3
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A Proof of Theorem 8

Theorem 8 Given a non-degenerate problem P, consider the polyhedron

PD ≡ {(V− sp) +(V− xr) | λsp, αsr ≥ 0,= 1}

Proof:

(a, PD ⊆ XD) Given a set of λxp and αsr satisfying λsp , αsr ≥ 0,= 1, we define A ≡, and set

ωc =
1

1 +A
,

and, for i ∈ K1, we set
ωi = ωc(χsp(xi) +χsr(xi))

Then 0 ≤ ωi ≤ 1 for each i ∈ K1, and

∑
i∈K1

ωi =
n− 1 + nA

1 +A
= n− 1

1 +A
,

which is in [n − 1, n), so we conclude that the assigned wi are valid. Finally, substituting into
Equation ( 8), we find:

V − ∑
i∈K1

ωixi

n− ∑
i∈K1

ωi
=

V − 1
1+A

∑
i∈K1

(χsp(xi) +χsr(xi))xi

1
1+A

= (1 +A)V − sp − sr

= (V − sp) +(V − sr)

3Because the problem is only weakly NP-complete, given a bound on the size of the numbers involved, the
problem is polynomially solvable.
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We conclude that PD ⊆ XD.
(b, XD ⊆ PD) Our proof is by construction: given a set of ωi, i ∈ K1, we show how to choose
λsp and αsr so that:

λsp ≥ 0 ∀sp ∈ Sn−1

= 1

αsr ≥ 0 ∀xr ∈ Sn

V − ∑
i∈K1

ωixi

n− ∑
i∈K1

ωi
= (V − sp) +(V − sr)

If we impose the reasonable “separability” conditions:

V

n− ∑
i∈K1

ωi

= V +V

∑
i∈K1

ωixi

n− ∑
i∈K1

ωi

= sp +sr

we can easily derive the following:

=

(
∑

i∈K1

ωi + 1)− n

n− ∑
i∈K1

ωi

≡ A

We are now ready to describe the actual construction. We will first assign the αsr , then the λsp.
We describe in detail the assignment of the αsr , the assignment of the λsp is essentially similar.
We begin by initializing each αsp to 0. At each step of the algorithm, we consider the “residual”:

V − ∑
i∈K1

ωixi

n− ∑
i∈K1

ωi
− (V − sr) (8)

Note that by expanding each sr in the n points of K1 which sum to it, we can represent (8)
as a multiple of V minus a linear combination of the points of K1 — we will maintain the
invariant that this linear combination is actually a nonnegative combination. During a step of
the algorithm, we select the n points of K1 that have the largest coefficients in this expansion.
If there is a tie, we expand the set to include all points with coefficients equal to the nth largest
coefficient. Let j be the number of points in the set that share the nth largest coefficient, and
let k (≥ n) be the total size of the selected set. We select the

(
j

n−k+j

)
points sr containing

the remaining max(k − j, 0) points with the largest coefficients, and n − k + j of the j points
which contain the nth largest coefficient. We will then add equal amounts of each of these sr

to our representation until some pair of coefficients in the residual that were unequal become
equal. This can happen in one of two ways: either the smallest of the coefficients in our set
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can become equal to a new, still smaller coefficient, or the second smallest coefficient in the set
can become equal to the smallest (this can only happen in the case where k > n.) At each step
of the algorithm, the total number of different coefficients in the residual is reduced by at least
one, so, within |K1| steps, we will be able to assign all the αsr (note that at each step of our

algorithm, we increase
(

j
n−k+j

)
of the αsr). The only way the algorithm could break down is

if, at some step, there were fewer than n points in K1 with nonzero coefficients in the residual.
Trivially, the algorithm does not break down at the first step — there must always be at least
n points with non-zero coefficients initially. To show that the algorithm does not break down at
a later step, assume that after assigning coefficients to the sr totalling k (< A), we are left with
j (< n) non-zero coefficients. Noting that our algorithm requires that each of the j remaining
points with non-zero coefficients is part of each sr with a non-zero coefficient, we can see that
the the residual value of each of these j points is no more then 1

n−w
− k. We derive the following

bound on the initial sum of the coefficients, which we call Isum:

Isum ≤ j(
1

n− ∑
i∈K1

ωi
− k) + kn

=
j

n− ∑
i∈K1

ωi

+ k(n− j)

≤ n− 1

n− ∑
i∈K1

ωi
+ k

<
n− 1

n− ∑
i∈K1

ωi
+

∑
i∈K1

ωi + 1− n

n− ∑
i∈K1

ωi

=

∑
i∈K1

ωi

n− ∑
i∈K1

ωi

But this is a contradiction, Isum must be equal to

∑
i∈K1

ωi

n−
∑

i∈K1

ωi
. We conclude that we are able to

assign the αsr successfully. Extremely similar arguments hold for the λsp . 2
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