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Abstract

Amorphous computing is the development of organizational principles and

programming languages for obtaining coherent behavior from the cooperation

of myriads of unreliable parts that are interconnected in unknown, irregular, and

time-varying ways. The impetus for amorphous computing comes from devel-

opments in microfabrication and fundamental biology, each of which is the basis

of a kernel technology that makes it possible to build or grow huge numbers

of almost-identical information-processing units at almost no cost. This paper

sets out a research agenda for realizing the potential of amorphous computing

and surveys some initial progress, both in programming and in fabrication. We

describe some approaches to programming amorphous systems, which are in-

spired by metaphors from biology and physics. We also present the basic ideas

of cellular computing, an approach to constructing digital-logic circuits within

living cells by representing logic levels by concentrations DNA-binding proteins.

Over the next few decades, two emerging technologies|microfabrication and cellu-

lar engineering|will make it possible to assemble systems that incorporate myriads of

information-processing units at almost no cost, provided: 1) that all the units need not

work correctly; and 2) that there is no need to manufacture precise geometrical arrange-

ments of the units or precise interconnections among them. This technology shift will

precipitate fundamental changes in methods for constructing and programming computers,

and in the view of computation itself.

Microelectronic mechanical components are becoming so inexpensive to manufacture

that we can anticipate combining logic circuits, microsensors, actuators, and communica-

tions devices integrated on the same chip to produce particles that could be mixed with

bulk materials, such as paints, gels, and concrete. Imagine coating bridges or buildings with

smart paint that can sense and report on traÆc and wind loads and monitor structural in-

tegrity of the bridge. A smart-paint coating on a wall could sense vibrations, monitor the

premises for intruders, or cancel noise.

Even more striking, there has been such astounding progress in understanding the bio-

chemical mechanisms in individual cells, that it appears we'll be able to harness these

mechanisms to construct digital-logic circuits. Imagine a discipline of cellular engineering

1This report describes research done at the Arti�cial Intelligence Laboratory of the Massachusetts Insti-

tute of Technology. Support for this research is provided in part by the Advanced Research Projects Agency

of the Department of Defense under OÆce of Naval Research contract N00014-96-1-1228.
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that could tailor-make biological cells to function as sensors and actuators, as programmable

delivery vehicles for pharmaceuticals, or as chemical factories for the assembly of nanoscale

structures. The ability to fabricate such systems seems to be within our reach, even if it is

not yet within our grasp.

Yet fabrication is only part of the story. Digital computers have always been constructed

to behave as precise arrangements of reliable parts, and almost all techniques for organizing

computations depend upon this precision and reliability. So while we can envision produc-

ing vast quantities of individual computing elements|whether microfabricated particles or

engineered cells|we have few ideas for programming them e�ectively. The opportunity

to exploit these new technologies poses a broad conceptual challenge, which we call the

challenge of amorphous computing:

How does one engineer prespeci�ed, coherent behavior from the cooperation

of immense numbers of unreliable parts that are interconnected in unknown,

irregular, and time-varying ways?

This paper sets out a research agenda for realizing the potential of amorphous computing

and surveys some initial progress, both in programming and in fabrication.

One critical task is to identify appropriate organizing principles and programming

methodologies for controlling amorphous systems. We discuss some preliminary ideas in

section 1, paying most attention to hints from biology. The growth of form in organisms

demonstrates that well-de�ned shapes and functional structures can develop through the

interaction of cells under the control of a genetic program, even though the precise arrange-

ments and numbers of the individual cells are variable. Accordingly, biology can be a rich

source of metaphors to inspire new programming methodologies for amorphous systems.

As an illustration, we describe how amorphous media can be programmed to generate

complex patterns, such as an arbitrary prespeci�ed interconnection graph. The program

is organized according to a botanical metaphor where \growing points" and \tropisms"

control the di�erentiation of amorphous computing agents to form the various elements of

the pattern. Other biologically-inspired programming metaphors considered below include

marker propagation through di�usion and control of shape through cell mobility. We also

explore techniques inspired by physics, where observing that the fundamental processes

in the physical world are conservative suggests modeling conservative processes by local

exchange methods.

Progress in amorphous computing may demand new approaches to fault-tolerance. Tra-

ditionally, one seeks to obtain correct results despite unreliable parts by introducing redun-

dancy to detect errors and substitute for bad parts.2 But in the amorphous regime, getting

the right answer may be the wrong idea: it seems awkward to describe mechanisms such

as embryonic development as producing a \right" organism by correcting bad parts and

broken communications. The real question is how to abstractly structure systems so we get

acceptable answers, with high probability, even in the face of unreliability.

2One compelling demonstration of this approach is the Hewlett-Packard Laboratories Teramac, a mas-

sively parallel computer constructed from defective chips, which can recon�gure itself and its communication

paths to avoid the broken parts and compensate for irregular interconnections. [7] Although Teramac is built

from conventional chips, Teramac's disigners view it as a prototype architecture for designing nanoscale com-

puters that would be assembled by chemical processes, where a signi�cant fraction of the parts might be

defective.
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In addition to new programming methodologies, exploiting the power of amorphous

computing will require new physical substrates. It is easy to envision computational parti-

cles that combine communication and processing, and there appears to be no fundamental

obstacle to building these.3

A more aggressive approach to fabricating amorphous systems looks to biology, not

just as a metaphor, but as the actual implementation technology for a new activity of

cellular computing, which is the subject of section 2 of this paper. Biological cells are self-

reproducing chemical factories that are controlled by a program written in the genetic code.

As engineers, we can take control of this process to make novel organisms with particular

desired properties. It is in principle feasible to build a family of logic gates where the

signals are represented by concentrations of naturally-occurring DNA-binding proteins, and

where the nonlinear ampli�cation is implemented by in vivo DNA-directed protein synthesis.

Making progress here requires extensive experiments and measurements to characterize the

static and dynamic properties of protein logic gates. It also requires the development of

new tool suites to support the design, analysis, and the construction of biologic circuits,

and we describe some of these.

Besides the obvious potential applications of cellular computing to medicine and to

chemical sensing, programmed cells could enable us to manufacture novel materials and

structures at molecular scales. The biological world already provides us with a variety

of useful and e�ective mechanisms, such as 
agellar motors. If we could co-opt cells to

build organized arrays of such motors, with accessible interfaces for power and control, this

could have considerable engineering signi�cance. In addition, common biologically available

conjugated polymers, such as carotene, can conduct electricity, and can be assembled into

active components. If we, as engineers, can acquire mastery of mechanisms of biological

di�erentiation, morphogenesis, and pattern formation, we can use biological entities of our

own design as construction agents for building and maintaining complex ultramicroscopic

electronic systems. Section 3 speculates on how this might be accomplished.

1 Programming Paradigms for Amorphous Systems

An amorphous computing medium is a system of irregularly placed, asynchronous, locally

interacting computing elements. We can model this as a collection of \computational par-

ticles" sprinkled irregularly on a surface or mixed throughout a volume. The particles are

possibly faulty, sensitive to the environment, and may e�ect actions. In general, the indi-

vidual particles might be mobile, but the initial programming explorations described here

do not address this possibility.

Each particle has modest computing power and a modest amount of memory. The

particles are not synchronized, although we assume that they compute at similar speeds,

3In our research at MIT, we are currently implementing a �rst silicon prototype that will serve not only

to explore the engineering issues that must be understood in order to achieve true computational particles,

but will also provide a hardware substrate for investigating programming methodological and operating-

system issues. This prototype consists of an aggregation of integrated circuits, each containing a 32-bit

microprocessor, ROM, static RAM, a radio transmitter/receiver employing spread-spectrum techniques,

and environmental sensors. Moving from this kind of prototype to real computational particles presents

additional challenges (we are not addressing the issue of power distribution in this initial prototype), but

they are nevertheless an evolution of current technologies.
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since they are all fabricated by the same process. The particles are all programmed iden-

tically, although each particle has means for storing local state and for generating random

numbers. In general, the particles do not have any a priori knowledge of their positions or

orientations.

Each particle can communicate with a few nearby neighbors. In amorphous systems

of microfabricated components, the particles might communicate via short-distance radio;

bioengineered cells might communicate by chemical means. For our purposes here, we'll

assume that there is some communication radius r, which is large compared with size of

individual particles and small compared with the size of the entire area or volume, and that

two particles can communicate if they are within distance r.

We assume that the number of particles is very large. Thus, the entire amorphous

medium can be regarded as a massively parallel computing system, and previous investiga-

tions into massively parallel computing, such as research in cellular automata, is one source

of ideas for dealing with amorphous systems. Amorphous computing presents a greater chal-

lenge that cellular automata, however, because its mechanisms must be independent of the

detailed con�guration and reliability of the particles. For example, smart paint should be

able to determine geometric properties of the surface that it coats without initial knowledge

of the positions of the paint's computational particles.

Another source of ideas may be research into self-organizing systems, which has exhib-

ited how some coherent behaviors of large-scale systems can \emerge" from purely local

interactions of individual particles. Amorphous computing might exploit similar phenom-

ena, but it is not our goal to study the principles of self-organization per se. As engineers,

we must learn to construct systems so that they end up organized to behave as we a priori

intend, not merely as they happen to evolve.

From wave propagation to pattern formation

To get a sense of what it would be like to program an amorphous system, consider a

simple process of wave propagation. An initial \anchor" particle, chosen by a cue from the

environment or by generating a random value, broadcasts a message to each of its neighbors.

These propagate the message to their neighbors, and so on, to create a di�usion wave that

spreads throughout the system. The message can contain a hop count, which each particle

can store and increment it before rebroadcasting, ignoring any subsequent higher values

to prevent the wave from propagating backwards. The hop counts provide estimates of

distance from the anchor: a point reached in n steps will be roughly distance nr away.

The quality of this estimate depends on the distribution of the particles. Such relations

have been extensively studied in investigations of packet-radio networks. (See, for example,

Kleinrock and Silvester [10].)

For particles on a surface, one can produce two-dimensional coordinate systems by prop-

agating waves from two anchors. Using three anchors establishes a triangular coordinate

system, which can provide better accuracy, especially when augmented by smoothing tech-

niques as discussed by Coore [3] and Nagpal [14]. In related work, Katzenelson [9] describes

how to establish global coordinates over a region by propagating known coordinates from

particles at the boundary.

Wave propagation with hop counts, as Nagpal [14] remarks, is evocative of the gradients

4



formed by chemical di�usion that are believed to play a role in biological pattern formation.

Consequently, we can attempt to organize amorphous processes by mimicking gradient

phenomena observed in biology.

As an example, we can use di�usion waves to produce regions of controlled size, simply

by having the processors relay the message only if the hop count is below a designated

bound. Once a region is generated in this way, we can use it to control the growth of other

regions. For instance, two particles A and B might each produce a di�usion wave, but

the wave from B could be relayed only by particles that have not seen the wave from A.

Drawing upon a biological metaphor, we might interpret this as saying that A generates

a wave that \inhibits the growth" that has started from B. In a slightly more elaborate

program, the B-wave might be relayed only by the particle located in each neighborhood

that is closest to A (as measured by the A-wave). Our biological metaphor might interpret

this by explaining that the region growing from B has a \tropism" that attracts it towards

A.

These di�usion wave mechanisms are well matched to amorphous computing because

the gross phenomena of growth, inhibition, and tropism are insensitive to the precise ar-

rangement of the individual particles, as long as the distribution is reasonably dense. In

addition, if individual particles do not function, or stop broadcasting, the result will not

change very much, so long as there are suÆciently many particles.

Based on this kind of cartoon caricature of biological development, Coore [4] has de-

veloped a programming language called the growing-point language, (GPL), which enables

programmers to specify complex patterns, such as those specifying the interconnect of an

electronic circuit. The speci�cation is compiled into a uniform state machine for the com-

putational particles in an amorphous medium. All of the particles have the same program.

As a result of the program, the particles \di�erentiate" into components of the pattern.

Coore's language represents processes in terms of a botanical metaphor of \growing

points". A growing point is an activity of a group of neighboring computational particles

that can be propagated to an overlapping neighborhood. Growing points can split, die o�,

or merge with other growing points. As a growing point passes through a neighborhood, it

may permanently set some portion of the states of the particles it visits. We can interpret

this as the growing point laying down a particular material as it passes. The growing point

may be sensitive to particular di�used messages, and in propagating itself, it may exhibit

a tropism toward a source, away from a source, or move in a way that attempts to keep

the \concentration" of some di�used message constant. Particles that represent particular

materials may \secrete" appropriate di�usible messages that attract or repel speci�c growing

points.
Here is a fragment of a program written in the growing point language:

(define-growing-point (make-red-branch length)

(material red-stuff)

(size 5)

(tropism (and (away-from red-pheromone)

(and (keep-constant source-1-pheromone)

(keep-constant source-2-pheromone))))

(avoids green-pheromone)

(actions

(secrete 2 red-pheromone)
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(when ((< length 1)

(terminate))

(default

(propagate (- length 1))))))

The program de�nes a growing point process called make-red-branch, which takes one

parameter called length. This growing point \grows" material called red-stuff in a band

of size 5. It causes each particle it moves through to set a state bit that will identify the

particle as red-stuff, and also causes the particle to propagates a wave of extent 5 hops

that similarly converts nearby particle to be red-stuff. The growing point moves according

to a tropism that directs it away from any source of red-pheromone, in such a way that the

concentration of pheromones secreted by source-1 and source-2 are kept constant, and

so as to avoid any source of green-pheremone. All particles that are red-stuff secrete

red-pheromone; consequently, the growing point will tend to move away from the material

it has already laid down. The value of the length parameter determines how many steps

the growing point moves: If length is less than 1 the growing point terminates. Otherwise,

it propagates growth of length minus 1 steps.

Notice how this language encourages the programmer to think in terms of abstract

entities like growing points and pheromones. The GPL compiler translates these high-level

programs into an identical set of directives for each of the individual computational particles.

The directives are supported by the GPL runtime system running on each particle. In e�ect,

the growing point abstraction provides a serial conceptualization of the underlying parallel

computation.

Figure 1(a) shows the �rst stages of a pattern being generated by a program in the

growing-point language. For simplicity, we assume that the horizontal bands at the top and

bottom have been previously generated, and that an initial growing point is located at the

left. Growth proceeds following a tropism that tries to keep equidistant from the top and

bottom bands. After a short while the initial growing point splits into two: one branch of

growth is attracted towards the top and one is attracted towards the bottom. Figure 1(b)

shows the process somewhat further along: the two branches are repelled by short-range

pheromones secreted by the top and bottom bands, and start moving horizontally. They

also change the kind of material they lay down.

Figure 1(c) shows the process evolved even further, to produce an elaborate shape. The

shape is the layout of a chain of CMOS inverters, where the di�erent colored regions rep-

resent structures in the di�erent layers of standard CMOS technology: metal, polysilicon

and di�usion. The program that speci�es the shape is only a few paragraphs long, and

the resulting state machine for the individual particles requires only about twenty states.

Coore has demonstrated that any prespeci�ed planar graph can be generated, up to connec-

tion topology, by an amorphous computer under the control of a growing-point program,

provided that the distribution of particles is suÆciently dense.

Programming the particles

The growing point language is formulated in terms of abstractions that must ultimately be

implemented by processes in the individual computational particles, which we assume are

all programmed identically. Weiss [24] has developed a remarkably convenient and simple
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Figure 1: Evolution of a complex design|the connection graph of a chain of CMOS inverters|being

generated by a program in Coore's growing-point language. (a) An initial \poly" growth divides to form

two branches growing towards \Vdd" and \ground". (b) The branches start moving horizontally, and sprout

pieces of \di�usion". (c) The completed chain of inverters.
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Figure 2: A pattern of alternating bands produced by marker propagation with the aid of Weiss's pro-

gramming model.

language for programming the particles. In this model, the program to be executed by each

particle is constructed as a set of independent rules. The state of each particle includes a set

of binary markers, and rules are enabled by boolean combinations of the markers. The rules

that are enabled are triggered by the receipt of labelled messages from neighboring particles.

A rule may set or clear various markers, and it may send further messages. A message is

count that determines how far it will di�use, and a marker has a lifetime that determines

how long its value lasts. Underlying this model is a runtime system that automatically

propagates messages and manages the lifetimes of markers, so that the programmer need

not deal with these operations explicitly.

Figure 2 shows Weiss's system generating a pattern of alternate bands of red and blue in

a \Tube" of particles that are initially distinguished by having a tube marker set in them.

Here is a fragment of a program to generate this, showing four rules:

((make-seg seg-type)

(and Tube (not red) (not blue))

((set seg-type)

(send created 3)))

(created

(or red blue)

((set Waiting 10)))

(((make-seg *) 0)

Tube

((set Bottom)))

((Waiting 0)

(and Bottom red)
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((send (make-seg blue) 3)))

((Waiting 0)

(and Bottom blue)

((send (make-seg red) 3)))

The �rst rule describes the reaction of a particle to receiving a message labelled make-seg,

specifying a seg-type (which will be red or blue). If the particle has its tube marker set,

and does not have its red marker or blue marker set, it sets the bit for the speci�ed

seg-type and sends a created message that will propagate for 3 hops. The second rule

says that when a particle receives a created message, and it has the red marker or the

blue marker set, it turns on its waiting marker with a lifetime of 10. The third rule says

that any particle whose tube marker is set, that receives any make-seg message with a hop

count of zero, should set its bottom marker. The fourth rule says that when the lifetime of

the waiting marker runs out, and the particle has both the red and bottom markers set,

the particle sends a (make-seg blue) message, which will propagate for 3 hops. The result

will be alternating red and blue bands, along the length of the tube.

Weiss's system is almost powerful enough to represent the processes described by Coore's

growing points, yet it is simple enough that it can be implemented in an elementary way. It

does not depend on any arithmetic or data structures, and it would be an obvious candidate

for implementation by real biological cells and the cellular computing technology discussed

in section 2.

Further metaphors from biology

The sketches above merely hint at the new primitives and organizational principles required

for e�ective control of amorphous computing systems, and the use of metaphors from biology

has hardly begun to be tapped. Coore, Nagpal, and Weiss [5], for instance, have developed

a model for spontaneously organizing amorphous particles into hierarchies of groups that

can act as single entities and can collaborate to form higher-level groups; within a group,

members can specialize to perform particular functions. One can compare this to the

organization of cells into tissues, tissues into organs, and organs into systems.

A particularly fruitful source of inspiration from biology should emerge from the obser-

vation that even the most basic morphogenetic processes, such as gastrulation, involve cell

migration and deliberate changes of cell shapes. Figure 3 shows some evocative simulations

based on mechanical models of cells by Odell et. al. [15]. In this model each individual

cells preserve its volume, but has actuators (in this case, �bers) that it can stretch or relax

to change cell shape, and it can react to the stresses in its neighbors. In addition, the

entire collection of cells bounds a 
uid-�lled cavity that is constrained to preserve volume

as the cell shapes change. The �gure shows how di�erent shapes and behaviors (elongation,

invagination, and so on) appear as the result of changes by individual cells.

One can envision extending the message propagation models described above to in-

corporate local sensing and activation. Can one create a language of shapes|analogous

to the growing-point language|that would permit programmers to generate prespeci�ed

macroscopic shapes in amorphous media, by prescribing local shape changes by individual

particles? In general, it is plausible to expect that the most powerful techniques for amor-
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phous computing will be ones that will tie computation intimately to particle activation

and mobility, and to physical constraints from the environment.

Physics and conservative systems

Physics, as well as biology, can be a source of new metaphors for amorphous computing.

The mechanisms discussed above were based on a \chemical di�usion" model. Chemical

di�usion, and other dissipative processes such as heat di�usion, are natural candidates for

simulation in amorphous media because dissipation loses information, erasing any microscale

errors that occur in computation. The fundamental processes in the physical world, in

contrast, are conservative. Simulating conservative processes, such as those characterized

by the wave equation, is much more diÆcult because conservative (and especially reversible)

processes never forget the error accrued. It is an especially challenging task to formulate

processes that manifest exact conservation laws in such a way that imperfection in the

implementation does not impair the exact conservation.

One approach is to simulate processes in terms of explicit discrete computational tokens

of the conserved quantities. With such a scheme we can guarantee global conservation by

formulating the process in terms of local exchanges of the tokens. Conservation laws then

emerge globally as consequences of the local exchanges.

Consider a two-dimensional 
exible sheet, constrained to move in one dimension (per-

pendicular to the sheet). We can simulate motions of the sheet by integrating the scalar wave

equation @
2
q=@t

2 = c
2
r

2
q, where q(x; y) is the displacement of the sheet at (x; y). Imagine

the sheet to be an amorphous medium densely populated by computational particles of

unit mass, and formulate the integration as a continual process of momentum exchange,

where each pair of neighboring particles exchanges an appropriate \token" of momentum.

Letting qi be the displacement of particle i, we can model the force on particle i from a

neighboring particle j as resulting from Hooke's law: Fij = k(qi � qj), and so the amount

of momentum transferred from particle i to particle j in time �t is �pij = k(qi � qj)�t.

In the resulting amorphous computing program, each particle repeatedly chooses a neigh-

bor at random, (atomically) e�ects the momentum exchange, and evolves the position and

velocity. It seems preferable to evolve the position and velocity using a scheme such as

leapfrog integration, since this respects conservation of energy. (This is essentially the pro-

gram advocated by Greenspan [6] for making \particle models" of physical systems. The

higher-order symplectic integrators that are used in modeling the solar system can also be

viewed in this light, and may form the basis for more accurate integrations [26].)

The simulation shown in �gure 4 is from preliminary results by Rauch [18], who has been

investigating such discrete, amorphous models of physical systems. In a generalization of

this work, Katzenelson [9] has demonstrated that amorphous media can be programmed to

integrate any di�erential equation for a conservation law, provided that the processors are

suÆciently dense. (\SuÆciently dense" here means that when one draws lines connecting

every particle to all particles within the communication radius r, the resulting triangles are

all acute.)

The use of discrete tokens to represent conserved quantities works only if we can guar-

antee that the tokens are not lost or duplicated if communications network is imperfect

or if the computational particles fail. One idea is to represent our tokens in a redundant
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Figure 3: Control of shape changes in a ring of cells, based on the mechanical cell models of [15]. Each

cell has a simple programmed behavior, and reacts to stresses in its neighbors.
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Figure 4: Simulations of the wave equation in a two-dimensional amorphous medium.

distributed form. In the spirit of amorphous computing, we should be prepared to use prof-

ligate amounts of local computation to compensate for the unreliability of the individual

elements, but the details of how to accomplish this robustly remain an important challenge.

2 Cellular Computing

Living cells serve as isolated, controlled environments that house complex chemical reac-

tions. In addition, cells reproduce themselves, allowing the creation of many copies with

little manufacturing e�ort. The vision of cellular computing is to use intracellular chemical

mechanisms to organize and control biological processes, just as we use electrical mecha-

nisms to control electrical processes. The ability to control cellular function will provide

important capabilities in computation, materials manufacturing, sensing, e�ecting, and fab-

rication at the molecular scale.

Sussman and Knight [12] have proposed a biochemically plausible approach to con-

structing digital-logic signals and gates of signi�cant complexity within living cells. This

approach relies on co-opting existing biochemical machinery found naturally within the cell,

as a basis for implementing digital logic. The \signals" in this logic system are represented

by concentrations of certain DNA-binding proteins.4

4Bacterial cells usually contain only a small number of molecules of any particular DNA-binding protein.

This small number results in a degree of stochastic behavior in bacteria. In natural environments, this
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Figure 5: The two idealized cases for a biological inverter. If input repressor is absent, RNAP (RNA

polymerase) transcribes the gene for the output protein and enables its synthesis. If input repressor is

present, no output protein is synthesized.

The essential idea of cellular computing is to adopt the same strategy as in electrical

engineering, where engineers create digital abstractions that permit the design of systems

that are insensitive to variations in signal levels. The key to obtaining a digital abstraction

is the existence of a inverting ampli�er. The inverter must produce adequate noise margins,

i.e., ranges where signal variations in the inputs are not signi�cant to the next stage in

computation. This requires an ampli�er that is nonlinear and whose average gain is greater

than unity.

To see how to construct such an ampli�er in the cellular context, consider an \output"

protein Z and an \input" protein A that serves as a repressor for Z. A cellular computing

\inverter" can be implemented in DNA as a genetic unit consisting of an operator (a bind-

ing site for A), a promoter (a site on the DNA at which RNA polymerase binds to start

transcription), and a structural gene that codes for the production of Z.

In order for Z to be produced, an RNA polymerase has to bind to the promoter site and

transcribe the structural gene into messenger RNA. (The messenger RNA is then translated

into the protein by another molecular machine, called a ribosome.) If a molecule of A binds

to the operator site, it prevents the docking of the RNA polymerase to the promoter site,

thus preventing the transcription (and later translation) of the gene. Thus, assuming that

proteins are scavenged and have a �nite lifetime, the concentration of Z will vary inversely

with the concentration of A. Figure 5 depicts this process.

The gain of this \inverter" can be increased by arranging for multiple copies of the

structural gene to be controlled by a single operator. The required nonlinearity can be

obtained by using multimer binding proteins (i.e., proteins constructed from several subunits

stochastic behavior provides a survival advantage by increasing the apparent diversity of a population, as

demonstrated by McAdams and Arkin [13]. For engineered systems, however, we would like behavior to be

as predictable as possible, and this requires increasing the concentrations of the signalling proteins.
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Figure 6: The DC transfer curve for the \inverter" that operates on DNA-binding proteins is similar to

the input-output transfer characteristic of an digital inverter. The model of the chemical kinetics employed

here postulates that four molecules of the repressor protein are required to inhibit production of the output.

that must come together to bind to the DNA).

Figure 6 (taken from [12]) shows the output protein concentration as a function of

the input protein concentration, computed by modeling the chemical kinetics of the DNA-

binding protein reactions. Observe that the relation between input and output here is

an almost ideal transfer characteristic for a digital inverter: there is low gain for input

concentrations that are very high and very low, separated by a relatively high-gain transition

region. This nonlinearity is the essence of digital gates; it forms the basis for e�ectively

rejecting small variations in the input signals|that is, for attenuating the input noise.

Figure 7 shows the inverter's dynamic behavior derived from numerical simulation of the

actual chemical kinetics for suitable proteins (see [25]).

Given the ability to implement inverters in cells, arbitrary logic gates can then be realized

as combinations of inverters. For example, the NAND function can be implemented as two

inverters that have di�erent input repressors but the same output protein: the output will

be produced unless inhibited by both of the inputs. More complex components, such as

registers that store state, can be similarly constructed, just as in standard electrical logic

design. In many respects, this is similar to the I2L logic family of digital circuits. One

di�erence is that, rather than using clocked circuits, cellular logic circuits are likely to be

asynchronous and level-based rather than edge-based, because the signal propagation, based

on di�usion of proteins, makes it diÆcult to achieve synchronization.

In addition to realizations of digital logic, cellular gates could also code for enzymes that

e�ect some other action within the cell, such as motion, illumination, enzymatic catalysis

or cell death. Similarly, an input to a cellular logic gate could consist, not of the output

of another logic gate, but of a sensor that creates or modi�es a DNA binding protein in

response to illumination, a chemical in the environment, or the concentration of speci�c
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Figure 7: A simulation of the dynamic behavior of a cellular-computing inverter. The three graphs show

the concentration of the input protein A, the concentration of the output protein Z, and the concentration

GZ of the gene coding for Z that is not repressed. The concentrations include both the monomeric and

dimeric forms. The simulations include both the transcription and translation stages of protein synthesis.

The particular proteins being simulated here are phage Lambda cI, with operator regions OR1 and OR2 and

promoter region PR using the kinetic models found in [8, 17].
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intracellular chemicals.

A research agenda for cellular computing

In principle, these foundations should be suÆcient to implement digital logic in cells. In

practice, however, realizing cellular logic will require an ambitious research program. We

do not have a library of the available DNA-binding proteins and their matching repressor

patterns. We do not have good data about their kinetic constants. We do not know about

potential interactions among these proteins outside of the genetic regulatory mechanisms.

Most importantly, we do not have a suÆciently clear understanding of how cells reproduce

and metabolize to enable us to insert new mechanisms in such a way that they interact with

those functions in predictable and reliable ways.

Beyond just our lack of knowledge of the biochemistry, the design of cellular logic circuits

raises diÆculties not present with electrical circuits. To prevent interference between the

gates, a di�erent protein must used for each unique signal. Therefore, the number of

proteins required to implement a circuit is proportional to the complexity of the circuit.

Also, because the di�erent gates use di�erent proteins, their static and dynamic properties

will vary. Moreover, unlike electrical circuits, where the threshold voltages are the same for

all devices in a given logic family, the components (proteins) of cellular gates have di�erent

characteristics depending on their reaction kinetics. Therefore, the designer of biological

digital circuits must take explicit steps to ensure that the signal ranges for coupled gates

are appropriately matched.

One e�ort required for making progress in cellular computing is the creation of tool

suites to support the design, analysis, and the construction of biologic circuits. One such

tool (currently being explored by Weiss [24]) is a simulator and veri�er for genetic digital

circuits, called BioSpice. BioSpice takes as inputs the speci�cation of a network of gene

expression systems (including the relevant protein products) and a small layout of cells

on some medium. The simulator computes the time-domain behavior of concentration of

intracellular proteins and intercellular message-passing chemicals. A second tool would be

a \Plasmid Compiler" that takes a logic diagram and constructs plasmids to implement the

required logic in a way compatible with the metabolism of the target organism. Both the

simulator and the compiler must incorporate a database of biochemical mechanisms, their

reaction kinetics, di�usion rates, and their interactions with other biological mechanisms.

An even more aggressive approach to cellular computing would be to genetically engineer

novel organisms whose detailed structure is completely understood and accessible from an

engineering standpoint. One idea for accomplishing this is to gradually transfer functionality

from a wild type bacterial chromosome to one or more increasingly complex plasmids. As

functionality is transfered, the gene sequences transfered can be deleted from or inactivated

in the wild type chromosome, leading to a cell dependent on the presence of the new

construct. Eventually, when suÆcient function has been transfered to one or more plasmids,

the original wild type chromosome can be deleted, yielding a novel organism. Careful choices

in what is transferred could lead to the design of \minimal organisms" that have clean

modularity and well-understood structure. Such organisms could then serve as substrates

for precision cellular engineering.

In essence, we are at a primitive stage in the development of this cellular computing
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analogous to the early stages of the development of electronics at the beginning of the 20th

century. Progress in cellular computing would open a new frontier of engineering that could

dominate the information technology of the next century.

3 Toward Nanoscale Computing?

Even though biological cells come in vast numbers, cellular computing will be slow: we

cannot expect di�usion-limited chemical processes to support high-speed switching. Thus,

we do not anticipate that cellular computing in itself be a good way to solve computationally

hard problems. On the other hand, the ability to organize cells into precise patterns and

to cause cells to secrete chemical components could be the foundation for the engineering

construction of complex extracellular structures and precise control of fabrication at the sub-

nanometer level. This kind of engineering will require applying the organizational principles

of amorphous computing to the mechanisms of cellular computing. In the future, biological

systems could be our machine shops, with proteins as the machine tools and with DNA as

the control tapes.

We can envision applying this technology to the construction of molecular-scale elec-

tronic structures. Deliberately assembled molecular-scale electronic structures are likely to

replace lithographically patterned electronics in the next century. While lithographic tech-

nologies struggle to surmount diÆculties imposed by the small scale and statistical nature of

doping pro�les, deliberately assembled molecular-scale systems are atomically precise and

uniform, with identical atoms in well-de�ned localized slots.

The delivery of molecular-scale electronics will require two major technical achievements.

The �rst of these is the development and characterization of molecular-scale conductors,

diodes, and transistors. Devices at this scale can incorporate electrical circuitry with pi-

cosecond cycle times [1, 2, 11, 16, 19, 20, 21, 23]. While many researchers are appropriately

concentrating on the conductor and device behaviors, a solution to those problems will not

be suÆcient. Thus, the second major achievement required is a technology for assembling

compound structures from molecular-scale components.

One plausible way to construct complex, information-rich electronic systems is to �rst

fabricate a largely passive, but information-rich molecular-scale \sca�old," consisting of

selectively self-assembling engineered molecules. This sca�olding can be used to support

the fabrication of molecular conductive and amplifying devices that are interconnected in

the way that the engineer requires. Proteins are a good candidate for sca�olding components

because they are chemically and thermally stable, and they have exquisitely selective binding

domains. For example, the selectivity of the antibody fold is the basis of the immune system.

In principle, to manufacture proteins requires merely inserting the appropriate DNA

sequences into cells. This, of course, begs the enormously diÆcult question of how to

engineer proteins that have the required properties. Rather than trying to create such

proteins ab initio, we may be able to identify classes of biologically available proteins that

are usable as sca�olding.

One intriguing idea is to build sca�olding components out of collagen. Collagen forms

the basement membrane upon which animal cells self assemble, and it is probably the most

common animal protein [22]. It consists of an o�set triple helix, in which each strand has a
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stylized amino acid sequence of the form : : : GLY-PRO-X-GLY-PRO-X-GLY-PRO-X : : : .

In this sequence, every third amino acid is glycine, and many of the other amino acids are

proline (or a modi�ed form, hydroxy-proline). The amino acids other than the glycine and

proline residues can can be arbitrary (here denoted by X). The entire structure forms a

rigid, straight rod, where the side chains of the X amino acids point outwards. In our vision

of collagen as sca�olding, the GLY-PRO- amino acids assure that the protein folds as a

rigid rod, and, by choosing appropriate X amino acids, we control how these rods assemble

into more complex two-dimensional and three-dimensional structures.

A Fantasy

With this perspective we can entertain a fantasy of nanoscale circuit fabrication in a future

technology. Imagine that there is a family of primitive molecular-electronic components,

such as conductors, diodes, and switches. We assume that we have bottles of these in the

freezer. (Probably there are generic parts suppliers for these common components.)

Suppose that we have a (perhaps very large) circuit that we want to implement in this

technology. The �rst stage of the construction begins with the circuit and builds a layout

(perhaps 3 dimensional!) that incorporates the sizes of the components and the ways that

they might interact.

Next, the layout is analyzed to determine how to construct a sca�old out of collagen.

Each branch is compiled into a collagen strut that links only to its selected targets. The

struts are labeled so that they bind only to the appropriate electrical component molecules.

For each collagen strut, the DNA sequence to make that kind of strut is assembled, and

a protocol is produced to insert the DNA into an appropriate cell. These various custom

parts are then synthesized by such transformed cells.

Finally, we create an appropriate mixture of these custom sca�old parts and generic

electrical parts. Specially-programmed worker cells are added to the mixture, to implement

the circuit edi�ce that we desire. These worker cells have complex programs, developed

with amorphous computing technology. The programs control how the workers perform

their particular task of assembling the appropriate components in the appropriate patterns.

With a bit of sugar (to pay for their labor) the workers construct (many copies) of our

circuit, which we can then collect, test, and package for use.
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