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12,0 Imiroduciion

The perceptron and the convergence theorems of Chapter 11 are
relnted to many other procedures that are studied in an extensive
and disorderly lilerafure under such fitles 258 LEARNING MACIINES,
MODELS OF LEARMING, INFORMATION RETRIEVAL, STATISTICAL DE-
CISION THEORY, PATTERN RECOGNITION and many more, In this
chapter we will study a few of these to indicate points of confact
with the perceptron and to reveal deep diferences, We can give
neither a fully rigorous account nor & unilying theory of these
topics: this would go as far beyond our knowledge as beyond the
scope of this book. The chapler 15 written more in the spinit of
inciting studenis to research than of offering solutions (o prob-
fems,

121 Information Retricval and Inductive Inference

The perceptron training procedures (Chapier 1) could be used 1o

construct a device that operates within the following pattern of
behavior:

Storage
_ Pressedure
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During a “filing™ phase, the machine is shown a “data set™ of
n-dimensional vectors —-one ¢an think of them as.s-bit binary
numbers or as points in w-space, Luater, in a “linding™ phase, the
machine must be able 1o decide which of a variely of “query™
vectors belong to the data set. To generalize this pattern we will

R e |

NEGr



Lincar Separation i'lr'l'l-j Learning [12.1] [189]

use the term A, Tor an algorithm that examines clements of a duota

sel 1o modify the information in a memery, Ag, is designed 1o pre-
pare the memory for use by another procedure, Ay, which will
use the information in the memory to make decisions aboul query
veelors,

This chapter will survey a variety of instances of this general
scheme. We will begin by reluting the PERCEPTRON procedure to
the simplest such scheme! in the COMPLETE STORAGE procedurs
Ay merely copies the data vectors, as they come, into the
memory, For cach query veetor, Apy searches exhaustively
through memory to see if it is recorded there.

12.1.1 Comparing PERCEFTRON with COMPLETE STORAGE
Our purpose is 1o illusirate, in this simple case, some of the ques-
tions one might ask 1o compare retrieval schemes:

Is the procedure universal? The reRCEPTRON scheme works per-
fectly only under the restriction that the data set is linearly
separable, COMPLETE STORAGE is universal: it works for any
data sel.

How much memory is required? COMPLETE STORAGE needs a mem-
ory large eneugh to hold the full data sel, PErRcerTRON, when it

is applicable, sometimes has a summarizing eMect, in that the
infermation capacity needed to store its cocllicients fa] & sub- |

stantially less than that nceded 1o store the whole data set, We
have seem (510027 that this is not generufly true; the coclficienis
TOr fpansry Mity need much more storage than does the list of
pegepted weelors,

How quickly does Agy operate? The retrieval scheme—exhaustive
search - specificd for compreTe STORAGE 18 very slow (usually
slower than PERCEPTRON'S Ay, which must also retrieve all its
cocfficients from memory), On the other hand, very similar pro-
cedures could be much Taster. For example, il Ag. did not just
store the data set in its order of entry, but sorted the memory
into numerical order, then Ag could use a binary search, reduc-
ing the query-answer ime Lo

log, (|data set])
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memory references. We shall study (in §12.6) A algorithms that
sucrifice memory size to obtain dramatic further increases in
speed (by the so-called hash-cading technique).

Can the procedure operate with some degree (perhaps measured
probabilistically | of suceess even when Ay, has seen only a subser
of the datg set - el i n Ve gample™? PERCEPTRON might, bui
the compLETE sTORAGE algerithm, a3 described, cannot make a
reasonable puess when presented with a query vector not in the
duta sample. This deficiency suggests an importont medification
of the complete storuge procedure: let Ay, instcad of merely
checking whether the query vector is in the data sample, find that
member of the dota somple cfosest to it. This would lead, on an
& priori assumplion aboul the *“continuity™ of the data set, to a

degree of generalization as good as the perceptron’s. Unfortu-

nately the speed-up procedurss such as hash-coding cease 1o be
avmilible and we conjecture (in a scnse to be made more precise
in &1 2.7.6) that the loss is irremediable,

Other considerations we shall mention concern the operation of
A, We note that the PERCEPTRON and the COMPLETE STORAGE
procedures share the following features:

They act increme nially, that is, change the stored memaory slightly
a5 a function of the currently presented member of the data set,

They operate in *real time” without using large quantities of
awxiliary serafch-pud memory.
They can accept the daia sci in any order and are tolerant of

repetitions that cause only delay bul do not change the final
slmte.

On the other hand they dilfer in at least one very Tundamental
Wiy

The pereeptron’s Ag, it a “search procedure™ based on feedback
from its own resulis, The complete storuge file algorithm is p:ig-
sive. The advantage for the perceptron is that under some condi-
tions it finds an economical summarizing representation. The cost
is thut it may need 1o sce cach data poinl many times.

12,1.2 Multiple Classification Procedures
[t is a slight generalization of these idens to suppose the data
sel divided inte a number of classes F,,...,F,. The algorithm
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A 15 presented as before with members of the data set but also
with indications of the corresponding ¢lass. It constructs o body
of stered information which 15 handed over 10 Ap.s whose task
is (o assign query points to their classes using this information.

Example: We have seen (510.3.1) how to extend the concept of
the percepiron to a mubiple classification. The training algorithm,

Ay, finds & veclors Ay, ..., Ay, and Ag, assigns the vector &
to F,if
P o= pe A (all = IMNNER PRODUCT

Example: The lfollowing siluation will seem much more familiar
to many readers, IF we think of cach class F; as a “clump™
or “cloud™ or “cluster” of points in $-space, then we can imagine
that with each F, is associated a special point B, that is; sémechow,
a “typical™ or “average™ point, For example, B, could be the
center af gravity, that 15, the mean of all the vectors in F) {or,
say. of Just those vectors that so lar have been observed 10 be in
F). Then o fumilinr procedure is: @ is judged 1o be in thm
F, for which the Euclidean distance

¢ - B,

is the smallesr. That i3, each @ i3 identified with the nearest B-
praoint.

Mow this ncarness scheme and the inner-product scheme
might look quite different. but they are essentially the same!
For we have only 1o observe thot the s¢i of poinis closer to
one given point By than 1o another B; is bounded by a hyper-
plane (Figure 12,13, and hence can be defined by a linear incqual-

Fipure 12,1
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' iy, Similurly, the points closest o one of a number of B/s form a
peonvex) polygon (Figure 12.2) and this is true in higher dimen-
sions, also,

Figure 12.2

Formally, we sce this by observing thar
[# - B - (@] - 288, + IBF.

Now, il we can nssume that all the @' have the same length L then
the Euclidean distance {B) will be salfest when

#B-jBfeon -y :

fs lapgest. But this has cxactly the dnner-product, i the “threshald™
i remaved by §1.2.0 (1) To se2 that the inner-product concept loses
ncthing by requiring the '3 1o have the same length, we add an eatra
ditnension and replace cach & « [y, ..., @] by

o B

g that all &% have bength 1! = 5, We have 1o add one dimension to
Ll 18°%, tae, bul can abwinys sol i3 coclficient Lo 2ero,

12.2 A Varlety of Classification Algorithms

We select, from the inflinite varicty of schemes that one might
s fo divide o apace inte diferent elasses, a few schemes that
illustirate aspecis of our main subject: computation and linear
separation, We will summarize each very bricfly here; the re-
miinder of the chapter compares and contrasts some aspecis of
their algorithmic structures, memory requiraments, and commis-
ments they make about the noture of the classes.

a—]‘.}.ﬂ.\_ .
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Each of our models uses the same basic Form of decision algo-
rithm for Ag,. In each case there is assigned 1o each class F,
one o more vectors A we will represent (his assignment by say-
ing ithat A, is associated with F,, Given a veclor 4, the decision
rule is alwiys to choose that F,,; for which A, is largest. As
noted in §12.1.2 this is mathematically equivalent to a rule that
minimizes B - A&, | or some very similar formula,

For exch model we must also desenibe the algorithm Ay, that
consirucis the A's, on the basis of prior experience, or @ prioe
information aboul the clisses. In the briel vignettes below, the
fine details of the Ay, provedures are deferred to other sections,

1251 The rercermmos Procedure
There 15 ane vector A, for each class F;. Ay, can be the procedures
described in §11.1 for the 2-class case and in 51141 Tor the mulii-
class case. ’

12.2.2 The eaves Linear Statistical Procedure :
Aguin we have one A, for each F. Ay, is quite different, however.
For cach cliss F, and each partial predicate o, define

W - “}E (i fl:rpﬂ)‘

where p is the probability that ¢, = 1, given thar & is in F,. Then
define :

Ay ([, Wy, w0 )

We will explain in §12.4.3 the conditions under which 1hiz uze
of “probability™ makes sense, ond describe some “learning™ algo-
rithms that could be used to estimate or approximate the s,

The raves procedure hus the advantage that, provided ceriain
statistivil comditions are satshied, it gives good results for clagses
that wre sor lincirly separable, In fact it gives the lowest possible
error rate for procedures in which Ay, depends only on condi-
tional probubilitics, given that the ¢'s are statistically independent
in the sense cxplained in §12.4.2. It is astounding that this is
achieved by a lincar formula.
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12.2.3 The grsr pLasEs Procedore

In diferent silualions cither PERCEFTRON OF BAYES may be
superior, Bul ofien, when the F's are not lincarly scparable, there
will cxist a set of A, vectors which will give fewer errors than
cither of these schemes. So define the pEST PLANES procedure 1o
use that set of A,'s for which choice of the largest A;- & gives the
fewest errors,

By definition, BEST PLANES is always at least as good as BAYES
or FERCEFTRON, This does not contradict the optimality of BavEs
since the search for the best plane wses information other than
the conditional probabilities. Unfortunately no practically effi-
cient Ag, i% known for discovering its Ajs. As noted in §12.3,
hill-climbing will apparently not work well because of the lecal
peak problem. ©

1224 The sooars Procedure

T the schemes described up (0 now, we assigned exactly one A-
vector Lo gach Fecluss, 1M we shilt toward the minimum-distance
viewpoint, this suggests that such procedures will work satisfac-
tartly only when the Feclasses are “localized”™ into relatively iso-
lated, single repions—one might think of clumps, clusters, or
clowds, Given this intuitive picture, one naturally asks what to do
if an F-glass, while not o neat spherical cluster, is nevertheless
semilocalized as a small number of clusters or, perhaps, a snake-
like structure. We could still handle such situations, using (he
least-distance Ag, by assigning an A-vecior o each subcluster
ol each F, and using scveral A's to outline the spine of the snake.
Tao realize this concept, we need an Ay scheme that has some
ability to analyee distributions into clusters, We will describe one
such scheme, called 1somara, in &1 135,

12.2.5 The sEanist sociinok Procedure

Our simplest and moest radical scheme assemes ne limit on the
number of A-veetors, Ag, stores in memory every & that has ever
been encountered, together with the name of ils associated F-
class. Given a query vector &, we find which & in the memory is
Closest Lo dy, and choose the F-clags associnied with that €,

This is a wery gencrally powerful method: it is very clficient on
many 2oris of cluster conligurations; it never makes a mistake on
an alresdy seen point; inothe Timit it approaches #cro error
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excepl under rather peculiar circumsiances {one of which is dis-
cussed in the following section).

NEAREST MEMIHDOR has an obvious disadvantape-—the very large
memory required—and a subtle disadvantage: there is reason to
suspect that it entails large, and fundamentally unavoidable, com-
putation costs (discussed in §12.6),

12.3 Hewristic Geomeiry of Linear Separation Methods

The diagrams of this section atlempl Lo suggest some of the be-
havioral aspects of the methods deseribed in §12.4. To compen-
sale for our inability to depict multidimensional configurations,
we use bwo-dimensional multivalued coordinates. The diagrams
may appear plausible, but they are really defective images that
dir mot hint at the horrible things thut can happen in a space of
many dimensions,

Using this metaphorical kind of picture, we can suggest two kinds
of sitttions which tend to favor one or the other of BAYES or
FERCEFTRON (32 Figure 12.3).

Figure 12.3

The naves ling in Figure 12.3 tends to lie perpendicular 1o the
ling belween the “mean”™ points of F_ and F.. Hence in Figure
12300, we find that saves makes some errors, The sels are, in
faet, linearly separable, hence PERCERTRON, evenlually, makes no
ereord il all, In Figure 12.3(b) we find thot BAYES makes a fow
errovd, just asin 12.3(a). We don’t know much aboul PERCEPTRON
in nonseparable <ituations; it is clear that in some sifuations it
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will nor do as well as paves. By definition BEST PLANE, of course,
duoes at lewst as well as either BAYES or PERCEPTRON,

From the start, the very suggestion that any of these procedures
will be any good at all amounts to an & priori proposal that the
F-classes cun be fitted into simple clouds of some kind, perhaps
with a little overlapping, as in Figure 12.4. Such an assumption

&

Frgure 12.4

could be justified by some reason for believing that the diference
between F, and F_ are due to some one major influence plus
a variety of smaller, sccondary effects. In general PERCEPTRON
tends to be sensitive to the outer boundaries of the clouds, and
relatively insensitive to the density distributions inside, while
BAYES weights all #'s equally. In cases that do not satisly either
the single-cloud or the slight-overlap condition (Figure 12.5), we
can expect 8AYES fo do badly, and presurmably FERCEPTRON also,
BEST PLANE can be substantially better because it s not subject

1o the bad inMuence of symmetry. But Soding the BEST PLANE 5

&
&

RN

Figure 11,5

-,

F
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likely to involve bad computation problems because of multiple,
focally aptimal “hilla.” Figure [ 2.6 shows some of the local peaks
for BEST PLANE in the case of a bad “paritylike” situation, Here,
even 1I500ATA will do badly unless it i allowed o have one A-
veelor for nearly every clump, Bul in the case of a moderate
number of clumps, with an A, in each, 1sopata should do guite
well, {See 12,50 Generally, we would ¢xpect PERCEPTRON (o be
shightly better than saves because it exploits behavioral feedback,
wirrse hecause of undue sensitivity to isolated errors.

@

S

®
I'I_.nl"
)

Figure 2.6

One would expect the NearesT NEIGHBOR procedure (o do well
under a very wide range of conditions, Indeed, MEAREST
NEIGHBOR 0 the limiting case of recording all $'s with their class
names, will de at leust as well as'any other procedure, There are
conditions, though, in which searesT NEIGHBOR does nol do so
well until the sample size i nearly the whaole space. Consider,
for example, & space in which there are two regions:

Pl{der)=+

PEeR) = 1-p3
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In the upper region a fraction poof the points are in F., and these
are randomly distributed in space, and similarly for F_ in the
lower region, Then il a small fraction of the points are already
recorded, the probability that a randomly selected point has the
siame F as its nearest recorded neighbor is

Prgt =1 - 2pg,

while the probability of correct identification by BAYES or by
BEST PLANE is simply p. Assuming that p > § (if not, just ex-
change p and g) we sce that

Ereofuer mass < EOPO Ty unr smcamon < 2 % ETOTgeer prane

0 Al MEAREST WEIGHROR i3 worse than BEST pPLANE, but mot
arbilrarily worse. This elfect will remain until 20 many points
have been sampled thay there is 3 substaniial chance that the
sampled point has been sampled before, that is, until o good
fraction of the whole space is covered.

On the other side, tw the estent that the “mixing” of F, and
F_ ts less severe (see Figure |2.7), the NEAREST NEIGHROR will
converge 1o very pood scores as soon as there B a subsiantial
chunece ol finding one sampled point in most of the microclumps.

Figure 12,7

A owery bad case is a paritylike structure in which NEAREST
sEGuneg actually does worse than chance. Suppose that € ¢ F, if
and only i w, = 1 For an even number of 5. Then, if there
are n 's, cach & will have exuctly # neighbors whose distance d
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satisflics 0 < < 1. Buppose that all but a fraction g of all pos-
sible %5 have alrcady been scen, Then NEAREST NEIGHBOR will
err on a given @ il it has not been seen {probability = ¢ but
one of its immediate neighbors has been seen (probability =
| = g"). S0 the probability of error is 2g(1 = g"), which, for
lurge n, can be quite near certainty.

This example is, of course, “*pathological,” as mathematicians like
lo say, und NEAREST NEIGHBOR is probubly good in many real
situations, lig performance depends, of course, on the precise
“metric” used 1o compute distance, and much of classical statis-
tical technigue is concerned with optimizing coordinate axes and
measurcment sciles for related applications,

Finally, we remark that because the memory and computation
costs for this procedure are so high, it is subject to competition
from more elaborate schemes outside the regime of linear separa-
tion —and hence outside the scope of this book,

124 Decisions Based on Probabilities of Predicate-Values

Some of the procedores discussed in previous seclions might be
called " spatistical™ in the weak sense that their success is not
puaraateed except up Lo some probability, The procedures dis-
cussed in s section are statistical also in the Grmer sense that
they do not store members of the dara sed direcily, but instead
store statistical parameters, or measurements, about the data set,
W shall analyee in detail a system that compuies-—-or cslimates—
the conditional probabilities p; that, for each class F;the predicate
i has the value 1. 11 stores these p,'s together with the absalute
proabilities g, of & being o cach of the F's,

Given an observed &, the decision to chooge an F, i5 a typical
statistical problem wsoally solved by a “maximum Likelibood™ or
Baycs-rule method. I is interesting that procedures of this kind
rescinble very closely the perceptron separation methods, In fact,
when we can assume that the conditional probabilitics p,, are suit-
ably independent (§12.4.2) it turns oul thdt the best procedure 35
the linear threshold decision we called saves in §12.12, We now
sl how (his comes ahout.

124,01 Maximuam [ikelihowl and Bayes Law

In ['h.apl;:[ 11 we ssgomied that eich $ 2 agsociated with a IJ:I'quIIL‘
F,. We now congider the slightly more general case in which the
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same & could be produced by events in several different F-classes.
Then, given an observed & we cannot in general be sure which
F,is responsible, but we can at best know the associated probabil-
ilies,

Suppose that a particular 4 has oceurred and we want to know
which F is most likely. Mow if F, is responsible, then the “joint
event” F; A &, has occurred; this has (by definition) probability
& (F, A ). Mow (by definition of conditional probahbility) we can
wrile

F(F, A &) = PiF)-F(2] F). (-

That is, the probability that both F, and @, will happen together is
equal Lo (he probability that F, will occur multiplied by the prob-
ability that i Fyoccues so will gy, '

We should choose that Fywhich gives Formula 1 the largest value
because thut choice corresponds to the most likely of those events
that could have seeurred,

FoAd F.A® - FoA#

These are serious practical ohstacles o the direct use of formula 1.
If there are many different &' it becomes impractical to store all
the decisions in memory, lel alone 1o estimate them all on the
basiz of empirical observation, Nor has the system any ability
to guess about &'s it has not seen before, We can escape all these
difficulties by muking one critical assumption—in effect, assum-
ing the situation closely fits a certain model—that the partial
predicates of @ = (@, ..., ¢a) are suitubly independent.

12.4.2 Independence

LIp 1o now we have suppressed the X's of earlier chapters becouse we did
nob care where the vialues of the s came from, We bring them hack for
a moment = that we can give 3 natural context to the independence

hypaihesis,

We can evide the problems mentioned above il we can assume
that the tests () are statistically independent over each Feclass,
Precisely, this means that for any #(X) = (&, (¥} . -, pul X)) we
cin asserl that, for cach j,

WP F) = Fled F) w oo x Pleal F (2}



Lincar Separation and Learning [12.4] [201]

We emphasize that this is a most stringent condition, For exam-
ple, it is equivalent Lo the assertion that:

Given that a ® ir in a certa’n F-closs, iff one is told afso the vafues

of some of the @5, this pives absolurely wo further information about
the valiies of the remaining @'s.

Experimentally, one would expect to find independence when the
variations in the values of "5 are due to "noize” or measorement
unceriainties within the individual e-mechanisms (Figure [2.8),

£~

e A cempshing i

Tnde p-rner:l

Tewdd 10 ':-5'-1-1-1-415 |

Figure 12,8

For. to the extent that these have separate causes, one would not
expect the values of one to help predict the values of another, But
il the varintions in the #'s are due to seleciion of different X's from
the xame F-clasr, one would wer ordinarily assume independence,
stnce the value of each o tells us somethiag about which X in F
has oceurred. and hence should help at least partly to predict the
vithues of other 's (see Figure 12.9).

P
w—-d""."rr‘

AR
Figwre 139

Am extreme example of nonindependence is the following: there
are two clisses, Fyand Fu, and two s, defined by

Milﬂ" Ind-l.;:ll.nJlm

I':r.l_.l“] = a pure random variable with Ple(¥) = 1) = L
s value is determined by tossing a coin, not by X.°

o i R, -
el d) =4 L (X)ifX « Fy

B
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Then Fles A erlF =
But ﬂ'ﬁ‘llFl} “P{H"!rﬂ] - i * *-

Notice that meither g, mor @y faken alomd gives aup Biformarion

whatever ghowt F! Each appears (o be a random coin toss, Bui
From both one con determine perfectly which F has ocoured,

far g = w2 implics Fy,
while vy = w: implics F, |

wilh absolute certainty.

REMARK: We pssume only im:l..-p-:n.dlzm:r within cach class Fy. So il Xis
nod given, then learming one w-valug car help predict another. For ex-
ample, supposa Lhat

wp o= oy o DY e Fy,
@ = w3 = LilX e Fs

These two s are in Tact independent on cach F. Buou il we ofd voi Keew in
aifvamce ther X ¢ Fy hut were told that ¢ = @, we could indced then
predict that w2 = 0 alse, withoul this vialating our independence as-
sumprion. (I we had previously been tald that X ¢ F, thea we couald
alreacdy predict the value af ¢ in that case learning the value of o
would have no effect on mlrpn,:d:il.'l:i.-l}n ul'.,p;.:l

12.4.3 The maximum likelihood decision, for independent s, Is a
liwear threshold predicafe!

Assume that the s are statistically independent for each F
Define '

o= IP{I'_,]-,
Py = Pl =11F),
q{r = I - -Pl,r lﬂ?['ﬂr = n |F.|:|-

Suppose that we have just ohserved a F = (g, .. .. Wl and we
wanl io know whiczh F, was most probubly responsible for this
Then. according to Formulas | and 2, we will choose that j which
MaRimises o

me -r[ P ;.I,].:;.. Ty

wy=
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Becouse sums are mare Tomiliar 10 us than products, we will
replace these by their logarithms. Since log x increases when x
does, we still will sebect the largest of

Z wir 1“? + {!u”ﬂ, + EI':"E"TH)' {3)
i ] []

Because the right-hand expression is a constant that depends only
upan J, ond not upon the eaperimental ®, all of Formula 3 can
e writlen simply as

T owpp b (3

Example 1@ In the case that there are just two classes, F, and Fy,
we can decide that ¥ « F whenever

Ewye, + 0 = Zwpe, + g

that is, when

S(wa - woe, > W - 8, (4)
which has the form of o linear threshold predicate

o= [Zargey > bl

Thus we have the remarkable result that the hypothesis of inde-
pendence among the ¢'s leads directly 1o the familiar linzar
decision paolicy.

Esawmple 2 {probabilitics of error). Suppose that far all f, py = g4.
Then pyis the probability that ¢ (X)) = $(X) and g, i5 the prob-
ability that @ {X) = LX), that is, that ¢, makes an error in
{individually) predicting the value of § = [X ¢ Fjl.
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Then inequality 4 becomes
> wil2es ~ 1) > log 22, (4
L ]

Wow observe that the (2, — 1) term has the effect of adding or
subiracting w, according to whether ¢ = 1 or 0. Thus, we can
think of the w's as weights to be added (according to the ¢'s) to
one 2ide or e other of a balancs:

0

The log {p/pi) is the “a priori weight™ in Tavor of F; at the
start, and cach wy, = log{p/q.) is the “weight of the evidence™
that ¢, = | gives in favor of Fy.

1t is quite remarkable that the eptimal separation algorithm — given that
the w-probabilities are independent-— has the lorm (incquality 4) of a
linenr threshald predicate. But one must be sure to understand that if
[Za,¢ > @ is the “optimal” predicate obtnined by the independent-
probability method, vel docs sor perfectly renlize a predicate 9. this
does pot previude the existence of a precise sepanition [Za' ¢ = 8
which always agrees with ¥ [This is the situntion suggested by Figure
12.3(a).] For inequality 4 is “optimal™ only in relation o all Age pro-
cedures thar ure me informuaiion ather than the conditional probabilities
F | and | py |, while 3 perceptron compuics coeficients by a nonstatistical
search procedure that is sensitive (0 individual events,

Thus, il ¢ is in fucl in L0P) the pereeptran will eventually perform at
least a5 well o nny lincar-statistical machine, The latter family can have
the advaninge in some ciases:

Lo Li®) the statistical scheme may produce a good approxim:ite
separation while the perceptron might Auctuate wildly.

2. The time 1o achicve n useful level may be long for the percepiron file
algorithns which is hasically n serial scarch procedure. The Hnear-statis-
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tical machine is basically more parallel, bocause it finds each coefficient
independently of the others, and needs only a foir sample of the F's,
{While superficially percepiron coefficients appear 1o be changed indi-
vidually, each decision about a change depends upon a test involving all
Lhe coelficients)

IZ 4.4 Layer-Machines
Formula 3' suggests the design of a machmt for making our
decision:

£ is o device that simply decides which of its inputs is the largest,
Each w=device cmns a standard-sized pulse [if (XY = 1] when X
15 presented, The pulses are multiplied by the w, quantities as
indicated, wnd summed at the Z-boses, The & terms may be re-
garded us corrections for the extent 1o which the p's deviate from
n central value of ), combined wilh the g prieri bias concerning
F, itsell.

I is wien desicable w minimize the cosrs of errors, rather than slmply
the chance ol error, IMwe define Oy 1o be the cost of guessing Fy when it
is really Fythad has ovcuregd, then il is easy to show that Formulas 1 and
2 now bead 1o inding the & that minimices

Zow- )"

where B, = 11 @ 11 8 interesting that this more com p]icaﬂ procedure
also lemds isell o the naltilayer sirueiure:
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It cught to be possible 1o devise a training algorithm o oplimize the
weights in this using. say. the magnitude of a reinforcement signal to
communicate 10 the net the cost of an error. We huve nol investigated
this.

12.4.5 Probabiliiy-estimation procedures

The Age algorithm for the paves linear-statistical procedure has
10 compute, or estimate, cither the probabilities p, and g of
formula 3 or other statistical quantitics such as “weight of evi-
denee™ ratios p/(1 — p). Mormally these cannot be calculated
directly (because they are, by definition, limits) so one must find
extimators, The simplest way to estimate a probability is Lo
find the ratio /N of the number /f of “favorable’ events to the
pumber & of all evends in a sequence, 17 -p"" is the valoe of ¢ on
the rth trial, then an estimate of P(e = 1) after o trinls can be
found by the procedure:

START: Set o to 0,
Setmta 1,
- a4+ 2™
EEFEAT: Bk Lo {—'L—'F—-
Setnton + 1L
Cio Lo REPEAT,

T

which can easily be scen 1o recompute the “score™ H/N aler
cich event.

This procedure has the disudvantage that 1 has to keep & record
of m, the sumber of trials. Since n increasis beyond bound, this,
would require unlimited memory, To avoid this, we rewrite the
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ahove program’s computation in the form

; | -1i) |
Al LB L]
ol = ( —-HJn' + .

This suggests a simpler heuristic substituie: defing

I ﬂ'm = [L |
al = (1 = a4 ¢« ", | (5)

i . aa a
where ¢ is a “small” number between 0 and 1. It is easy to show
that as n increases the expected or mean value of o', which we
will write as {«™'}, approaches p (that is, { ¢ ) as a limit. For

{u'”} = (1 = o™+ ele'D = ep
- ” - {I - ":I]Idll

and

e (1= e = (1 = Np +
a {1 = {1 =« )%)p,

and one can verily that, for all a,

(= (1 = (1 = "p

= p. _ (asn — =)

Thus, process 5 gives an estimation of the probability that ¢ = L.
A more detabed analyeis would show how the estimate depends
om the events of the recent post, with the effect of ancient events
decaying exponentially - with coefficients like (I = &)™

Becauze process 5 “Torzets.” it cortainly does not make “optimal™
use of its past experience; but vnder some circumstonces it will be
able o “adapt” to changing environmentul statistics, which could
be u pood thing. As a direet consequence of the decay, our esti-
mutor has a peculiar propeny: its varfance “g®" does not ap-
proqach zero. In fact, one can show that, for process §,

: - _ ¥ _
’ p(l -"}1-1
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and this, while not zero, will be very small whenever ¢ i3, The
situation is thus guite diferent from the /N ﬁtimalﬁ—wpu.ﬂ:
variance is p(1 - p)fn and approaches zero as & grows,

In fact, we can use the variance to compare the two procedures:

If we “equate” the variances

PO p) - gl - ) - L

we ablain

2

A =,

é

supgesting that the relinbility of the estimate of p given by process
5 s about the same as we would get by simple averaging of the
lust 2/ samples; thus one can think of the number 1/e as cor-
responding to a "time-constant™ for forgetting.

Another estimation procedure one might consider i

(4ITIALIZE:  Sela to anything,

FEPEATZ My = Laelatoa + 1,
T = 0, st wto(l — e)e,
(i [0 REPEAT,

Convergence 1o ihe Fixed-Paint
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or, equivalently, one could write
-r:'-"' a (1 = a™ "4+ (1 + ea” el -.
Tt can be shown that this has an expected value, in the limit, of
@1 . (L._)

£ I - p

It is interesting that a direct estimate of the likelihood ratio is
abtained by such a simple process as if ¢ = | add 1, orherwise
silripdy By (L — €). The variance, in case anyone cares, is

1. P . |
(r—-pF 1-0 =a"

12.4.6 The Samuel compromise
In his classical paper about “Some Studies in Machine Learning
using the Game of Checkers,” Arthur L, Samuel uses an in-

genious combination of prabability estimation methods. In his

application it occasionally happens that a new evidence term wy i5
inrroufced (and an old one is abandoned because it has not becn
of much value in the decision process). When this happens there is
a problem of preventing violent fluctuations, because alter one or
a few trials the term’s probability estimaote will have a large
vitrianee as compared with older terms thut have betier statistical
records, Samuel uses the following algorithm to “stabilize™ his
system: he sets o to § and uses

N (A R

where & is set according to the “schedule™

6 if & < 32,
N=42" if 2™< n<2"and32 < 0 g 256,
256 | ir | | ! 256 < n. b
i

Thus. in the heginning the estimate is made us though the prob-
ability had already been estimated 1o be } on the basis of several,
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that is, the order of 16, trials, Then in the “middle™ period, the
algorithm approximates the uniform weighting procedure. Finally
(when m ~ 256) the procedure changes to the exponentinl decay
mode, with fixed N, so that recent experience can outweigh earlier
resulls. {The vse of the powers of two represents a convenient
computer-program technigue for doing this,)

In Sumuel’s system, the terms actually used have the Torm we
found in inequality 4" of §12.4.3

Tt =

so that the “estimator” ranges in the interval <1 < p' £ & |
and can be treated as a “correlation coefficient,”

12.4.7 A simple “synapiic™ reinforcer theory

Let us make a simple “nevronal model.” The model is 1o estimate
po = Pl F), using only information aboutl occurrences of
lei = 11 and of [# « F,l. Our model will have the following
“anatomy ™ '

JTTN

s

The bag B, contains a very high and constant concentration of a
substance E. When g, or F, osccur-—or “fire"”—the walls of the
corresponding bags &, and for C; become “permeable” to £ for a
moment. 1T ¢, alane occurs, nothing really changes, because 8, is
surrounded by the impermeable O, IT F; alone occurs, ©; loses
some E by diffusion (o the oatside: in fet, iF o s the amount of
Ein C;it may be assumed (by the wsual laws of difusion and
conceniraticen} o lose some Teactvon ¢ of a:

F,ocours and

' o= (= e if {v.‘-‘,-'l'n.

IF busth o, amad B, oceur then approximately the same loss will oceur
Froom O Simultaneowsly, an esseatially constant amount & will be

“ijected™ by difusion lrom 8 to O 50

F,occurs and

P R it{ﬁ_L
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(We can assume that b i3 constant because the concentration of E
i very high in B, compared o that in C. One can invent any
number of similar variations.) In either ease we get

i =l - e + ob

so that in the limit the mean of o approaches & - p (as can be
scen from the analysis in §12.4.5), This is proportional to, and
hence an estimator of g, = Ple | F).

Thus the simple anatomy, combined with the membrans be-
coming permenble briefly following a nerve impulse, could give a
guantity thut is an estimator of the appropriate probability.

How could this representation of probability be translated into a
uselul newronal mechanism? One could imagine all soris of
schemes: ionic concenirations--or rather, their logarithms!—
could become membrane potentials, or conductivities, or cven
probabilitics of occurrences of other chemical events. The “an-
pfomy”™ and “physiology™ of our model could casily be modified
1o obtain likelihood ratios. [ndeed, it is so casy to imagine
variants--the idea is so insensitive to details—that we don’t pro-
pose it seriously, except as a family of simple yet intriguing
miodels that 4 mewral theorist should know about,

12.5 A, nlgorithms for the 1sonaTa procedure

In this section we describe a procedure proposed by G, Ball and
. Hall te delingate “clusters™ in an inhomoegeneows disiribution
of vectors, The idea is best shown by a pictorial example: imagine
a two-dimensional set of points |%] that fall inte obvious clusters,
like

- 1-1;:;.:- i L]
L WL .
PEAT S w7
£t )
< 'if"i*'
:ﬁ te R
e
S
- i T
. E'ﬂl"lr' [ et ..\,-'\hq.i_i-.-"r.-..-" 2 i
ik ST .-l‘q.'\- .
A ey A
Arimdin,
Rt oy
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Begin by placing a few “cluster-points™ Al into the space at some
arbitrary locutions, say, near the center, We then divide the set |
of # into subsets R, assigning each € to the nearest A" point:

Mext, we replace each Al by a new cluster-poini .-\!“ which iz ihe
mrean or center-of-grovity of the 4°s in R, and then define RP 1o
be the set of $°s nearest 1o A&
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Repeating, we get a new sot of A's and R's:
pealing, we g

and next

Fram sow on, there is little or no change; the cluster-points have
“lovumd the clusters,™ :

RBall and Hall give 3 aumber of heoristic refinements for ercaling and

destroving additbonal Guster points; for example, to 2dd one i the
variance of an B-sel is "ftoo lurge™ and 16 femave one if two are “toeo
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close™ topether. OF course, one can wsually “see™ two-dimensional
clusters by inspection, bui 1so0ats s alleged to give wseful resulis in
a-dimensional proklems where “inspection”™ is out of the gquestion.

To use this provedure, in our contest, we need some way o com-
bing its automatic classification ability with the information about
the F-classcs. An obvious first step would be to apply it separately
1o euch Fecloss, and assign all the resulting A's 1o that class. We
do not know much aboul more sophisticated schemes that might
lead to better results in the Agy stage.

12.5.1 An 15004 TA convergence (heorem

There is a theorem ahout Bopata (lold to ws by T. Cover) that supgests
that it leads 1o some sorl of local minimum, Let us lformalize the pro-

eedure by defining
AlMiey - the A" that is nearest to #,

(11 there are several equidisiant nearest AJs, choose the one with the
sinallesy index. ) )

R o thesetof @ for which A @ = AT
.l'," LI m:un{llrr:h
Finally define a".'“s:.:nr:“'. B

ll_l.'l"" - Z I' - ltl*{*.:l |TI . *
¥

- SN, -

Theorem: | Jlll':n;m:-..-}:lq... ' T

until there ie; na Fﬂn%-cruhnnthEai is. until .ﬁ.'?" . Al e all g, .
FROOF:
U ZZ;H' ~ oAb
i '.IJ_ [
v e - Al
" g
|8+

becnuse the mean (A'T""™) of any set of vectors (R™) s just the point
that minimizes the squared-distance sum to all the peins (of RI:;‘:I. A
this is, in furn,

= Z E e - ﬁl:llu-llll' - gl

I u|I|-+ 1}

| Ol
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Because each point will be transferred to an R for which the distance
is imimarnal, that is, for all §,

@< AT = 18 - AT

Corollary: The sequence of decreasing positive numbers, [ appraaches
a Wiy, IF there ix ondy & fnive st of @5, the K's must slop changing in g
Siatre rwnelver of sreps,

Far im the finite case there are only a halte aumber of partitions {R,)
passible,

12.5.2 Incremental methods
In analogy to the “reinforcement™ methods in §12.4.5 we can ap-
proximate B0DATA by the following program:

— s e o

START: Choose a set of starting points A,

REPEAT: Choose a &,
Find A{®); the A, nearest 1o &,
Reploce A2 by (1 — JA(F) + ¢ - B,
0 1o REPEAT.

ham T SEEE

It is clear that this program will lead 1o qualitatively the same sort
of behavior; the A's will tend toward the sueans of their R-regions.
But, just as in §12.4, the process will retain 2 permanent sampling-
and-forgetting variance, with similar advantages and disad-
vantages. In fact, all the Ay algorithms we have scen can be so
approximated: there always seems {0 be a range from very local,
incremental methods, to more aceurate, somewhat less “adap-
tive™ global schemes, We resume this discussion in §12.58.

12.6 Time vs. Memory for Exact Matching

Suppose that we are given a body of information —we will call
it the dira ster -in the form of 2* binary words ench b digits in
length {Figure 12,100 oie ¢an think of them as 2° points chosen
at randem fram. a space of 2* points. (Take 5 million 2¢ 2 words
of length 100, for & practical example.) We will suppose that the
data set is to be chosen ot random from all possible sets so that
one cannot expect o find much redundant structure within it
Then the ordered data set requires about & - 2* bits of binary
infarmation for complete description. We won't, however, be in-
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plafelifalijip ul:uﬂ|| ala!uij

Figure 12,10

terested in the order of the words in the data set. This reduces
the amount of information required to store the set to about
(b — a) - 27 hits. }

We winl a machine that, when given a random b-digit word w,
will answer .

E . LA L

and we want to formulate constraints upon how this machine
works in such o wuay that we can separate compulational aspects
from memory aspects. The following scheme achieves this goal
well enough to show, by examples, how little s known about the
conjugacy between time and memory,

We will give our machine a memory of A separate bits--that is,
ane-digit binary words. We are required to compose —in advance,
belore we see the data set- -iwo algorithms Ay, and Ag, that
salisly the following vonditions:

L. Ay s piven the dita set, Using this as data, it fills the M bits of
meimory with informotion, Meither the data set nor A, are used apgaim,
Aof 18 A gy dllowed to gel any information abowt what & ge did, except by
inspecting the contents of A,

—— e B T T,

“W'e will ger v Question I an aboat fificen minoies,
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2. Ajnais then given a random ward, w, and asked to answer Question |1,
using the information stored in the memary by Age, We are interested
in how muny bits Agw bos 1o consuli in the process,

3. The gual 1% 10 oplinize the dﬂiﬂﬂ ol A and Ajsa 0 minimize
the number of memory references in the question-answering computa-
tion, averaged over nll possible words w,

12.6.1 Case 1; Enormous Memory
1t is plausible that the larger be M, the smaller will be the average
number of memory-references A ., must make, Suppose that

M = 2%

Let m, be the ith bit in memory; then there is a bit s, for each
possible query word w, ond we can define

At sel o, 1o Dl w s in the data set
At wigin the data set il mr, = 1.

Thus, with a huge enough memeory, enly ore reference is required
Lo amswer Question 1.

12.6.2 Case I: Inadequate Idemory
Suppose that :

M < (b - a)2s.

Here. the problem cannot be sobved at all, since Ag, cannot store
enough infermation to deseribe the data set in sufficient detail.

12.6.3: Cose 3z Binary Logarithmic Sort
Suppose that

M = b-2%
Mow there is enough room to store the ordered data set. Define

A store the words of the data set in ascending numerical
order,

Anea  perform a binary scurch to see first which half of memory
might contain w, then which quartile, etc.

41
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This will require at most @ = log 2° inspections of b-bit words,
thit is, @ - b bit-inspections.

This 15 not an aptimal scarch sinees, (1] one doss not always nesd 10
inspect a whale word Lo decrde which word Lo Lﬂ.'i-PE{"I. wexl, and IfI] it
does nod exploil the un:ifurlnil!].' of distribution that the first & digiu. al
ihe ardered duta set will (on the average) show, Effect | reduces the
required number from @ & 10 the order of 4@ - & and effect 2 reduces
it froma « bida -« (b - a), We don’t know I::l.:h'.l.l].' how these twa
cifects combine,

13064 Case 4: Exhaustive Search
Consider

A (b - a)2%

This gives just ubout enough memory 1o represent the unordered
duta set. For example we could define

Awe:  First put the words of the data set in numerical order.
Then compute their successive differences, These will re-
quire about (& - a) bits gach, Use a standard method of
information theory, Hulfman Coding (say), to represcat
this sequence; it will reguire about (b = a) 27 bits,

But the only retrieval schemes we can think of are like

Ags  Add up successive dilferences in memory until the sum
equals or excoeds wo If eguabity ocewrs, then w is in the
data set.

And this requires — b — ad2* memory references, on the aver-
age. 16 seems clear thae, given this mit on memory, no Ag =
A ey patir can do much better, Thit is, we suspect thnl

If o exeea momary is avaifuble then, to answer Cestion 1, one
must, o fhe average, search theough half the memory.

Omne might go shghtly Turther: even Hulfman Coding nceds some
extra memory, ind i there 15 none, Age can only store an elMcient
“mumber™ for the whole data set, Then the conjecture is that A gy
must almost always look at afmost all of memory.
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12.6.5 Cuse 5: Hash Coding
Consider

Ma=bh-2% 32

Here we have a case in which there is o substantial margin of
extra memory-—aboul twice what is necessary for the data set.
The result here is really remarkable—one might even say counters
intuitive-—because the mean number of relerences becomes very
small. The procedure uses a concept well known to programmers
who use it in “symbolic assembly programs™ for symbol-table

references, but does not seem to be widely known to other com-

puter “specialists.™ 11 is called hnsi-tl_:_ndin;.

There are many variants of this idea. We discuss a parficular form
adagued o g redundaney of two,

In the hash-coding procedure, Ay, is equipped with a subprogram
f{w, /) thai, given an integer § and a dbit word w, produces an
(e + LFbit word, The function B{w,j}is “pseudorandom™ in the
sense that Tor each j, R{w,j) maps the set of all 2* input words
with uniform density on the 2°°' possible output words and, for
different s, these mappings are reason ably independent or
orthegonal. One could vuse symmetrie Tenctions, modular
arithmetics, or any of the conventional psendorandom methods.*

Now, we think of the b « 27*"-bit memory as organized into b-bit
registers with (g + 1)-bit addresses: Suppose that Ay, has already
filed the words wy, ..., w,. and it is about to dispose of w, ..

A Compute Riw,,,, 1) If the register with this address is
et put wy . in it [T that register is occupied do the
saone with Biwg, . 20 Bi{w,y, 3. .. until an wnoccupied
regisier 8w, b is lound; file w,,  thercin,

At Compute R{w, V). If this regisier containg w, then w is in
the dota se, I Biw, 1) 15 empiy, thea w i aof o the darg
set, 1T Riw, 1) containg some other word not w, then do

*There b a wapersginin that Biw, i) reguires some imagical property that can only
b apgrosioabed. 10 is troe that sny partcaloe & wil be bod on pariioaar dolg
sels, bt there is mo problem ot all when we consider avernge behavior on alf
measaihbe dalas sels.
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the same with B{w, 2}, and il necessary B{w, 3}, R{w, 4),
. watil gither w or an emply register is discovered,

hi the average, Mg, will make less than 28 memory-bit references!
To see this, we note first that, on the average, this procedurs leads
o the inspection of just 2 registers! For half of the registers are
cmpty, and the successive valucs of Riw,f) for j = 1.2, ... are
independent (with respest to the ensemble of all data scts) so the
mean number of registers inspected 1o find an empty register is 2.

Actually, the mean termination time is slightly less, because for »'s in
the data se1 the expected number of inspected registers is < 3. The
procedure is useful for symboel-iobles and the like, where ane may wani
not enly to know if w is there, but also to reirieve some u:ﬁ.'h-:l: data as-
saciuled (perhaps agnin by hash-coding) with it.

When the margin of redundancy is narrowed, for example, if

H--—E—Irb-l'.

then anly (1 uth) of the cells will be emply and one can expect Lo
have to inspect about & registers,

Because people are accustomed to the Tact that most compulers
are “word-oriented” and normally do inspect & bits al each
memeory cycle the following analysis has not (lo our knowledge)
becn carried through to the case of 1-bit words, When we pro-
gram Ag,y Lo match words bie &y biv we find that, since half
the words in memaory are zero, matching can be speeded up h}-
assigning a special “zero™ bil to each word.

Assume, for the moment, that we have room for these 2° extra
bits. Mow suppose that a certain wy is aof in the data set, (This
has probability 1-2°*) First inspect the “rero™ bit associated
with R{wg,1). This has probability § of being zero. ITit i3 not zero,
then we match the bits of W, with those of the word associated
with R{wy. ). These cannot all mateh (since wy isn™t in the data
set) and in Fact the mismatch will be found in (an average of)
2 =144+ }+ .. references. Then the “zero™ bit of B{wg2)
must be inspected, und the process repeats, Each repeat has prob-
ahility § and the process terminates when the “zero™ bit of some
B{we i) = 0, The expected number of references can be counted

[ ]




Linear Separation and Learning [12.6] [221]

then as
W+ 2+ 30 + 243000+ 0 a3+ 1 a4

1T wg ix i the data set {an event whose probability is 277 "} and we
repent the analysis we get 4 + & references, because the process
must terminaie by matching all & bits of wg,

The expected number of references, overall, is then

4{'1 - ll—ﬁ:. + ':d. + b}l.r-ll = 4 + ﬁ . Il—i
- 4

“since normally 2°-* will be quite tiny. We consider it quite re-
markable that so little redundancy—a factor of two-—yields this
amall number!

The estimuotes abows are an the high side becauss in the case that wp is
i the dutn set the “run Fength™ through RQwg,j) will b shorter, by
_mearly a factor of 2, than chance would have it just because they were put
there by Ape. On the other hand, we must pay far the extra "“zero”
bits we adjoined to M. [T we have W = 36.2° bits and moke words
of length b + | instcad of &, then the memary becomes slightly smore
thon half fell; in face, we must replace “4™ in our result by something
like 4[{& + 1)(b = 1. Perhaps these two effects will oMser one another,
we haven't mode exact calculations, mainly because we are not sure that
even this ApeApeg pair is optimal, :
I certainly seems suspicious that half the words in memory are simply
cmply! On the other hand, the best one could expect from lurther im-

proving Lhe algorithms s 1o replace 4 by 3 {or 27), and this i3 not a large
enough currol 1o wark hard for,

12.6.6 Summary of Exact Marching Algorithms

To summarize our results on Question | we have established
upper bounds for the following cascs: We believe that they are
cloae to lower bounds also but, cspecially in cases 3 and 4, are
not sufe,

Case  Memoary size Bit-references Method
2 ol = a)2* o {impossible)
4 b - a)2* (b - a)2*  (search all memory)
3 b.2" bb.a {logarithmic sort)
5 1b.2° 4 40 {(hash coding)
. 22 1 (1able look-up)

e
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12.7 Time vs. Memory for Best Matching: An Open Problem

W lave sswmmarized owr (limited) understanding of *Cuestion 1™
— the exact matching problem—by the little table in §12.6.6. If
one “plots the curve™ one is instantly struck by the effectiveness
of small degrees of redundancy. We do not believe that this
should be taken too seriously, for we suspect that when the prob-
fem is slighitly changed the result may be quite different. We con-
sider now

puEsTion 2 Given w, exhibil the word + closest 1o w in the data
set,

The ground rules about Ay, and &gy are the same, and disiance
con be chosen to be the usual metrie, that %, the number of digits
in which two words disagree, If xy, ..., % and %,..., %, are the
(hinary} coordinates of points w and & then we define ihe
Hawmring distance to be

]
diw, W) = 3 = &),

=l

One gets exactly the same situstion with the uwsual Cartesion
distance O{w, &), because

[C{H'-l TI’H: = X |-TI' - x‘lll - E |x1 - 'Ell = d(.‘l‘ ;F}

s0 both Olw, wh and d{w, W) are minimized by the same &,

1271 Casc 1: M = 2% -

A, assigns for every possible word w a block of & bits that con-
tain the appropriate bits of the correct w,

Ajns looks in the block for w and writes out w. 1t uses b references,
which is abviously the smallest possible number,

1272 Case 2: M < [ - a) 2%
I possible, for same reason as in Question 1.

1273 Case 3t M = 527
Mo result known.

1274 Cased: M = (b = g)2*

This presumably requires (b — a)+2* references, that is, all of -

memory, for the same reason as in Question 1.
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12,75 Case 5:(b - 2)2" <« M < b.2"
Mo vsefel resulis known.

12.7.6 Gloomy Prospects for Best Matching Algorithms

The results in §12.6.6 showed that relatively small factors of re-
dundancy in memory size yield very large increases in speed, for
serial computations requiring the discovery of exact matches.
Thus, there is no great advantage in using parallel computational
mechanisms. [n fact, as shown in §12.6.5, 2 memery- -size factor of
just 2 is enough to reduce the mean retrieval time to DII|:||' slightly
maore than the best possible,

But, when we turn to the besr praich problem, all this seems to
~evaporate. In fact, we conjecture that even for the best possible
A As pairs, the speed-up value of large memory redundancies
is very smull, and for large data sets with long word lengths there
are no prachc"l] alternatives io large searches that inspect large
paris of the memory.

We apologize for not having a more precise statement of the con-
jecture, or pood suggestions for how to prove it, for we leel that
this is a fundamentally important point in the theory of computa-
tion, especially in clarifying the distinction between serial and
parallel concepts. '

Our belief in this conjecture is based in part on experience in find-
ing Mallacies in schemes proposed for constructing fast best-
matching file and retricval algorithms. To illustrate this we discuss
next the proposal most commonly advanced by students.

12.7.7 The Numerical-Order Scheme
This proposal is a natural attempt to extend the methed of Case 3
(12.6.3) fram exact match to best mateh, The scheme is

A - store the words of the data set in numerical order.

A given o word w, find (by some procedure) those words whose
first @ bits agree most closely with the first @ bits of w, How
to do this i&n't clear, but it occurs Lo one that (since (his is
the same problem on a smaller scale!) the procedure could
be recursively defined. Then see how well the other bits of
these words mateh with w. Mext, ... (7).

The intuitive idea is simple: the word W in the data set that is
closest to w ought to show better-than-chance agreement in the
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first o bitg, so why not look firsd al words known to have this
property, There are two disastrous bugs in this program:

1. When can one stop searching? What should we fill in where we
wrote “MNext .. (7)...." We know no nontrivial rule that
guaranrees peiting the best mateh.

2. The intuitive concept, reasonable as it may appear, is not
valid! It isn't even of much use for finding a good match, let alone
finding the best match,

To claboraie on point 3, consider an example: et @ = 3, & = 10,000,
Let w, for simplicity, be the all-eere word. A typical word in the data
sl will hawve a mean of 5000 gee's, and 5000 zees’s. The standard
deviation will be 4(10,0000"F = 50, Thus, less than one word in 2* « 2%
can be expected to have fewer than 4750 ene’s. Hence, the closest word
in the daty sed will fon the average) have at least this many oae's, That
closest word will have (on the average) =20 - (4750 10,000} = 9.5 ore's
amaong is first 200 bits! The probability that w will indeed have wiry
few gwe's im its frst 20 bifs is therefore exiremely low, and the slight
Favorable bias obinined by inspecting thore words first is quite witerly
negligible in reducing the amount of inspection, Besides, objection 1 sill
remaing,

The wvalue of ardering the first few bils of the words 18 quite ugeleis,

then., Classifying words in this way amounis, in the s-dimensional”

geomelry, Lo breaking ap the space inlo “eybinders" which are not well
shaped for fnding nearby points. We have, therelore, ried various: ar-
rangements of spheres, but the same gor1s of trouble appear (afler more
analysis). In the eourse of that analysig, we are led 1o suspest that thers
i5 & fundamental property of a-dimensional geometry that puts a very
strong and discouraging imilation upan all such algorithms,

12.7.8 Why Is Best Match so DiTerent from Exact Mutch?

If our unproved conjecture is true, one might want at least an
intuitive explanation for the dilference we would get between
$12.6.3 and 12.7.3, One way o look at it 18 o emphasize that,
though the phrases "best maieh™ and “exact match™ sound simi-
lar to the ear, they really are very different. For in the case of
cancl mutch, ro error is allowed, and thiz has the remarkable
ellect of changing an n-dimensional problem into a one-dimensional
proflem ! For best matching we used the formula

5 5 _
Error = E |2, = &l = E 1z, = &1,

iml i=1
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where we have inserted the coefficient *1" to show that all Errors,

in different dimensions, are counted equally, Bul for exact match,

since me error can be tolerated, we don't havie to weight them

equally: any positive weights will do! So for exact mateh we could
Just as well write

b s
Error = Z 2'|x, - %,| oreven Error = E 2%x, - &)
dm ‘ iml

because cither of these can be zero only when all x, = &. (Shades

of stratification.) But then we can (finally) rewrite the latier as
Error = (T 2'x) - (£ 2'%)

and we have mapped the n-dimensional vector (x,,..., r) into &
single point on a one-dimensional line. Thus these superficially
similar problems have wotally different mathematical personali-
ties!

12.8 Incremenital Compuiation

All the Ag, algorithms mentioned have the following curiously
local property, They can be described roughly as computing-the
stored information M as a function of a large data set:

M o= Ay (data set)

Mow one can imagine algorithms which would use a vast amount
of temporary storage (that is, muck more than M or much more
than is needed 1o store the daia set) in order to compute M, Qur
Age algorithms do not, On the contrary, they do not even use
significantly more memory capacity than is needed to hold their
final output, Af. They are even content Lo examine just one mem-
bur of the data set at a time, with no control over which they

will see next. and without any subterfuge of storing the data in-

ternally.

It seems 1o us that this is an interesting properly of computation
that deserves 1o be studied in its own right. 1t is striking how
many appareatly “global” properties of a data s=t can be com-
puted “incrementally™ in this sense. Rather than give formal
definitions of thewe ferms, we shall illusirate them by simple
examples,
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Example |1 We wish 10 compute the median of a set of a million
distinct numbers which will be presented in & long, disordered
list, The standard solution would be 1o build up in memory a
copy of the entire scl in numerical order. The median number
can then be read off, This is nar an incremental computation
hecaude the lemporary memory capacity required iz a million
{imes as great as that required Lo store the final answer. More-
gver it is easy o see that there is mo incremental procedure if
the data is presented only once.

The situation changes if the list is repeated as often as we wish.
For then three registers are enou gh to find the smallest number on
one pass through the list, the second smallest on a gecond pass,

and so on. With an additional regisier big enough to count up 10+

half the number N of items in the list, we can eventually find
the median,

11 might seem at first sight, however, that an incremental compu-
tation is precluded if the numbers are preseated in a random se-
quence, for example by being drawn, with replacement, from 2
well-stirred urn, But a litile thought will show that an even mare
profligate expenditure af time will handle this case incrementally
peovided we can assume {for example) that we know the number
of numbers in the set and are prepared to state in advance an
peccplable probability of errof,

What functions of big “data sets” allow these drastic exchonges

of time for storage space? Readers might find it amusing to con-

sider that 1o compute the BEST PLANE {§12.2.3), given randam
presentation of sampies, ond hourids on the coefficients, requires
anly about three calution-sized memory spaces. One predicate we
think cannot be computed without storage as large as the data
sel is:

[the numbers in the datn st concatenated in numerically
increasing order, forin a prime number].

In case anyone suspects that all functions are incrementally com-
putable (in some sense) let him consider functions involving
decisions about wheiher concatenations of members of the data
sut are halting tapes for Turing machines.

§ A



