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The Turing mechanism1 for the production of a broken spatial symmetry in an initially

homogeneous system of reacting and di�using substances has attracted much interest as a

potential model for certain aspects of morphogenesis2{4 such as pre-patterning in the embryo,

and has also served as a model for self-organization in more generic systems.5 The two

features necessary for the formation of Turing patterns are short-range autocatalysis and

long-range inhibition6,7 which usually only occur when the di�usion rate of the inhibitor is

signi�cantly greater than that of the activator. This observation has sometimes been used
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to cast doubt on applicability of the Turing mechanism to cellular patterning since many

messenger molecules that di�use between cells do so at more-or-less similar rates. Here we

show that stationary, symmetry-breaking Turing patterns can form in physiologically realistic

systems even when the extracellular di�usion coeÆcients are equal; the kinetic properties of

the \receiver" and \transmitter" proteins responsible for signal transduction will be primary

factors governing this process.

The class of mechanisms we study is schematized in Fig. 1. Below we give a speci�c

example for the purpose of illustrating the generic features of the whole class of such systems.

The model is realistic in the sense that it makes use of reactions and reaction kinetics of

a type which can be found in every living cell. In the model, signal transduction across

the cell membrane connects the genetically controlled biochemical reactions in the cytosol

to the production of messenger molecules in the extracellular matrix. These then di�use at

approximately equal rates, thereby coupling the reactions taking place inside cells at di�erent

points in space. We have found that this coupling can allow Turing patterns to spontaneously

form in collections of cells even if the messenger di�usion rates (D) are identical (or very

similar). We therefore believe the chemically realistic class of mechanisms we describe here

could be of some relevance to understanding certain aspects of cellular morphogenesis.

The simpli�ed set of reactions taking place in the cytosol involve an \activator" substance

A and an \inhibitor" substance I that are synthesized by the cell at the rates cA and cI

respectively, and in turn are broken down by the cell at the rates �A and �I as shown in Fig.
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1, where

d[A]=dt = cA � �A[A]; d[I]=dt = cI � �I [I]: (1)

Activator is also produced by the autocatalytic process

A + E1
*) E1A (K1 = [E1][A]=[E1A]);  + E1A

k1

�! E1A+ A; (2)

d[A]=dt = V1[A]=(K1 + [A]); V1 = [E1]ck1;

where we will use  as a shorthand for substances from the large and constant concentration

of assorted biochemical building blocks present in the cell that are used to synthesize A and

I. The activator also catalyzes the production of more inhibitor through the set of reactions

A + E2
*) E2A (K2 = [E2][A]=[E2A]);  + E2A

k2

�! E2A + I; (3)

d[I]=dt ' V2[A]=K2; V2 = [E2]ck2;

where for simplicity we have assumed that this reactions operates well below saturation,

with [A]� K2. Lastly, the inhibitor suppresses the activator through the set of reactions

A+ E3
*) E3A (K3 = [E3][A]=[E3A]); (4)

I + E3A

k3

�! E3AI ! E3 I ! E3 +  + I;
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�d[A]=dt = V3[A][I]=(K3 + [A]); V3 = [E3]ck3:

The rates of the catalytic process are given by the Michaelis-Menten8 kinetics, where Ki

are the Michaelis constants, ki the catalytic rates and Vi the limiting rates for the catalytic

processes. The Ei's are catalysts of the reactions where [Ei]0 are the total concentrations

of these catalysts produced by the genetic machinery of the cell. Because of the need for

enzymes, we assume these reactions, including the breakdown of A and I, can only occur

inside the cell.

In addition to being biologically reasonable, our model di�ers from the classical Turing

model in two important respects. First, it takes into account the fact that genetically regu-

lated biochemical processes will take place inside the cell, while cell-to-cell interaction must

involve some form of trans-membrane signalling, since most biomolecules are highly insolu-

ble in the lipid matrix of the cell membrane. Secondly, the di�usion of the two messenger

molecules through the extracellular matrix take place at identical rates D.

Since pre-patterning is likely to involve switching on di�erent sets of genes in di�erent

cells, some mechanism must exist for signalling between the genes. Our model makes use

of signal transduction kinetics diagrammed in Fig. 1, where �A and �I are the rates of

production of the messenger molecules MA and MI . This process is mediated by transmit-

ter proteins TA and TI in the membrane. In the �gure, signal transduction is viewed as

the transformation of A and I into MA and MI respectively (though transformation into

messenger molecules is not a requirement of the model). Conversely, the �A and �I are the

rates of transformation of MA and MI into A and I, a process mediated by RA and RI , the
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receiver proteins. This simpli�ed picture can stand for more complex signal transduction

mechanisms since the basic features responsible for the self-organization of the system are

generic. For example, the signal transduction could involve the binding of A or I to speci�c

receptor proteins on the intracellular side of the membrane, triggering the release of messen-

ger molecules on the extracellular side of the membrane which then carry the signal to other

cells.

The cell essentially has nearly complete freedom to control the signal transduction ki-

netics, whose associated rates could quite easily vary by many orders of magnitude. This is

to be strongly contrasted with the situation where the di�usion coeÆcients themselves are

required to di�er by a large amount { the standard route to Turing patterns { since it is

diÆcult to imagine realistic situations where this holds true.

The biological mechanism we propose here is analogous to the mechanism proposed as

an explanation for the chlorite-iodide-malonic acid-starch reaction system, which was the

�rst chemical system in which Turing patterns were observed experimentally.9 Lengyel and

Epstein10,11 showed that the existence of Turing patterns in this system, despite the similar

di�usion coeÆcients of the reactants, is a consequence of the binding and unbinding of

iodine to starch molecules that have been immobilized by the gel which serves as an \inert"

medium of the reaction. What we are proposing here is a biologically realistic and necessary

mechanism that is able to provide just this type of e�ect in living cells.

Setting A(x; t) = [A], I(x; t) = [I] MA(x; t) = [Mo] and MI(x; t) = [MI ] to be the

concentration at a given time t and position x, we can write down the following set of four
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reaction-di�usion equations

@tA = cA � �AA+
V1A

K1 + A
�

V3AI

K3 + A
� �AA + �AMA � �r2A; (5)

@tI = cI � �II +
V2A

K2

� �II + �IMI � �r2I; (6)

@tMA = �AA� �AMI �Dr2MA; (7)

@tMI = �II � �IMI �Dr2MI : (8)

Here � is a very small (or negligible) rate of di�usion arising from \leakage" though the cell

membrane which occurs very rarely. We introduce this small quantity for a mathematical

reasons in order to give the �rst two equations a spatial scale and to remove the singular

nature of the limit where � = 0. However we emphasize that the model still forms patterns

even when � = 0 (see Fig. 2).

For the purposes of keeping our illustration as simple as possible we will speci�cally

consider only the case where cA = cI = 1 , �A = �A = 1 and �I = �I = �. We further

set limiting velocities of the catalyzed reactions to V1 = 500, V2 = 1, and V3 = 60, and the

parameters �A = 1=100, �I = 7, K1 = 100, K2 = 1, and K3 = 1=10. For this model the

stationary homogenous state is A(x) =MA(x) ' 2:46 and I(x) =MI(x) ' 2:25. A standard

linear stability2 analysis of Eqs. (1-4) about this state tells us that an initial perturbation of

the uniform state with a given wave vector k will have an amplitude that grows (or shrinks)
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in proportion to the factor e�kt, where �k are eigenvalues of the stability matrix

~S =

2
66666666666664

3:55� �k2 � 1 �5:77 1 0

6 �7� �� �k2 0 �

1 0 �1� k2 0

0 � 0 ��� k2

3
77777777777775

; (9)

and can be real or come in complex conjugate pairs. Each value of k corresponds to a spatial

mode with wavelength L = 2�
p
D=k. The real parts of the eigenvalues corresponding to

this mode, <(�k), determine the stability of perturbations away from the homogeneous state

with the corresponding wavelength: <(�k) < 0 indicates the mode is stable, and <(�k) > 0

indicates an unstable mode which will grow when a small random 
uctuation displaces it

from equilibrium. Thus the existence of a wave number k such that �k > 0 means patterns

will form. Turing patterns occur when the largest eigenvalue is real (=(�k) = 0) which is

the case for the parameters we have chosen here. The largest eigenvalue has a negative real

part (<(�k) < 0) when D ! 0 showing that the system is globally stable in the absence of

di�usion.

The type of patterns that form will depend to a large degree on the spectrum of unstable

k modes; it especially depends on the mode with the greatest �k, but also on the range of

other unstable modes. As was mentioned above, we included a small di�usion e�ect through

the membrane with di�usion coeÆcient � for mathematical reasons in order to remove the

singular nature of the equations when the di�usion vanishes. In Fig. 2(B) we show the

e�ect of varying � on the frequency spectrum. As �! 0 the spectrum of unstable modes is
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broadened towards the higher frequency modes until at � = 0, the maximum k value in the

spectrum goes to in�nity. Physically this means that shorter and shorter wavelengths will

come to dominate, and at some point the wavelength of the patterning will be limited by

the �nite dimension of the cells.

Fig. 3 shows some of the ordered patterns that emerge spontaneously in the system

we studied for varying values of � ranging from (A) \honeycomb" (� = 6) to (B) stripes

(� = 11:5) to (C) spots (� = 100). Our system is capable of supporting more or less the same

patterns as an ordinary Turing mechanism that uses widely di�ering di�usion coeÆcients.

The principal di�erence is that our mechanism provides a physiologically and chemically

feasible route by which a wide range of patterns could arise.

Previous work has shown that pattern formation can occur in some systems with equal

di�usion coeÆcients, but only if there is some kind of initial asymmetry such as a �nite

size perturbation12 or an external advective 
ow.13,14 These mechanisms might provide

useful models for subsequent morphogenetic events in the embryo where some spatial genetic

patterning or chemical gradients have already been set up, but still does not provide an

adequate explanation of initial pre-patterning events which may start from a completely

homogeneous initial state. The existence of an organizing center begs the question of how

the center itself formed.

Our model provides a possible, physiologically realistic route to symmetry breaking in-

stabilities in cellular systems, and we hope that it will provide a useful context in which

to explore the possible relevance of Turing mechanisms to cellular morphogenesis. For in-
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stance, our model makes a clear distinction between reacting and di�using entities and thus

provided somewhat di�erent expectations for making experimental observations. The mes-

sengers could be almost any type of molecule, and are not required to have any complex

reactive chemical properties. Rather, it is the properties of the transmitter and receiver

proteins in the signal transduction pathway that will control the pattern formation. As a

consequence it may be unproductive to search for speci�c \morphogens" since the biochem-

ical substances that di�erentiate spatial patterns in a collection of cells may be unrelated to

the substances that actually mediate the cell-to-cell communication.
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Figure Legends

Figure 1: General kinetic schematic for model. The three basic kinetic elements of

our model are shown. The simpli�ed reactions in the cytosol involve an activator substance

A and inactivator I which are created at constant rates by the cell and likewise broken down

at the rates �A and �I . In this case trans-membrane signal transduction takes the form of

transformation of A and I in the cytosol (mediated by the membrane proteins TA and TI)

into corresponding messenger molecules MA and MI in the extracellular matrix. Likewise

RA and RI mediate the reverse transformation. Both of the messenger substance di�use at

rate D through the extracellular matrix.

Figure 2: Linear stability spectrum of the model. The dotted lines indicate regions

where the eigenvalue with the largest real part is complex. Parametet given in the text. (A)

shows the spectrum of stability eigenvalues for several values of the critical parameter �. For

� < 3:5 all the eigenvalues have negative real parts, and the homogeneous distribution of

reactants is stable. Turing patterns set in when � > 3:5, and a range of frequency modes

become unstable, giving rise to spontaneous ordering. (B) shows the e�ect on the spectrum

when � = 5 as � is varied. As � ! 0, the most unstable mode shifts to higher and higher

frequencies, but ordering will still take place.

Figure 3: Turing Patterns (A) Concentrations of activator and inhibitor within cells at

t = 125 for � = 6. Concentration were set to zero at t = 0 and allowed to build up naturally,
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the situation that would arise if the genes for the production of A and I were suddenly

switched on at t = 0. The activator is shown as shades of green (black indicating 0 and green

the maximum value, here 32.0), and the inhibitor as shades of red (black = 0 to red = 21.3) as

shown in the legend (D). The two are superimposed so that yellow indicates the presence of

both activator and inhibitor. D = 600, � = D=100; the grid size is 100. (B) Concentrations of

A and I at t = 40 for � = 11:5 and other parameters as above. Amax = 53:8 and Imax = 28:4.

(C) Concentrations of A and I at t = 40 for � = 100. Amax = 117:6 and Imax = 35:3.

Numerical Method: The reaction component of the equations was integrated using a

forward-Euler method. The Laplacian (di�usion) term was implemented using the following

conservative method: for each pair of locations fi; jg, Ai(t + 1) = Ai(t) + �A;Aj(t + 1) =

Aj(t)��A where �A =MijD(Ai(t+1)f(i; t)�Aj(t+1)f(j; t))�t andMij is the connectivity

matrix. The noise function f is a uniformly distributed random variable, ranging from 0

to 10�5 and models the e�ect of very weak 
uctuations of the type that are required to

initiate the initial instability. We used a von Neumann neighborhood and toroidal boundary

conditions.

13



α

β

α

β

Figure 1:

14


