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Abstract

This paper describes a general, trainable architecture for object detection that has previously been applied

to face and people detection with a new application to car detection in static images. Our technique is a

learning based approach that uses a set of labeled training data from which an implicit model of an object

class { here, cars { is learned. Instead of pixel representations that may be noisy and therefore not provide

a compact representation for learning, our training images are transformed from pixel space to that of

Haar wavelets that respond to local, oriented, multiscale intensity di�erences. These feature vectors are

then used to train a support vector machine classi�er. The detection of cars in images is an important step

in applications such as tra�c monitoring, driver assistance systems, and surveillance, among others. We

show several examples of car detection on out-of-sample images and show an ROC curve that highlights

the performance of our system.
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1 Introduction

This paper describes a trainable system for object de-

tection in static images with a particular application to

car detection. This system has previously been applied

to both face and people detection with success; we high-

light the generality of the system with this new domain

of car detection. The detection of cars in images is an

important step in applications such as tra�c monitor-

ing, driver assistance systems, and surveillance, among

others. Our approach is to use example based learning;

we provide the system with a set of training data and it

learns what a car looks like. Rather than using \stock"

images of single cars, we consistently use images gath-

ered from real world scenes. This system currently iden-

ti�es frontal and rear views of cars.

While it is possible to construct simple models for

identifying and tracking cars in constrained domains {

for instance, if we know that our camera will always

be mounted at a �xed location over a highway { these

types of systems will have limited use in more general

applications and conditions. We avoid any handcrafting

and present a learning based approach to car detection

that uses a set of labeled training data to derive an im-

plicit model of cars. Since the pixel images may be noisy

and therefore not provide a compact representation for

learning, we use features that respond to local, oriented

intensity di�erences in the images; speci�cally, we use

a Haar wavelet representation. The car images we use

for training are transformed from pixel space to wavelet

space and are then used to train a support vector ma-

chine classi�er. Support vector machines are capable of

�nding optimal separating hyperplanes in high dimen-

sional spaces with very few training examples.

The previous work in car detection can be divided into

approaches that �nd cars in static images and techniques

that process video sequences; we �rst look at some static

approaches. Bregler & Malik, 1996 [4] describe a system

that uses mixtures of experts to identify di�erent classes

of cars. The inputs for classi�cation are a large num-

ber of second order Gaussian features projected onto a

smaller dimensional space. This system assumes that the

cars are already segmented and scaled; it is not a detec-

tion system, but shares some inspiration (large number

of intensity di�erence operators to represent classes of

objects) with ours. Lipson, 1996 [7] describes a system

that uses a deformable template for side view car de-

tection. In this system, the wheels, mid-body region,

and regions above the wheels are roughly detected based

on photometric and geometric relations. The wheels are

then more precisely localized using a Hausdorf match.

Processing is con�ned to high resolution images, possibly

a restriction for more general detection tasks. This sys-

tem has been applied to scene classi�cation [8] and shares

some conceptual similarity with that of Sinha [16, 17].

Rajagopalan et al., 1999 [15] have recently developed

a trainable car detection system that clusters the posi-

tive data in a high dimensional space and, to classify an

unknown pattern, computes and thresholds a distance

measure based on the higher order statistics of the dis-

tribution. This technique has a good deal in common

with the face detection system of [19, 20].

Motion, or at least the use of multiple frames of rele-

vant information, contains information that can be used

to better identify cars; the following systems use dynam-

ical information in one way or another. Beymer et al.,

1997 [3] present a tra�c monitoring system that has a

car detection module. This portion of the system locates

corner features in highway sequences and groups feature

for single cars together by integrating information over

time. Since the system operates in a fairly restricted do-

main, their detection requirements are not as stringent

as our own. Betke et al., 1997 [1] and Betke & Nguyen,

1998 [2] use corner features and edge maps combined

with template matching to detect cars in highway video

scenes. This system can a�ord to rely on motion since it

is designed for a fairly narrow domain, that of highway

scene analysis from a vehicle.

2 System Overview

The core system we use is a general, trainable object

detection system that has previously been described in

[13, 11, 14, 12]. This paper provides further evidence

that this system is indeed a general architecture by

adding car detection to the existing applications of face

and people detection. We note that each of these in-

stances uses a single framework with no specialized mod-

i�cations to the code; only the training data is di�erent.

The car detection system uses a database of 516

frontal and rear color images of cars, normalized to

128�128 and aligned such that the front or rear bumper

is 64 pixels across. For training, we use the mirror im-

ages as well for a total of 1,032 positive patterns and

5,166 negative patterns; a few examples from our train-

ing database are shown in Figure 1. From the images,

it should be easy to see that the pixel based representa-

tions have a signi�cant amount of variability that may

lead to di�culties in learning; for instance, a dark body

on a white background and a white body on a dark back-

ground would have signi�cantly di�erent characteristics

under a pixel representation.

To avoid these di�culties and provide a compact rep-

resentation, we use an overcomplete dictionary of Haar

wavelets in which there is a large set of features that

respond to local intensity di�erences at several orien-

tations. We present an overview of this representation

here; details can be found in [9] [18].

For a given pattern, the wavelet transform computes

the responses of the wavelet �lters over the image. Each

of the three oriented wavelets { vertical, horizontal, and

diagonal { are computed at several di�erent scales allow-

ing the system to represent coarse scale features all the

way down to �ne scale features. In our system for car

detection, we use the scales 32� 32 and 16� 16. In the

traditional wavelet transform, the wavelets do not over-

lap; they are shifted by the size of the support of the

wavelet in x and y. To achieve better spatial resolution

and a richer set of features, our transform shifts by
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of the size of the support of each wavelet, yielding an

overcomplete dictionary of wavelet features. The result-

ing high dimensional feature vectors are used as training

data for our classi�cation engine.

There is certain a priori knowledge embedded in our
1



Figure 1: Examples from the database of cars used for training. The images are color of size 128 � 128 pixels,

normalized so that the front or rear bumper is 64 pixels wide.
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Figure 2: The Haar wavelet framework; (a) the Haar scaling function and wavelet, (b) the three types of 2-dimensional

non-standard Haar wavelets: vertical, horizontal, and diagonal, and (c) the shift in the standard transform as

compared to our quadruply dense shift resulting in an overcomplete dictionary of wavelets.
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(a) (b) (c) (d) (e) (f)

Figure 3: Ensemble average values of the wavelet features of cars coded using gray level. Coe�cients whose values

are above the average are darker, those below the average are lighter; (a)-(c) are the vertical, horizontal, and diagonal

wavelets at scale 32� 32, (d)-(f) are the vertical, horizontal, and diagonal wavelets at scale 16� 16.

choice of the wavelets. First, we use the absolute val-

ues of the magnitudes of the wavelets; this tells the sys-

tem that a dark body on a light background and a light

body on a dark background have the same information

content. Second, we compute the wavelet transform for

a given pattern in each of the three color channels and

then, for a wavelet of a speci�c location and orientation,

we use the one that is largest in magnitude. This allows

the system to use the most visually signi�cant features.

We note that for car detection we are using exactly the

same set of prior assumptions as for our people detection

system; this is contrasted with our face detection system

which operates over grey level images. The characteris-

tics of this wavelet representation are depicted in Figure

2.

The two scales of wavelets we use for detection are

16�16 and 32�32. We collapse the three color channel

features into a single channel by using the maximum

wavelet response of each channel at a speci�c location,

orientation, and scale. This gives us a total of 3,030

wavelet features that are used to train the SVM.

The average wavelet feature values are coded in gray

level in Figure 3. The grey level coding of the aver-

age feature values show that the wavelets respond to

the signi�cant visual characteristics of cars: the vertical

wavelets respond to the sides of the car, the horizontal

wavelets respond to the roof, underside, top of the grille

and bumper area, and the diagonal wavelets respond to

the corners of the car's body. At the scale 16 � 16, we

can even see evidence of what seems to be license plate

and headlight structures in the average responses.

Once we have computed the feature vectors for our

positive and negative patterns, we use these to train

a support vector machine (SVM) classi�er. SVMs are

a principled technique to train classi�ers that is well-

founded in statistical learning theory; for details, see

[21] [5]. Unlike traditional training algorithms like back

propagation that only minimizes training set error, one

of the main attractions of using SVMs is that they mini-

mize a bound on the empirical error and the complexity

of the classi�er, at the same time. In this way, they

are capable of learning in high dimensional spaces with

relatively few training examples.

This controlling of both the training set error and the

classi�er's complexity has allowed support vector ma-

chines to be successfully applied to very high dimensional

learning tasks; [6] presents results on SVMs applied to a

10,000 dimensional text categorization problem.

3 Experimental Results

To detect cars in out-of-sample images, we shift the

128� 128 window over all locations in the image, com-

pute the wavelet representation for each pattern, and

feed it into the SVM classi�er to tell us whether or not

it is a car. To achieve multiscale detection, we itera-

tively resize the entire image and at each step run the

�xed size window over the resized images. The shifting

and wavelet computation can be done more e�ciently be

computing the wavelet representation for an entire image

once and then shifting in wavelet space. Figure 4 shows

some examples of our system running over out-of-sample

images gathered from the internet.

To obtain a proper characterization of the perfor-

mance of our system, we present the ROC curve which

quanti�es the tradeo� in detection accuracy and rate of

false positives in Figure 5. The false positive rate is

measured as number of false positives per window pro-

cessed. For an average sized image in our test set (around

240� 360) there are approximately 100,000 patterns the

system processes. For a 90% detection rate, we would

have to tolerate 1 false positive for every 10,000 patterns,

or 10 false positives per image. There has been very little

formal characterization the performance of car detection

systems in the literature, making it di�cult to compare

our approach to others'. Given the performance we have

achieved, however, we believe our system will compare

favorably to existing car detection systems.

4 Future Work and Conclusion

This paper has presented a trainable framework for ob-

ject detection as applied to the domain of car detection.

While there has been considerable work in face and peo-

ple detection, much of which uses motion, there has been

relatively little work in car detection in static images.

The framework we describe is indeed general and has

successfully been applied to both face, people, and now

car detection. This success can be attributed to our use

of an e�ective representation that smooths away noise

and while capturing the important aspects of our object

class and the use of the support vector machine classi�er

that allows the system to learn in a 3,030 dimensional

space with only 6,198 examples (1,032 positive and 5,166

negative).
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Figure 4: Results of car detection on out-of-sample images. A is from www.lewistonpd.com; B, C, D, E, F, G, H,

J, K, L, M, O are from www.corbis.com; I is from www.enn.com; N is from www.foxglove.com. Missed positive

examples are due to occlusions (A, F, O) or where a car is too close to the edge of the image (A). False positives (C,

J, I, N) are due to insu�cient training and can be eliminated with more negative training patterns.
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Figure 5: ROC curve for car detection using wavelet

features over color images.

Extending this to detect arbitrary poses of cars may

be di�cult as side view poses have much higher vari-

ability frontal and rear views. One possible solution to

this is to use a component-based approach that iden-

ti�es wheels, windows, and other identi�able parts in

the proper geometric con�guration; a version of this ap-

proach is applied to people detection in [10].
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