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SUMMARY

FLANNER is a language for proving theorems and manipulating
models in a robot. The language is built out of a number of
problem-golving primitives together with a hierarchical contrel
structure. BStatements can be asserted and perhaps later withdrawn
as the state of the world changes. Conclusions can be drawn from
these various changes in state. Goals can be established and dis-
missed when they are satisfiad. The deductive system of PLANNER is
subordinate to the hierarchical control structure in order to make
the language efficient. The use of a general-purpose matching lan-
guage makes the deductive system more powerful. The language is
being applied to solve problems faced by a robot and as a semantic

base for English.
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Note to the Reader

This paper 15 organfzed In what purports to he a lTogical
systematic fashion, The arganlzation makes It difflcult te get
a aquick averview, The followling gulde 1s provided for thosze
readers who are not Interested in reading the whole paper,
Chapter 1 is a hack, Chapter 2 gives the epistemological
foundatlions for our approach to probhlem solving., Chapter 3 Is a
discursive overview of the rest of the thesls using examples of
some features of the problem salving language PLAMMNER, Many of
the important ldeas In the thesls are touched on some where In
the chapter, In chapter 4 we flind a detalled explanation of the
structural pattern matching language MATCHLESS, Readers who are
only peripherally interested In pattern matching need read only
sections 4,1, 4,2, .3, and k.4, Chapter 5 hegins the
systematic explanation of PLAENER, It Introduces the
primitives, data structure, and control structure of the
language, In contrast to the quantificational calculus, the
semantics of PLAMHMEF are expressed In terms of properties of
procedures written In the formallsm, In chapter 7 we explain
how properties of PLANNER procedures can be expressed and proved
In the formalism Itself. Also we attack the problem of how It

15 possihle to teach a problem solver new knowledge.



What Achilles Sald To The Tortolse
Lewls Carrall

Achilles had gvertaken the Tortolise, and had seated himself coafortably
on 115 back.

"So you've got to the end of our race—course? sald the Tortoise., — bven
though 1t does comnsist of an infinite series of distances? I thought some
wisescre or other bad proved that the thing couldn’t be done?”

"It can be done,” sald Achilles. "It has been done! Solvitur ambulando.
Tou see the distances were constantly diminishing: and 20—

“But if they had been constantly 1nﬂreasing?" the Tortolszse interrupted.
"How then?”

"Then 1 shouldnt be here, Achilles modestly replied; "and you would
have got several tlmes round the world, by this time!”

"You flatter me— flatten, I lEan," said the Tortoise; "For you are a
heavy welght, and no mistake! Well now, would you like to hear of & race-course,
that most people fancy they can get to the end of in two or three steps, while
it reslly consists of an infinite nuaber of distances, each one longer than the
previous one?

“Yery much indeed!” said the Grecian warrior, a5 he drew from nis helmel
{few Crecian warriors possessed pockets in those days) an enormcus note-book and
s pencil. “Proceed! And speak slowly, please! Short-hand isn’t invented yet!®

"That beautiful First Proposition of Euclid!” the Tortoise murmured
dreamily. “You admire Euclid?”
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“Passionately! So far, at least, as one can admire a treatise tnat won®t
be published for some centuries to comet™

“Well, now, let’s take a 1ittle bit of the arguzent in tnat First
TProposition—just two steps, and the conclusion drawn from thes. owindly enter
then in your note-boock. And, in order to refer to them convenlently, let’s call

them A, B, and Z:

(&) Things that are equal to the same are equal to each other.
(E) The two sides of this Triangle are things that are equal to toe
SHEE,

(Z) The two sides of this Triangle are equal to each other.

"feaders of Euclid will grant, I suppose, that Z follows logically from
A and B, so that any one who accepis A and § as true, must accept I as true?

"Undoubtedly! The youngest child in & Hish School— as soon as High
Schools are invented, which will mot be till some two thousand years later—will
grant that.”

_'}nﬂ if some resder hai not yet accepted A and B as true, he might still
accept the Sequence as a valid one, I suppose?

“Mo doubt such a reader might exist. He might say "I accept as true the
Hypothetical Proposition that, if A and B be true, I must be true; but I dont
accept A and B as true.” Such & remder would do wisely in wsbandoning Euclid,
and taking to football.”

"And anlght there not also be some reader who would say ‘1 sccept A and
B as true, btut I don’t accept tne Hypothetical®g

“Certainly there might. se, also, had better tage to football.”

“And neither of these readers, the Torteise contimued, “is as yet under

—
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any lorical necessity to accept 2 as true?”

‘Quite so, Achilles assented.

“Well, now, I want you to consider me as & readsr of the second kind,
and to force me, logically, to accept Z as true,”

"A tortoise playing football would be—'" Aghilles was béginning.
"—an anomaly, of course,” the Tortolse hastily interrupted. “doat’t
wander from the point. Let®s have I first, and football afterwards!”

"I'm to force you to accept I, am 17" Achilles said musingly. “And your
rresent position is that you accept 4 and B, but you dont accept the
Hypothetical—"

"Let’s call it C," said the Tortoise.

‘—but you dont accept:

(C) If A and B are true, 7 must be trus.”

“That is my present positon, said the Tortoise.

"Then I must ask you to accept C.~

“I"11 do so,” =ald the Torteise, as soon ag you've entered it ia that
note-book of yours. What =lse have you got im it?

Cnly & few memoranda, said Achilles, nervously fluttering the leaves:
"a few memoranda of—of the battles in which I have distinguished
myself!”

"Plenty of blank leaves, I see!’ the Tortolse cheerily remarked. “We

shall need them all!” (Achilles shuddered.) '“Mow write as I dictate:

{A) Things thal are squal to the same are equal each other.
(B) The two sides or this triangle are things that are squal to the
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{C) If A and ® are true, I must be true.
(Z) The two sides of this Triangle are squal to each other.

“You should call it U, not Z, said Achilles., "It comes next to the
ather three. If you accept & end P and O, you must accept 2.7

And why must I7

“Because it follows logically from them. If & and © and C are true, I
mast be trus. You don’t dispute that, I imagine?”

“1f A and B and C are true, Z must be true, the Torteise thoughtiully
repeated. That’s ancther Hypotheticael isn’t it? And, if I failed to see its
truth, I mizht accept A and ® and C, and still not accept Z, mighta’t I7°

“You might,” the candid hero admitted; “though such obtuseness would
certainly be phenomenal. S5till, the event is possible. 5o I must ask you to
grant one more Hypothetical.™

“Yery good. I'm quite willing to grant £, as soon as you've writtenm it

down. ia will call it
(D) If A and ¥ and C are trus, I sust be true.

“Have you entered that in your note-book?

"I have!” Achilles joyfully exclaimed, &5 he ran the pencil into its
sheath., “And at last we've got to the end of this ideal race-course! Now that
you accept A and % and C and D, of course you accept Z.

“Do 1?7 said the Tortoise inmnocently. ~Let’s make that quite clear. I
sccept A and B and C and D. Suppose I still refuse to sccept 27"

"Then Logic would take you by the throat, and force you to do it!”



Achilles triumphantly replisd. “Logic would tell ¥ou can’t nelp vourself. lou

that you've accepted A and F and C and D, you wust accept Z'° 5o you've ao

choice, ¥ou see.

“Wnatever Logle is good encugh to tell me is worth writing down,” said

the Tertoise., "So enter 1t in your book, please. We will call it

(£} If A and B and ¢ and D are true, Z must be true,

‘Until I've granted that, of course, I needn’t grant ., So it‘s quite s
neacessary step, rou sea?’

I see, said Achilles; and there was a touch of sadness in his tone.



Z. The 3tructural Founaations ol Problem solving

sevearal funoamental guestions must be facea oy any
fTouncation 1or preblem solving. A foundation for problem
salving must specity & goal-orientec formalism in which problems
can be statea. rurthermore there must be a formalism lor
specifying the allowable methods ©1 solution of problems. As
part of the. aelinition o1 the formelisms the following elements
must be definea: the data structure, the control structure, and
the primitive procedudres. The proolem of what are allowable
aata structures fer facts about the world immeafately arises. A
Touncat ion for preblem solving must coniront the problem of
change!? How can account be taken o1 the changing situation in
the worla? what are good ways Lo express problem solution
meéthoas and how can plans 1or the solution of problems be
formulatea? How can new problem solving procedures be
synthesized out of goal orientea language? what properties of
its proceagures will & problem solver be able to know and how
will they pe establishea? All of the above questions must be
adaressed oy & Joundation tor problem solving.

he shall propoese & Jounuation 10r preoblem solving in
winich a formalism cellea PLAMNKEK will play a central role. If

it is flexible encugh, the same formalism cén provide the basic
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tacilities for a foundation ilor problem solving. PLANNEH is5 a
unit 1iea collection of problem solving primitives for proving
theorems and manipulating mouels in & robot. me have Lrieso to
make this collection complete in the sense that it shoula be
possible to aeline any lundamental proolem solving process in
terms of the primitives in & natural and elegant manner. 71he
primitives are designed to be tiea together by & hRIEHARCRICAL
CONTHOL STRUCTURE which is di fierent irom the control structure
of recursive subroutine calls. Roughly speacing in hierarchlical
control structure the hierarchy of the previocus calls is
preserved 50 that a process can back up a previous state i1 it
50 desires. Hierarchical control makes PLANNER very convenient
for constructiong elaborate hypothetical structures. It is in
the above sense that we shall speak ol PLAMMEK as a language.
FLANNER is a high level, nonprocedural, goal-oriented language
in which one can speciiy to a large degree what one wants cone
rather than how to do it. Many of the primitives Ln PLANNER are
concerned with manipulating & data base by speciliying the
operations to be pertormed. Many of the primitives have been
developed as extenslions to the language when we have Jound
problems that coula not otherwise be solved in & natural wér-
Of course the trick is to incorporate the new primitive as a
genuine extension o1 wide applicability. Others have suggested
themselves as adjuncts in order to obtaln useiul closeure

porperties in the language. he woula D2 grateful to any reader



£« page 3

who coulu suggest problems that would seem to require 1urther
gxtansions or moal rications to the language. The language will
be explailnzd by giving an over=-simplified picture and then
attempting to correct any misapprehensions that the reader might
have gatherea irom the rough ocutline.

Dne basic jdea pehind the language 15 & guality that we
find between certain imperative ana aeclarative sentences. ror
eXxamp le consiger the statement (implies A B). A5 1t stands Lhe
statement is & perfectly good declarative statement. [t also
has certain imperative uses for PLANNEW. For example it says
that we shoula set up a procewure which will note whether A is
ever assertec anpa If so to consider whether b should then be
asserted. Frurthermore it says that we shoula set up a
procedure that will watch to see If it ever is our goal to try
to deauce B ana 11 so whether it is wise to make a subgoal to
deduce A. Exactly the same observations can bDe made about Lhe
contrapositive of the statement (implies A BJ) which is (implies
(not b) (not al)). Statements with such things as universal
guantifiers, conjunctions, disjunctions, etc. also have both
ageclarative ana imperative uses. PLANWNER theorems are being used
a3 imperatives when they are belng executed and as declaratives
when used as aatbta.

Qur work on PLANNEHE has been an investigation In
PROCEDUHAL EFISTEMOLOGY, the studgy of how knowledge can be
empedoed in procedures. The PRIKCIFLE OF PROCEDURAL E4BEDUING
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i5 that intellectual structures can be analyzea through their

procedural analogues. he will show have the lollowing all have

procecgural analoguess

ceescriptions
recommendat lons

theorems

proofs

grammar s

moaels of programs

patterns
Uescriptions have procedural analogues in the form o1 PLANNER
procecures which recognize the objects described. Theorems in
the predicate calculus correspona to FLANNER theorems ior making
Geductions. Mathematical proois correspond to plans in PLANNER
for generating a valid chain o1 ceductions. The PkOGRAMMAR
language o1 Terry hiﬁnqrau provides a procedural analogue to
obtain the kino ot information that is supposed to be supplied
by transformational grammars. Intricate patterns can be
Speclfiea in proceaural pattern matching languages. Models o1
programs are delined by proceoures which state the relations
Lhat must hola between the varibles of the program as control
passes through various points.

From the above cbservations, we have constructed a
language that permits both the imperative ano declarative
aspects of statements to be easily manipulated., FLANNER uses a
pattern=directed inlormation retrieval system. MWhen a statement
ls asserted recommendations aetermine what conclusions will be

drawn irom the assertions. Procedures can make recommenqations



3 to whicn theorems should be used Iin trvling to araw
conclusions from an assertion, and they can recommend the order
in which the theorems should be appliea. Goals can be createza
and sutomatically cismissea when they are satisiled. Ubjects
can be found trom schematic or partial descriptions. Provision
15 meae ror the fact that statements tnal were once Lrue in a
model may no longer be true at some later time anc that
consequences must be drawn Jrom the fact that the state o1 the
model nas changea. Assertions and goals created within a
proceaure can be gynamically protectea against interference from
other procedures. FProcedures written in the language are
extencaple in that they can make use 01 new Knowledge whether
it be primarily ceclarative or ilmperative in nature. Hypotheses
can be establisheoc and later aischarged. ®e woula like to use
PLANMEKH to write a block control language in which we could
specify how blocks can be moved around by a robot. Then we
could write a structure builaing language in which we could
provide acescriptions o1 structures (such as houses and briages)
and let PLANNER figure out how tc buila them. The logical
deductive system used oy FLANKER 1s subordinate teo the
hierarchical control structure of the language. FLARNER
theorems operate within a context consisting of return
addresses, goals, assertions, binaings, and local changes of
state that have been made te the global data base. Through the

use o1 this context we can guide the computation and avoia dolng



tasically The same work over and over again. Fror example, once
wa determine that we are working within a group {(in the
mathematical sense) we can restrict our attention to theorems
Ior woOrking on groups since we have direct control over what
theorems will be usSed. FLANNEH has & sophisticatea deguctive
system in order to give us greater power over the airection of
the computatien., [n several respects the deguctive system is
more power lul than the quantificational calculus of order omega.
me2 have tried to cesign a sophisticated deauctive system
together with an elaborate control structure so that lengthy
computations can be carried out without blowing up. ©O1 course
procedures written in PLANNER are not interinsically efiicient.
A great ceal of thought ano effort must be put inot writing
ef1icient procedures. FLANNER does provide some basic
machanisms and primitives in which to express problem solving
procedures. The control structure can still be used when we
limit ourselves to using resclution as the sole rule o)
inlerence. In general a unlform prool procedure gives us very
little control over how or when a theorem is to be used. The
problem is one of the level of the interpreter that we want to
usa. A algital computer by itself will only interpret the
hardware instructions o1 the machine. we can write a higher
level Interpeter such as LISF that will interpret assignments
and recurseive lunction calls. At a still higher level we can

write an interpreter such as MATCHLESS which will interpret



patterns. At the level ol PLANNEA we can interprel assertions,

Iind statements, and goals. 1t goes without saylng Lhatl we can
conpile code for any o1 the higher level interpeters so that it
actually runs under & lower level interpreter. In general
higher level interpreters have greater choice in the actions
that they can take since instructions are phraseo more in Lerms
of goals to be achived rather than in terms o1 explicit
elementary actions. The problem that we face is to raise the
level o1 the interpreter while at the same time keeping the
actions taken by it under control. Because of its extreme
hierarchical control and its ability to make use of new
imperative as well as declarative knowleage, 1t is Jeasible to
carry out very long chains ot inference in PLANNEHR. Examples o3
some o1 the kinds o1 statements that can be made in the language
ared

Find the seconu smallest integer that is sum of its Jactors.

Pick up all the rea cubes that are on top of blue cubes and
put them in the yellow box.

Assert that all the people in this room are older thanm Jack.

Find all the employees at MIT that are related to each other
and give the relationship of each to the others.

me are concerned as to how & theorem prover can uniiy

structural problem solving methods with comain depenaent

dlgorithms anu data Into a coherent problem solving process. by

structural methods we mean those that are concerned with the



2. page o

formal structure ol the argument rather than with the semantics
of its domain cepencent content. cxamples o1 structural methoos
are the use ol subgoals in PLANNER and the consequences of the
consequant heuristic., By the CONSEUWULENCES Or THE CONScUUcHT
hauristic, we mean that & problem solver shouluo look at the

consequences ol the goal that is being attemptea in order to get

an juea of some ol the statements that could be useilul in
establishing or rejecting the goal. wne need to aiscover more
powerful structural methods. FLANNEH is inmtenced to proviae a
conputational basis for expressing structural methods. One of
the most important ideas in PLANNER is to bring some of the
structural methods of problem solving out into the open where
they can be analyzea ana generallzec. There are a Jew baslc
patterns ot looping &and recursion that are in constant use among
programmers. kExamples are the *iforY statement of MATCHLESS, the
“fino* statement in PLANNER, and recursion on the car and the
cdr im LI15¢. The “finag® and “for" primitives are explainea in
the MATCHLESS ana PLANNER gocumentation. The patterns represant
common structural methods used In programs. They speciily how
commands can be repeated lteratively and recursively. One of
the main problems In getting computers to write progreams is to
use these structural patterns with the particular aomain
dependent commands that &are availaole. It is aifficult to
aecide which 11 any of the basic patterns of recursion is

appropriate in any given problem. The problem ol syntesizing
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programs odt of canned loops 15 Tormally igentical to the
proolem of finaoing prools by mathematical induction. I[noeed
many proots can be 1ruitfully consigered to define procedures

which are proved to have certain properties. ke have approached

the proplen of constructing procedures out o1 goal orientea
language from two agirections, The Iirst is to use cannea loops
(such 45 the flnd statement) where we assume a=priori the kind
o] control structure that is needed. The second approach 1s Lo
try to abstract the proceaure from protocols ol its action in
particular cases.

The tas< of arti1icial intelligence 1s to program
inanimate machines to perform tasks that require intelligence.
Uver the past ocecaae several ol 1ferent approaches toward A. [.

have cevelopea. Although very pure forms o1 these approaches

will seldom be met in practice, we find that it is useiul 1or
purposes ol discussion to consicer these conceptual extremes.
One approach (called results moce by 5. Fapert) has been to
choose some specil iic intellectual task that humans can perform
with facility ana write a preogram to perform it. Several very
fine programs have been written following this approach. Une o]
the first was the Logic Theorist which attempted to prove
theorems in the propositional calculus using the ceductive
system developed in Principia mathmatica. The importance of the
Logic Theorist {s that it ceveloped a boay of technigues which

when cleaned up ana generalizea have proved to be Iuncamental to
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Tdrthering our unoerstanding oi A. . The results moge approach
offers the potentiality of maximum efficiency in selving
particuler classes of problems. On the other hana, there have
LEsN @ numoer ol programs written from the results moae approach
wihich nave not aavanceo our understanding although the programs
acnleved slightly better results than hau been achieved beiore.
These programs have been large, clumsy, brute force pieces o1
machinery. There is a clear danger that the results mooge
approach can degenerate into trying to achieve A. [. via the
“hairy kludge a month plan®,

Ancther approach to A. 1. that has been prominent in the
last decade is that of the uniform prooi procedure. Proponent s
01 the approach write programs which accept aeclarative
descriptions of combinatorial problems and then attempt to solve
them. In its most pure form the approach does not permit the
machine to be given any informaticn as to how it might soclve its
problems. The character table approach to A. 1. is a
modification of the uniform procedure approach in which the
program is also given & 1inite state taole of coennections
between goals and methods. The unl form procedure approach
of lers a great deal of elegance ang & maximum of & certain kind
of generality. Current programs that implement the uniform
procegure approach suller from extreme inelliciency. We believe
Lhat the inefficiency is intrinsic in the approach.

PLANNER is not neccessarily general in the same sense
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tnat a unilorm procf proceaure i5 general. FLANNER is lnlenueu
to me a natural computaticnal basis lor methous ol solving
proolems in & gomain. A complete prooc] procedure lor @
quantiricatlﬂnél calculus is general In the sense tnat 1f cone
can torce the problem into the form ol the input language and
are prepared to walt eons i3 necessary then the comnputer is
guaranteea to i1ind & solution if there {5 ocne. The approach
taken in PLAKNER is to subcroinate the Jeauctive system to an
elacorate hierarchical control structure which is domain
independent. Froponents o1 the uni form procedure approdach are
apt to say that FLAKMNEH "cheats" because through the use o1 ils
hierarchical control structure, it is possible to tell the
program how to to try solve its problems. But surely, it is to
the credit of the program that it 1s able to accept new
information ana make use o1 it. A problem solver needs a high
lavel language Jo0r expressing problem solving methods even if
the language is only usea by the problem solver to express its
problem solving methods to itself. PLANNEK is used both as the
language in which preoblems are poseg to the problem solver ang
the language in which methods of solution are formulated.
PLANNER is not intencea to De & general solution to the problem
03 1inaing general methods lor reducing the compinatorial search
involved to solve a problem using an arbitrary set of axioms.
It is intendea to be a general formalism in which knowledge 1In a

domain can ope combined and Integratea. HRealistic problem
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selving programs will neea vast amounts of knowleuge. we
conslder all methous o1 selving problems to pe legitimate. If a
program shoulo happen to alreagy know the answer to the preolem
Lhat it is asked to solve, then it is periectly reasonable for
the problem to be solved by table look-up. We should use the
criterion that the problem solving power o1 a program should
increase much 1aster than in cirect proportion to the number of
things that it is told. The important factors in Jjudging &

program are its elegance, generality, ana glficiency.



d. Discursive Uverview

This chapter contains an explanation of some of the
ideas 1nm PLANWER in essay forms. It is based on a areit writien
by T. winograao 1or the course 6.545, 11 the reader woula like
to see a8 more logically systematic presentation, he can consult
the supsequent chapters. The easiest way to understand PLANNEK
is to watch how it works, so in this chapter, we will present a
few simple examples ana explain the use o1 sSome ol its most
glamentary leatures.

First we will take the most venerable of traditional
aaductions:

Turing is & hunan
All humans are fallible
SﬂTurinq is fallible,

It i5 easy enough to seée how this could be expressea in the
usual logical notation and handlea by a uniilorm prool procedure.
Instead, let us express it in one possible way to PLANNEH by
sayings

{ASSERT (HUMAN TUHING))
(DEF INE THEOQREMI

{CONSEQUENT (x) (rALLIBLE 57X)

{GOAL (HUMAN $32X) 1))

Function calls are enclosed between "{" and “J}J"., The
proof would be generated by asking FLANNER to evaluate the

EXpressions

{GOAL (FALLIBLE TURING)}
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e imeealately see several polnts. First, there are two
aliferent ways of storing information. Simple assertions are
stored in & dgata base ol assertions, while more complex
santences containing gquantifiers or logical connectives are
eXpressed Iin the Ilorm ol theorems (although facilities exist Jor
storing them in standara logical notation and hanaling them as
in any other thecrem prover if that is desireal.

Second, one of the most important points about PLANNER is
that it is an evaluator 1lor statements., [t accepts input in the
form of expressions written in the FLANNER language, and
evaluates them, producing a value ano sice e1l11ects. AS3SEHT is a
function which, when &valuatea, stores its argument in the data
base o1 assertions (which is hash—-coded in variocus ways to glve
the system efficient look-up capabilities). DEFINE puts a new
theorem 1n the date base. In this example we have delined a
theorem of the CONSEWUENT type (we will see other types later).
This states that if we ever want to establish a goal o1 the form
(FALLIBLE $%X), we can do this by accomplishing the goal (hUMAN
§74), where X is a variable. The strange preillx characters are
part of PLANNER’s pattern matching capabilities (which are
gxtensive ang make use ol the pattern—matching language
MATCHLESS. 1t we ask PLANNER to prove a goal o1 the form (A X)),
there is no obvious way of knowing whether A and X are constants
(like TURING and HUMAN in the example) or variables. LIoF

solves this prooclem by using the function QUOTE to inaicate
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constants. In pattern matching this is5 Inconvenlent and daXes
most patterns much bulkler ang more aiazlicult to read. Insteaa,
PLANNER uses the opposite convention — a constant is
representea by the atom itself, while a variable must ba
inaicatea oy adding an appropriste prefix. This preiix uiffers
accoralng to the exact use of Lhe variable in the pattern, butl
for the time being let us just accept 57 as a prefix inaicating
& variable. The cefinition of the theorem inalcates that it has
ona varlable, X by the (i) J0llowing CONSEWUENT.

The thiro statement illustrates the Iunction GUAL, which
calls the PLANNER interpreter to try to prove an assertlion.
This can functioen in several ways. 11 we had askea PLANNER to
avaluate {(GOAL (HUMAN TURING)} it would have founo the reguested
assertion immeaiately in the ocata pase ana succeeaed (returning
as its value some inalcator that it had succesdgeql). However,
(FALLIBLE TURING) has not been asserted, 50 we must resort to
theorems to prove it., Later we will see that a GUAL statement
~can give PLANNER various kinos of advice on which theorems are
applicable to the goal and shoula be tried. For the moment,
take the default case, in which the evaluateor tries all theorems
whose conseguent is of a form which matches the goal. (i.e. a
theorem with a consegquent ($7Z TURING) would be tried, but one
of the 1orm (HAPPY $%Z) or (FALLIELE $7Y %3Z) woula not.
Assertions can have an arbltrary list structure for their format

-— they are not limited to two—member lists or three—member



lists a5 In these examples.) The theorem we have just delined
woulo be found, @no in trying it, the match ot the conseguencs
to the goal woulo cause the variable 57X to oe bound to the
constant TURING. Iherature,.the theorem sets up a8 new goal
(HUMAN TUKING) ano this succeeds immegiately since it is in the
oata base. In general, the success of a theorem will depend on
evaluating a FLANNER program of aroitrary complexity. In this
cdse Il conteins only a single GOAL statement, so its succeess
causes the entire theorem to succeea, and the geal (FALLIBLE

TurING) is proved.

lhe following is the protocol of the evaluation:
{GUOAL (FALLIBLE TURING)J

{PROVED? (FALLIBLE TURING)}
FALL

ENTER THEOHEM1
A BECOMES TURING
{GOAL (HUMAN TURING)}
VPROVEDY (AUMAN TURING).)
SUCCEEL

The way in which variables are bound by matching is o1 key
importance to PLANNER . Consider the guestion "[s anything
fallible?®, or in logic (EXISTS Y (FALLIBELE YJ)J). This could be
expressea in PLANNER as:

{THPROG (Y¥) (GODAL (FALLIBLE s$%Y¥)}}

Notice that ThPROG (PLAKMERYs equivalent of a LISP PRUG,
complete with GO statements, tags, RETURN, etc.) in this case it
acts as an existential guanti fier. It provides a binding=-place
for the variable Y, but does not initialize it — 1t leaves it

in a state particularly markea as unbound. To answer the



quz2stion, we ask FLANNCR to evaluate the entire ThFwROo
expression apove. To do this it starts by evaluating the GOAL
expression., This searches the wata base rfor an assertion o1 the
form (FALLIBLE 5?YY) anug fails. It then looks for a theorem with
a consequent of that Jlorm, ana finds the tneaorem we de lineu
aoove, Now when the theorem is5 callea, the variable & in the
theorem 15 ioentl liea with the variable ¥ in tThe goal, but since
T has no value yvel, & does nolt receive a value. The theorem
then sets up the goal (HUMAN 53X{) with X as & variable, The
data=pbase searching mechanism takes this as a commana to leoock
for any assertion which matches that pattern (i.e. an
instantiation), and fings the assertion (HUMAN TURING). This
causes A {and therefore Y) to be bouna to the constant TURING,
and the theorem succeeds, completing the proof ana returning the
value (FALLIBLE TURING).

There seems to be something missing. 3So far,the data base
has containea only the relevant objects, ana thereiore PLANNEK
has found the right assertions immediately. Consiger the
proolem we uoulad get if we acdoed new Iinlormation by evaluating

Lhe statements:

LASSERT (nUMAN SOCRATES))
LAS5cRT (GREEK SOCRATES))

Our gata base now contains the assertions:
(HUMAN TURING)

(HUMAN SUCRATES?
{GREEK SUCKRATES)
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and the theorem:

(CUNSEWUZNT (X) (FALLIBLE s7%X)
LUGOALCHUMAN 5341 ))

mnat 11 we now ask, "Is there a 1allible Greed?™ In PLANNEER
w2 would do this by evaluating the expressicn:
VIHPROG (&) {GOAL (rALLIBLE $%X)J (GOAL (GREEK s7x) )}

lhis time the protocel is

[GOAL (FALLIBLE $7x)]
[PROVED? (FALLIBLE $7k)]
i BECOMES TURING
[GOAL (GREEK TURING))
[PROVED? (GREEX TuwING) ]
FAIL
FAIL
A BECOMES SOURATES
[GOAL (GREEK SOCRATES)]
[PROVED? (GREEK SOCRATES)]

SUCCEED

IhPROG acts like an AND, insisting that all o1 its terms
are satisfied before the THPRUG is happy. Notice what might
happen. The first GOAL may be satisiied by the exact same
deduction as belore, since we have not removed information. 11
the cata-base searcher happens to run into TURING before it
finds SOCRATES, the goal (HUMAN $7£) will succeed, binding $74
to TURING. After (rFALLIBLE $%X) succeeds, the THPRUG will then
establish the new goal (GREEK TURING), which is coomec to fail

since it has not been assertec, and there are no applicable

Lheorems. If we think in LISF terms, this is & seriocus preblem,

since the evaluation o1 the first GUAL has been completes beilore

the second one 1s called, ana the "push—gown list"™ now contains



only the THAFHUG: L1 we fry to 9o bDeck to the beginning ana
start over, it will again fing TURIKG anu s0 on, &d inlinitum.

uneg of the most important features o1 the PLANKHNER language
is that packup in case of lailure is always possiocle, ana
morecver tnis backup can go to the last place where a cecision
2] any Sort wés mage. Here, the geclsion was to pick a
particular assertion 1rom the ocata base to match & goal. Uther
aecisions might be the choice of a theorem to satisfy a goal, or
a decision of other types founad in more complex FLANNEA

functions., PLANNER keeps enough information to change any

decision and send evaluation back down a new pathn.

In our example the decision was made inside the theorem for
FALLIBLE, when the goal (HUMAN 57X) was matched to the assertion
{HUMAN TURING). PLANNER will retrace its steps, try to find a
different assertion which matches the goal, find (HUMAN
SOCRATESY, ana continue with the prool, The thecrem will
succeed with the value (FALLIBLE SUCHATES), ana the THPROG will
.proceed to the next expression, (GUAL (GREEK %%X)). Since X has
been bouna to S0CKATES, this will set up the goal (GHEEK
SOCRATES) which will succeed immediately by finding the
corresponaling assertion in the data base. Since there are no

more expressions in the THPFROG, it will succeed,; returning as

its value the value of the last expression, (CGREEK SOCRATES).
The whole course of the deauction process depends on the failure

mechanism for backing up and trying things over (this is



actually the process of trying wifferent branches gown the
Supgoal tree.) All of the iunctions like THCONL, TAAnD, THUR,
alc. are controllea by success vs., failure, rather than NIL vs.
non=KIL &5 in LISP. This is then the PLANNEK executive which
establishes and manipulates subgoals in looking 1lor a proot.

20 far we have seen that althougn PLANNEW is written as an
evaluator, it diiiers in several critical ways irom anything
wnich 15 normally considered & programming language. rirst, it
is goal-airected. Thecrems can be thought o1 as subroutines,
but they can be callea by specifying the goal which is to be
satlsfiea. This is like having the abilitiy te say "Call a
subroutine which will achieve the desired result at this point.®
second, the evaluator has the mechanism o1 success ana failure
to hanale the exploration o1 the a subgoal tree. Other
evaluators, such as LISF, with a basic recursive evaluator have
no way to do this. Third, PLANNER contains a large set of
primitive commands Ilor matching patterns and manipulating a data
base, anao lor hanaling that oata base ef ficiently.

Un the other side, we can ask how it differs irom other
Lheorem provers. nhat is gainea by writing thecrems in the form
of programs, and glving them power to call other programs which
manipulate data? The key is in the form o1 the data the
tneorem—prover can accept. Most systems take ceclarative
information, &8s in preaicate calculus. This is in the jorm of

expressions which represent "facts" about the world., These are



manipulated by the theorem—prover according Lo some Ilxea
uniform process set by the system. PLANNEH Can make use o1
jomperative inlormation, telling it how Lo go abowl proving a
subgoal, or te make use of an assertion. This produces what is
called hierarchical control structure. That is; any tneorem can
indicate what the theorem prover Is supposed toc go as it
continues the proof. [t has the full power to evaluate
eXxpressions which can depend on both the data base and the
subgoal tree, ana to use its results to control the further
proot by making assertions, deciaing what theorems are to be
usea, ana specliying a seguence of steps to be followed. what
does this mean in practical terms? In what way does it make a
“hetter® theorem prover? he will give several examples of areas
where the approach is important.

First, consider the basic probolem of gecliaing what subgoals
to try in attempting to satisiy a goal. Very often, knowledge
of the subject matter will tell us that certain methoos are very
likely to succeed, others may be useful i1 certain other
conditions are present, while others may be possibly valuable,
but not likely. we would like to have the ability to use
heuristic programs to getermine these facts ano direct Lhe
theorem prover accoraingly. It should oe able to direct the
search for goals and solutions in the best way possible, and
aole to bring a5 much intelligence a5 possible to bear on the

declsion. In PLANNER this is cone by adaing to our GOAL



statement a recommencation list which can specl 1y that ONLY
certein theorems are to be triea, or that certain cnes are to pe
triea FlRSI in a specitied nru&r.- Since tneorems are programs,
suproutines of any type can be callea to help make this decision
before establishing a new GOAL. LEach theorem has a name (in our
astinition on page 1, the thecrem was given the name TncUnkdl),
to lacilitate rezerring to them explicitly.

Another important problem is that ot maintaining a oata
pase with a reasonable amount of material. Censiver the 1irst
example above, The statement that all humans are fallible,
while unamoiguous in a aceclarative sense is actually ambiguous
in its ilmperative sense (l.e. the way it 15 to be usea by the
theorem proverl. The first way is to simply use it whensver we
are faced with the need to prove (FALLIBLE $7X). Anocther Way
might pe to watch for a statement of the iorm (HUMAN $7%) to be
asserted, ana to immediately assert (rALLIBLE $7x) as well,
There is no abstract logleal aifference, but the impact on the
gata base [s5 tremendous. The more conclusions we araw when
information is asserted, the easier proots will be, since they
will not have to make the additional steps to geauce these
consequenceas over and over agéain. However since we don't have
inilinite speea and size, it is clearly folly to think of
geducing and asserting everything possible (or even everything
interesting) about the cata when it is enterea, If we were

working with totally abstract meaningless theorems ana axioms



(an assuiption which would not be incompatible with many
Lpegorem=proving schewes), this woulo oe an [nsolucle ol lemma.
but rLAMGER i5 desjignea toe work in the real worlo, where our
knowleoge is much more structureu than a set o axioms anu rules
of lnference. we may very well, when we assert (LJKes 37%
FIElRY) want Lo wueouce anwe assert (BUKAN 57K}, since in geodcing
things about an ocbject, It will very oiten be relevant whethsr
that ob ject 1s human, and we shoulon’t need to ceuuce 1t eacn
time, Lo the other hana, it would be s51lly Lo assert (hAS=AS-
FART 574 SPLEEN), since there is5 a horue of facts egually
ilmportant ano eqgually limiteo in use. FPart ol the Enowleage
which FLANWEK shouldo have 031 & subject, then, 15 whal facts are
important, and when Lo draw conseguences of an assertion. This
is done by having theorems ol an antecedent types
(OeFINe THEOREMZ

(ANTECEDENT (X ¥Y) (LIKES 5%a 5¢Y)

LASSEHRT (HUMAN $2KD211))

This says that when we assert that X likes something, we
snould also assert (OUMAN $7X). OF course, such theorems do not
have to be so simple. A fully general PLANNEW program can be
activatea oy an ANIECEUENWNT theorem, aoing an arbitrary (that is,
tne programmer whether he be man or machine has iIree choicel
anount ol deduction, asssertion, etc. Knowleage ol what we are
going in & particular proolem may Lndicate that it 1s sometimes

& Jooa laea to do this kino of geduction, and other times not.

AS with the CUNSEUUENT theorems, FPLANNEH has the 1ull capacity



wien something 1s assertea, teo evaluate the current state o1 Lha
udla and prool, and specl fically decide which ARTCU cLENT
Lheorems snould be called.

FLANNER thereilore éllﬂws geauctions to use all sorvs of
knowledge about the subject matter which go 1ar beyona the set
¢1 axioms ana basic deguctive rules. PLANNER itself is sublect-
independent, but its power {s such that the usuuction processs
never neeas to operate on such & level of ignorance. The
programmer can put in as much heuristic knowlecge &5 he wants to
8Dout Tthe subject, just as a good teacher would help a class to
understand a mathematical theory, rather than just telling them
the axioms and then giving theorems to prove.

Another aavantage in representing knowledge in an
laperative lorm is the use of a theorem prover in uealing with
processes invelving a sequence of events. Consider the case of
@ robot manipulating blocks on a table. It might have data o1
tne torm, "block! is on bDlocks," Yolock? is behino blockiv, ang
“11 % is on y ana you put it on z, then % is on 2z, and is no
longer on y unless y is the same as z". Many examples in papers
on theorem provers are ol this form (lor example the classic
“monkey and bananas" problem). The problem is that a
geclarative theorem prover cannot accept a statement like (ON b
b2y at jace value. It clearly 15 not an axiom of the system,
Since its valiﬁlty will change as Lthe process goes on. It must

oe pul in a form (ON Bl B2 50) where S0 is a symbol tfor an



initial state 03 the world., Tne thiro statement might bDe
EXpIe 5580 4518
(rukALL & ¥ £ 5
CANLD
(O X Y (PUT X ¥ 50)
Uik
(NOT € %2 (PUT X ¥ $2)00)

In this representation, ¥Ul i5 a lunctlion whose value is
the state which results from putting A on Y when the previous
state was 2. ne run into a problem when we try to ask (U £ w
(PUT £ f 5)) l.e. is plock £ on block n after we put & on 17 A
human knows that if we haven’t touchea & or m we could just ask
(UM £ m 5 put In general 1t may take & complex ceduction Lo
gdeciue whether we have actually movea them, ano even if we
havernt, it will take & whole chalin of deouctions (tracing back
through the time sequence) to prove they haven’t been movea. In
PLANMNEH, where we specify & process agirectly, this whole type 01
problem can be hanoled in an intuitively more satisiactory way
by using the primitive function ERASE.

evaluating (ERASE (ON $74 $3Y)) removes Lhe assertion
(0N s%x s¥Y) from the gata base. [f we think of theorem provers
as working with a set ot axloms, it seems strange to have
tunction whose purpose is to erase axioms. If instead we Lhink
o1 the data base as the “state or the world" and the operation

@1 the prover as manipulating that state, it allows us Lo make

great simplifications. How we can simply assert (On Bl 82)
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withgﬁ; any explicit mention of states. We can express tne
necessary theorem as:
(UEFINE 1heOUnrkEM3 _
~ACUNSERQUENT ©X Y £) (RUT X Y1
) \VGUAL (OUN $2X 5392))
LERASE (ON $3%x 5220}
VASSERT (UM 32K 52Y)1))

This says that whenever we want to satisly & goal o1 the
form (FUT 52X $2¥), we shoulo first find out what thing Z the
thing X is sitting on, erase the fact that it is sitting on £,
énd assert that 1t {s sitting on Y. We could alsoc ao a number o1
other things, such as proving that it is indeea possible to put
£ on ¥, or adaing a list o1 specific instructions to a movement
plan tor an arm to actually execute the goal. In & more complex
case, other interactions might be involved. Fror axample, 11 we

are keeping assertions o1 the form (ABOvVE $2X $7Y) we woula need
to delete those assertions which became false when we erased (ON
$14 $7z) and aad those which Decame true when we addea (ON $7X
51Y). ANTECEDENT theorems woulo oe callea by the assertion (OHN
$f4 57Y) to take care of that part, and a similar group callea
ERASING theorems can be callau!;n an axactly analagaﬁs way when
an assertion 1s erased, to defivu consequences of the arasure.
Again we emphasize that which &f such theorems would be callea
is depencent on the way the gata base is stru:turen,'anu is
determinea oy knowledge of the subject matter. In thfs Exﬂﬂple,.
we would have to ceciae whether it was worth adoing all o1 the

AdUvEe relations to the gata base, with the resultant neea to



chece them whenever something is moved, or instead to omit them
ana Take Lime Lo cedguce them from the UN relation each time they
ares necdea, _

Thus in PLANNEH, the changing state ol the worla can be
mirrored in the changing state of the gata base, avoiging any
nged Lo make explicit mention of states, with the requisite
overneaa of ceouctions. This 15 possiole since the injormation
is gilven in an lmperative iorm, speciiying theorems as a series
of sSpecific steps to be executea. PLANNEHR also allows the
construction of local cata bases called states wnich are
varients o1 the global data base. Evaluation of FLANNEH
exXpressions is carried out relative to a local state. Thus
simultaneous consideration can pe given to two incompatibple
states of the worla by explicitly calling the evaluator to
avaluate statemsnts in the two states,

If we look back to the aistinction between assertions
and theoreas made on the first page, it would seam that we have
established that the base of assertions 1s the Ycurrent state of
the worla®, while the base of theorems is our permanent
knowledge of how to geduce things from that state. This is not
exactly true, and one of the most exciting possibilities in

FPLANNER i5 the capability 1lor the program itselil to create ang

modify the FLANNER functions which make up the theorem base.
Rathner than simply making assertions, & particular PLANNER

tunction might be written to put together & new theorem or make



cnanges to an existing theorem, in & way depenoent on the wata
ana current knowleage. [t seems likely that meaningrful
"Leaching" involves this type of behavior rather than simply
modiiving paramaters or soging more individual facls
{assertieons) to a aeclarative vata pasa,

For example suppose we &re gilven the lollowing protocols

for a tunction 1. An expression such as "new (% % 4]" means that

we dre Introdgucing a new foentifier which is % = 4 = 2,

11 W} = TRUEY G=Uu 50 1|
Thus {1 W) = |

v1 1} = FALSE: 1=0 50
| = new [l=1] THUE: = 50 |
Thus «f 1+ =1

\f 24 = FALSE:s 2=U 50
e * new [2=1) FALSE: 1=U S50 )
| % new [I=1]1 Thuks U=( 50 1
Thus {f 2} = 2

wf 3y = FALSE: 3= 50
4 * new [3-1)] rALSEs Z2=u 50
2w new [2=1] FALses 1=0 50
1 # new [I=1] TRUE: U= 50 |
Thus (f 3J = 6

By the process of "varisbalization", we conclude that

the apove protocols are compatible with the following program

which is in the ftorm of a tree (which we shall call the protocol

treal.

Af X+t = 11 x=0 then |
glse x * new [(x=1)=»x] {1 x=0U then 1
else x * new [({x=1)=>x) if x=0 then 1
glse ¥ * new [(H=1)=>»x] 11 x=0 then 1
else...



wWow Ly laentliving inoistinguishatle nodes on Lhe protocol tree,

we autaln.

i oxs = i1 =0 Lhen |

else x *#11 (x=1)2
The resder will nolte that f is in [fact the lactorial tunction.
FLANKER proceaures and theorems can be Laught in precisely the
same iashion (which we call procedural abstractionl). Fror
examngple the computer can be taught to bulld a wall or recognize
8 Lower from examples. The reacer is cautionea that althougn we
shall speak ot the computer being "taught", we o not assume
that anything like what has been classically describec as
“learning" is taking place. mne assume that the teacher has a
good working model of the stucent that 1s being taught. The
teacher attempts to convey a certain boay o1 knowledge to the

student . Of course the stucent will be tola anything which

might help him to understand the material faster.



MATChLESS

MALCRLESS 15 a pattern oirected languagé that is usug in
tne lmplementation o PLANNER. MAICRLESS 15 useg both in Lne
internsl workings of PLANNER ang &5 & Lool in the seauctive
system 1tselr. MATUnLESS 15 similar to otner structural pattern
mabching languages such as CUkvedl. [t has ceesn wesigneo with
the Iollowing consicerations in minge

l. The language shoulag be very powerful yeb simple
Cconstru¢ts shoulo be ei1iliciently compllea,

£« FPunctions must be sble to pe sepurdtely compl lea.

4. lhe syntax must be completely unambiguous as to
which =lements are tunction calls, iloentiilers, ana cata
structures.

4, The language must interface with FLANNEH 1n a
natural way.

9. The language shoulao treat lists anu vectors
symmetrically so that 1or the most part the same progran will
run whether the structures are made up of vectors, tuples, or

lists. Declarations vetermine which 1orm is actually usau.
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Haod e ynLax wl laenbillers aned LEpara bl

Qe lol Prelis Uperalors jor luaenbiiioers

Au bs wsual Lo pabliern mabobibeeg Lamguoasiese we Sl o) e
LT W T A liku dy gy Ca L)y and (o 01 g3) Lo omalbedi anily
Lhemse lves. A dwenll dler will be dndicabod Ly o proeiis
wperebor wonleh wi 11 Lell Bow Lhe ldenbifier ou Lo Lo wnind. g
eAdmple %X is Lhe value ol Lhe juentliier xo 10 & b Lhe wvaloe
(d 3F Lhen $%x will only mabch {a 33 Ne shall woe %5 ¥k
lucalbion o1 ") lor Lhe lovallon where Lhe value o] Lhe
identy fier x is stored. We nego Lo e abile Lo chomge Liw value
of an jdentiiler in o palttern match. osdppose Lhal £ has Lhe
value S. 1 we malch »=x L"the Leapurary value ol 2%) ggainst
{a bly, Lhen x will lomeulsotely be given bLhe value (a wl. lhe
laentirier ¥ will Keep Lhe value (o o) il the resainoer o1 Lo
pattern matches. ULherwiSe Lhe value of x will revert Lo J.
Note that mouwel 37 teletypes cbstinately convert Lne chuarecter
Hpack arrow” to Lhe characler =. Aguln suppose Lhol x haz the
value J: LF we malch 8% L"the permanent value ol ") againsl
(ad o, Lhen s will Lineealbely e glven Ehe value (o L), jwwever
Lhe value ol x will remain (a L) whether or nol Lhe resalnuer o1
Lig pallern malches. Onoe agaln suppose Lhal x oo Lhe volue 3,

11 wo wabcny 4z L"LUhe suoseguenl valuoe of ") agulitst (a ) Lowen
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tne value of & wlll remaln 3 unless Lhe rest of Lhe pattern
matches. [f the rest of the pattern matches then x will ce

assioned the value (a o).
qd.1.e owntax of Expressions

Matchless uses FPolish prefix notation Tor i1unction calls
with the actual call celimiteu Dy "™ ana "J}". Fror example (+ &
3} evaluates to 5. [I y has the value 4, then (+ 55y |} will
only match 5. Of course we use the characters (" ana "}" to
aalimit lists. The value of (55y) 15 (4) and the valua o1 (i+
sy 1) (4 a) ssy) is (o (4 ag) 4). If the lunction call is to
genote a segment then it is celimitea Dy "e¥ and “Y»>", [he
function rest will return the rest of the lList that it is given
as an argument. For example (rest (a b c)i evaluates to (b c).
But (1 <rest {a b cl» & ) eveluates to (I b c e f).
rurthermore, (& b <rest (1 (e 1) g)>» k) will only match (a b (e
I} g klse e use the characters "“[" anag "J" 1o gelimit vectors.
vectors are storea in garbage collected storage. The value of
[ssy (a b) ssyl is (4 (s b) 4). Tuples are aelimitea by "i[*®
and *}iv", They are storea in the stack whereas the vectors are
garbage collectea. (Otherwise vectors and tuples are

indistinguisheble.
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bhe sluple types anag Lhelr 2ULreviatiluns ores
VY ToF polnber [or dadiipedda (A Bl @y whno 1)

vatomi ol 1or atumic 1or eacgbple o, fuc, {0, @iy el

P lOr seEghent 107 erdiple =o o=, =3 {u w ci=, ==, Liim

[ist (o L €) hos subseguments ==, =d=, =4 0=, =& U L=, -0 L=, al
-C=.

iFlAY lor Dlixea polnl numoer 1or eddmplde 3, S, =@ld W

trLOATY Tor lloating point nudoer for example d.u, o1,
and bo.s

The rest ol Lnds sectlon snoulda nol be resa untll tne
redder Unuerstancs patbern matching wnlch 15 explalned in
section 4.4 below. Thé following Lypes wlll not be explalnea
here. Llhey are incluoea only for completeness. lhe
complicatea types ana Lheir soorevistions aret

VEAPFA Cype type=-olf=argumentst [or Kapps eapression,

LA ELA type type-of-arguments) tor lamboda expre2sslon,

VAT Tor ectivation,

val'}l ftor state,

te[NL} for binuings,

Ve typelt lor locatlong

VIdE bypelt fTor tuple,

tWouw Lypelt Jor veclor.
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thAsLLedt tor interrupt hancler

WFddCd for process

winer Lypes cen be geflnea. Fror example the Lype nuncer cen e

Jd2 1inea as Jollows:

laegline nua {(Kappa () {vel (fix}) t3loatls))

Uetine the type {nums {ie. number) to be & type with no
arguments which is the oisjunctien of ceing & rixes or 1loating
point number. The type xpr which is an s—expression can be

ug Iinec oy

{define xpr (kappa () ivel {atomicl {listi)))

An s=expression 1s () or atomic or & list.

(Jeline list (kappa () ivel () ipair ixprt {listl}i:))

A list is () or the pair o1 an s-expression anu a list.

(define pair (type ({ixpr} firsti{<list> rest))

(5= 11rs5t S=rest))}

A palr is a list whose first wlement is an s-expression ana the
rest is a list. The function make will construct thne

dppropriate structure for a type with arguments., [hus imaka

-
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tpair (&) (b clt}l evaluates to ((a) o o). Also Liirst ((a) @

Chr 15 (@) ano srest ((a) o chr is (b e).,

{uetine property-list {(gKappa () istar iatomict {xpritll

A property list is & list of even length such thet the ogo
mumoered elements are atomic. The actor star is the Kleens star
of reguler expressions. ror example the 1ollowing are property

lists: {1y fa (3)), and (pl & hello {r 3)).

{de1ine complex

{type {({irwm}) real){inum} lmaginary))
lcomplex $sreal $=simaginaryll)
The Lype complex has two arguments real and imaginary which are
numpers. The junction "make" applied to a type will construct
an object of that type out ol lists or vectors. 71lhe function
“egrect" applieu to a type will construct an object ol that type

out ©T1 tuples.

imake icomplex 3 4J)} evaluates to [complex 3 4]
treal imake tcomplex 3 4)}) evaluates to 3
timaginary {make {complex 3 4J))} evaluages to 4
tprog ({inum} a b))
4 This a comment. me are inside a program. [he

laentiiiers a and b are geclarea to be o1 type tnumt) ie number’
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i1 in the assignuent statement Delow the patiarn
tcomp lex $-a s5-oJ) ls matched agalnst the expression lcomplex 3
4.
tassign {complex 5=a s$=b} imake l(complex 3 4.))
& gets the value 3
b gets the value 4
ireal iassign (complex (replace 7} 4) imake tlcomplex 3
420} evaluates to 7
iprog ti1ixd ({icomplex) (¢ d{erect 1 211}
ireal ss5ct) will evaluate to |
The expression (SETLUC 1 x) will set thne location 1l to Lhe value
¥ anou return the value x.
tsetloc
ireal
imake {complex 3 4}}
lock

2y will evaluate to [(complex £ 4]

me can deiline the type PLUP=10 instruction as iollows:

(de 1ine instruction (type

{(({fix} opcoae)

(tfix) accumulator)

{ifix} lnulirect}

(ifix) inwex)

({1ix) adoress))

ifielas

(ipits . 27.} $=cpcooe)
{({pits 4. 23.) s=accumulator)
{ibits 1. 22.) s=sinoirect)
(ibits 4. 1d.) $=inaex)
{(ibits 18. U.) s=adoress)lt))



A insturction with opcode 254 ena 4 in the accuswlator 1iela
will cause the machine to halt. ®we can construct such an
instruction with imake tinstruction 254 4}) which evaluates to

Lne rixeu point number “&544 ULLULLRY .
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4,3 Slmple Examples o1 Matching

The ioea of structural matching 1s fundamental to the
mAilohbkbss processor. By means ol Ehe primetive function «iS
pattern expressiont we can determine {1 patteri astches
eipressicon. The Tunctiocn "is"™ pas the value true Iif thne watch
sdcceeds and () gtherwise. FPattern matching takes place through
tneé use ol slae ellects to change the value o¢1 [oentiilier Lo be
that 01 the object which it is5 matching. The assignment
statement in MATCHLESS is5 a wvarient o1 the primitive "is¥., The
gxpressions (ASS1GN pattern expressiont is well deilined only 11
pattern matches expression. Tlhe value of the function "assign"
15 the value ol expressicn.

A segment fdentl iier is alweys assignea the smallest
possitble leftmost segment as wvalue in matchning. below we glve
spme examples o1 the values of identifiers after assigneent
statements nave been executea. ne use the character = to
aelimit segments. The characters ( and ) are useo to delimit
function calls.

tprog (a (latomict h) (<?> ¢))

L3 This is a8 comment. ®e are insiae a program
in which we have ceclareo a to be a pointer, h to ce atomic, and
C to be a segment)

ti in the asslignment statement below the pattern



Le=ad K %= =L} 1s matcheo against Lhe value (L1 K o | al.
Lis (5=a K S=h %=c) ((l) kK b uw ail’
g gels Lhe value (1)
h gets the value b
c gels the valug =0 a=
live valde 01 the program is true winich is the value of Lhe
assiciuant Stalament.
tprog {{<%> c) (tatomici h) &l
iis (5-¢c $-h k %+-a) (a j b k gtk
¢ gels Lthe value =a j=
h gets Lhe value b
g gels Lhe value g
tprog (first last (<¥>» midualel)
iis (s=1irst s-miodle s-last) {(a b ¢ alli
first gets the value a
migale gets Lhe value -0 c=
last gets the value d
tprog (A bl
tis (%=a %=b) (a)}) 1ails because there 1s only
one element in (o).
tprog ({(latomick all
tis %=a (o t)}) iails pecause (o T) i85 not an

atoai.
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An expression that consists of the prefix operator 5% 1olluwea
by a laentli lier will only match an object equal to the value of
the fgentiiier.
wprog ((<%> al)
tis (5=~a 5%8) la b caochh
a gets the value —a b c¢c—
tprog ({(<%>» a b))
' 1is (=8 x %%5a s-b) (a b xd xabxaqglil
g gets the value —a b x o=

b gets the value -g-

An expression that consists of the prelix operator 57 (reaa the

value given) followed by an loentifier will match the value o1

the identifier if it has one, otherwise the identiilier is
assigned & valua, We shall use The pseudo atom NUvALUE to
indicate that an icentifier does not have a value.
iprog (aj
tis s%a tM
a gets the value t
iprog ({t11ix2) (& 2)1)
tis s%a 43}
a is5 initialiZed to 5 on entrance to the prog.

Conseguently the assignment statement fails.

itprog ({<%> a))

{is (g+=a s7a) (8 b c ¢ b al}t}t tails because once



@ 15 asssigneu & value, a can only makch & segment Lhat iIs5 equal

to the value 01 . [T @ pattern in an assigneent statement
cannot match the value of Lhe secpna argument of the assignment

Statemsnt then Che assignment statement returns the value (),

otharwise Lthe value L.
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4.4 Frimitive Iorns

4.4, runctional Forms

Functicnal 1lorms begin with the atom lamboca or the atom
bindlamoca. They lcok like:

(LAMBLA type list-or-parameters exXpressions) where type
is the type of value returned ana the value of the lerw is the
last expression in expressions. If the list of parameters is
atomic then that atom is the only parameter and it is bouna to
the list o1 unevaluateu arguments. Functional forms tnat begin
with the atom binolamboa have the 1orm (BINDLAMBOA type (list-
of-parameters pinocing-icentifier) expressions). For example

i{lambda x $sx) a o ct evaluates to (a b c¢)

IT the 1irst element o1 the list o1 parameters is a type then
there is just one argument which 15 & tuple o1 that type.

{(lambga ({tup (1ixl}d xJ) (1 $sx})) 11 £1 33} evaluates to
1] where {tup t1ix}} is the type 01 the tuple o7 lixea point
MBDErs . The function | selects the rirst element ol the
tuple.

Utherwise we wlll have a list of declarations 031 iuentifiers.
t{lampoa (x) $sx) (% 3)} evaluates to a pointer to 3 1lhe
Tunction " iz guote, MNote that the value {5 not the Ffixeo point

nunoer 3.



itlampoa (x) $%x) al evaluates to a

tilanboa trixd ({L1ixd x)) $5x) 4+ 2 2)) evaluates to 4

(({lamboa 1 1ix} {Ettix} Wiy oA+ 55x 1)) 2) evaluates to 4

illampaa (it ((U1ix) ) (Arixd y)) i+ $sx S5y} 2 3)
evaluates Lo b
[1 an 1aentl tier is of type ("} then the correspanding argumant
is not evaluated.

\llamboa (C4") x)) $$x) 3) evaluates to a pointer to a

i{lampbca ((4"} %)) $5x) al evaluates to a

iilambaa (04"} x}) $sx) i+ £ 2}) evaluates to (+ 2 2}
runctions with an arbitrery numoer ol arguments &re accomouatea

by passing & tuple which contains the evaluateu arguments.
oupposé Lhat we already have @ rfunction plus which will ada two

numbers together.

(define + (lambda {1ixl} ({tup (fixl}} x)
ti the type {tup (fix}) is a tuple o1 tixed point
nunpers}t
L ror 4 1ixd
(L 1ixd (result wll
{3 declare the iacenti lier result to be fixed

point number and inftialize it to ul)
{({test
tis V010 ssx)
treturn S$Sresult)

13 each time before executing the loop
test to see if x is the null tuple and if so then return the
resultl)

{(step lassign six lrest Ssx)})

i\i aiter each pass throught the loop

assign x to the rest of xJ)
lassign siresult iplus (1 $$x) $sresult)}))
ti the body of the loop is to add the first

element ol % into the resultl}))



L+ 3 £ 4) evaluates to ¥

Gedee MALTO FOrMS

Macros are expandec by the interpretery by the
dassembler, ana by the compiler. lhe results are respectively
interpreted, assemolea, ano complles. sacro lorms look like

(ACHU list=ol=-parameters expressions) The expansion of
tne macro is5 the value o1 the last expression. The function
ganbraces will generate a pair of braces. For exauple (1

\genbraces a 5} 6) will evaluate to (1 ta 5} &).

{deline chop (macro (x)J

tgenbraces setloc
55X

\genbraces rest (genbraces content $sxJ})})

The macro chop will take a location as its argument and cause

the contents of that location to be changed to contain the rest

ol the previous contents.

icnop 5"y} will expanc to {setloc 5%y irest {(content
s4yJ)

e could have cgefinea the function + as & macro as 10llows:

(Jefine + {(macro x
fcong
{it15 () irest Ssxtt

ti it the rest of 2 i5 () then the answar L5 Ui
i)

{t



i3 otherwise we want to expand to Lhe sum of Loe
sacond elemnent of x anu “+" of the rest of the rest of xi
tgenbraces plus LZ 53xJ) lgenoraces + <resl 55K
2x0r1100
Thus

i+ 3 2 4) expands to iplus 3 iplus 2 iplus 4 Lit)

4,.4,.,3 Actor rorms

Actors are used in patterns to match values. JThe
primary aiillerence between functions and actors is that
functions proauce values while actors matech them. Actors and

functions take thelir arguments in an exactly analoegous Jashion.

Actor forms begin with the atom kappa or the atom
plndkappa. They look lLike:

(KAPPA type list-of-parameters patterns)

[BINDKAPPAtype (list-of=-parameters binoing-identiier)
patterns) where type is the type o1 value matchea and the Ilorw
must match all of the patterns. [If the list of parameters ls
atomic then that atom is the only parameter and it is boupa to
the list of unevaluateo arguments. For example

{{kappa x 5%x) a b ct) matches only (a b c)
If the 3irst element o1 the list of parameters is a type then
there is just one argument which is a tuple o1 that type.

{(gappa (itup {1lxltr x) $sx) 1 2 3) matches only i[1 <
3]t where (fixs)t is the type of the tuple of flxea point

NJdobers.
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ULherwise we will have a list ot aeclarations of identiiliers.
tikappa (x) $5x) " 3}} matches only a pointer to 3
(lkappa (x) ssx) al matches only a
Likappa (Ifixs ((43ixd %)) $5x) i+ & 2}) matches ouly 4
\lgappa irixy ((4fix) x)) 4+ $8x |}) 27 metches only 3
\lgappa {1ixd ((0fix} x) (Lfix)d yh) o+ $5x $5yr) & 34

mdtches only &

[1 an 1gentitier is of type ("} then the corresponding argument

is mot evaluated.

Ligkappa ((i™) x}) %$8x) 3} matches only & pointer to 4
Llkappa (01"} x1) 355%) al matches only a

tlkappa (04" x)) 35x) 1+ 2 2)) matches only (+ 2 2}



4.2 Actors in Fatterns

Examples of actors are vel for disjunction, non lor

nagation, et Ior conjunctien, ana star jor Kleene star in

general regular expressions, we use the characters < and » Lo

gelimit actor calls that are to match as segnenls.

\prog (a b ¢l
i3

weg are inside &8 program. we have

geclarea tne loentiiiers a b ana ¢ to be pointers. In the

assignoent statement below

the pattern (k <et $=a 5=b>» $=c) will

pe matched against (& x y z). The pettern <et s-a §$-b> wlll

match an expression only i1 both %$-a and $-b match the

expression. )
iis (k =<et
a gets the
b gets Ltne
- gets the

tprog ((<?> x ¢l

$eg s-p> F=c) (k =y 2)})
value (X v

value (x y)

value z

115 (3+~x <vel (th) (twl» $=c) {(a o tw thitJ

X gets the
¢ gets Lhe

iprog (x)

valueg =a o=

value -th-

1i5 (estar a» $=x) (a a a a)})

¥ gets the

value a



lhe argument o1 the if actor is & list of clauses. If the
oo ject that the actor i1 is trying to match has the property the
it matches the first element o1 one of the clauses then it must
match the rest of the elements in that clause.
tprog ((ifix} x))
tis (1f (ifix) s5-x)) 31}
X gets the value 3 since 3 Is & iixea point
i oE I,
Ine argument of the actor when is a list o1 clauses. If the
Iirst element of one o1 the clauses evaluates to true then the
ob ject that the actor is trying to match must match the rest of
the elements in the clause.
tprog ({y t))
tis iwhen ($s5y $=y}J} (a b))}
¥y gets the value (a b) since it was initializea

to t

A number of actors are wefinec below. Fror example " is guote.
Thus {* $s5a) will only match ssa. A palindrome is defined to oe
a list that reads the same backwards and forwards. Thus (a (b}
(o) ady, (), @ana ({a b} (a b)) are palindromes., More formally in

MATCnLESS, a palindrome can definea as an actor of no arguments:

{define palinorome

{kappa ()
ii palindrome is & actor of no argumentst

Lvel



0

ti a palindrome is either () orl}
tsame (x)
i let X be a polnter Lo Lhe

rirst element o1 the list. Also x must be the last element o1
tne list with & palindrome in between!

{%-x <palindrome> s3%x)i:})
ror exadple
tis tpalinoromel (a | | &)} is true.

The Torm kKappa (s like the lameoa of LISF except that It 15 wsed

in actors insteao o1 in functions. The above definition reaas
g palinorome is a list such that it is () or it {5 a list whicnh
begins ano enas with X with @ palindrome in petween."™ [ne actor
s5ame causes the loentifier ¥ to be rebound o the pseudo—atom
NOvALUE every time that palinarome is called. The actor reverse

is detined to be such that (is ireverse $$xJ ssyt) is true only

if the value of x 15 the reverse o1 the value of yv. [he

definition of reverse Ls

(de 1lne reverse
(kappa (x]
tif
(tatomicl
{3 1t the object being matcheu is atomic
then it must be egual to x/J
S5x )
({same (first (<¥> rest))
i3 otherwise let first oe a
pointer to the rirst element of the matchinE oD ject and rest be
the segment of the rest of the wlements ol the matching object.)
[S=first S-rest)
Li when (<reverse (restls
531irst) matches 55X we are aconel
(when (11is
[<revarse (35restisz
5 1irsc)
55x2) 1))



4,23 page el

For exempls

\is dreverse {x y 23} {2z y x)} is true

Essentially all the iceas rfor the actors come row Fost
proauct ions,; bhr, general regular expresslons, cllival, SnUpOl
CUNVERT 3 and LIaF. ne will wse UbJ to designate Lne expression
thaet is to be usea to match the actour calls being setined velow,
mwe will give examples o1 the use of these actours ailterwara. lne
actor braces is cvelineu to match & palr of braces. |hus (braces
I &) will watch 41 24, The function gengraces will generate a
palr of braces. The expression igenuraces 1 2) will evaluate to

Ll 2k

d.5.1 Primitive Actors

d.9.1.1 Control Primitves

{NUN pattern) will match an object only ir pattern does
not match the object. 7Thus {non ¢) will matcn a, but inen al
will not match a.

iveL wisjunctst where disjuncts 15 of type segment will
match an ooject only 1f some alsjunct in turn will match the

oo ject.



‘el conjuncts) where conjuncts 18 ol type segnent will
match an oo ject only i1 each conjunct In turn will metcn the
O |2Ccth«

{[F type cleuses) where clauses (5 ol type seguent will
mateh an ooject if the 1irst element of some clause In turn will
mateh the object and then the rest of the elements in that
clause match the object.

wpreg (X vl
tis
111 (lnum) S$+x) (s=y)2

foo))

y gets the value foo since loo 15 not a nuaber
isAME type aeclaration patternst where patterns has the
type segment will match an object only If each pattern in turn
matches the object. The actor same is like the actor et except
that it ceclares its type and can declare ldentifiers.
tassign isame (x} $-x) 4)
% gets the value 4
{FATFROG type ceclaration beody! where booy Is of type
segment L5 just like the function prog which 1ls descrioed below
except that insteau o1 exiting by c¢alling the function return It
exits by calling the iunction true? or the iunction ralse which
dre gescrivec immeclately below.
{TWUk? patiern expression oindings) makes sense only

wnen evaluated within the actor patprog. 1f pattern matches
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aXpression ana Lhe rest the match In which the patprog appears
sdoceeus tnen the patprog 1s exited. Otherwise, Lhe valuwg o3
the unction true? is a message cresated oy the jallure Lo watch.

irALSE mnessager causes Lhe generation of & 1a8llure with
& message bLhe value ol message.

iwilEMN type clauses; where clauses i35 0l type Segmuent
will evaluate the tirst element of eacn clause. 11 the
evaluation is non null then the rest o1 the elements in the
clause must match the object that the actor wrkl {5 attempling
Lo match.

tproeg ({vfixt) (y 1)) x)
tls  iwhen (1is s=x i+ 35y 11} i+ 535x
211} 4t}
¥ gets the value £

1%5 thetal will only match an expression which matches
the igentl iler theta,

157 thetal will act like (5% theta) if the icentifier
theta has a value. Otherwlse (57 theta) will match an object =
only i1 the iocentlfier theta will wmatch X.

158 thetal will match any aexpression x wnich will watch
tne laentifiler theta ana will give theta the value x.

1%~ theta) will match any expression x which can match
tne identi1ier theta. The identl 1ier theta will oe given the
vdlue x except that if the pattern fails to match then x will be

restoured Lo its previous value.



t%5 Lheta) will math any expression x which can match
the loentljier Cheta. [1 the entire pattern matches Lhen theta

will be assigned the value x.
d.2.l e Uakba Strnucture Primitives
deo.ladel Pointer aActors

12} will match any s-expression.

1?7 nt will match an object only i1 the object has lenglh
the wvalue of n. For example the lollowing are trues

tis 17} (b a ¢l 1s true.
iis (<i>) (s is true.

tis (a <¥») (8)) is true.
tis (a <?>») (a b)) is true.

Something o1 the form "™ %X} will only match an object 11
the object is equal to x. This is just another description of
the actor " which 15 gquote. Fror example 1" $sal will only match
§5a ana (" a) will only match a.

{5TAK patternst will match an object only if the object
consists ol a4 seguence (lncluging the null sequence) of elements
that match patterns. ror example {(star 3} will match (3 2 3)
and (a <«star o c> e) will match (a (o c) (b c) e).

{UAUGER patterns) will matnc an object only If the

op ject consists o1 at least one sequence ol elements Chat match
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palieris,. For exemple (dagger (1ixJ)) will match (3 ).

Lo TIUNS sequence=of=patternst will match a sequenca of
elzments which match a suoseguence ol Lhe seguence-of=options
Irom left to right. ror example toptions a (fix) latomicls will
mdt ey (a ).

ihadllE argt will maetch any object. As & Slue effect it
prints the value ol arg.

t== xt will match an object only 11 the valua o1 & is eq
to Lthe object.

LCUNTAINS pat) will match any object tnat contalns the

pattern pat.

toe ling contains {ocinddappa (((i%) yi)l ol

L Che luentifier o 1Is bound to the
bindings that were in lorce before the funchtion contalns was
entered’

Ly the function contalns takes one
argument which is not evaluated!

by we must make v infto an actor with no
arguments)

Ly the function val will evaluate any
eipression relative to a set ol bBlnoingss

Li the function genbraces will surrouna
its arguments with braces’

. tcontainer ival (genbreces actor (kappa

() ssylt ssoli))

(cefine container (kappa ((lkappa ()} x})

L CONIAIRS i5 an actor with ocne
argument x which 15 & kKappa expression which match2s pointers
and Lakes no arguments)

Lir

(i535x)

13 ir the actor matches the
matcning oo ject then we are aonelt)

(vatomic}

i3 11 Ehe matching object i3
atomic then fall:



Lfalsel)

[({icontalner ssxt <iz2)
Ly if the 1irpst element [n Lhe
mabohlng oa jucl conbtalns X then we are aonei)

. _ (ti else the rest of tne
mabehiing oo ject mist contain x/
(L¢) <contdliner Ssx»)lill
LomAack locations will match an ooject only i1 location
is & type that can holo a type of the the type ol uod. LI tne

rest ol Lhe mnatch succeeus then the locatlion is smashed Lo hola

thne object,
tprog f(i11ixs (a 1})))
{is tsmash $"al 23}
8 gats tne value £
thePLACE x4 will match any object. 11 the entlre
assignment statement succeeds then UdJ will be replaced with x.
Vprog iyl
ils tet 5=y (ireplace al} <replace (b)>)}
{c delhs
v gets the value (a4 D)
{CUNTERT patJ) will match an location whose content
matches the pattern sspat.
tprog ((LIix) (a 3) )
tas5ign (content S=bt $Wal)
O gets Lhe value 3
LLUCATION pat}) will match an expression whose location
matcnes the pattern sspat.

{prog



({tloc verd yhi
iis [4Yy {lucacion =y}t <s»J) [a b Ciy
ireturn (in ssy )it will evalusbs Lo o
tochlus xt will generate a8 new locatlon ofl Lhe bStaeck
nolaimnyg the location ol X.

{in tgenlec 3)) will evaluate to 3

4.2:lded Abom anc Froperty Actors

LATOMICY will enly match an atom.
tis tatomict at is true.

ihAS propertiest) will match any atom with The
appropriate properties where properties is o1 the form

{indicatorl valuel) (inaicatord valuec)... 1he absence
of an lnaicator on a property list is exactly equlvalent To that
indicator peing present with with the null value. [he actor
"nas" allows MATUHLESS to @o pattern matchlng on arbltrary grapn
structures. Atoms represent the noces o1 a graphs their
propertles represent the links between noges. The example o1
the syntax of LIsF given below shows how we can write grammars
aver graphs. The ldea of aeveloping pattern structures over
graphs has peen generalizeoc ana extenaed In FLANNER.

il Th pattern propertiest will match an expressicn such
tnat its rirst element matches pattern and the result of getilng

Lhe value of inalcator will matceh wvaluws. The actor with is wsea



in PLARHNCKR Lo match expressions that might nave pruperty liscs.
VuolvE propertiest) will mateh any list or atom where

properiles 1s of the form ...llneicetor valuel, ... 11 Lhe

entire assigument statesment in which the actor succeeas then the

value of valuel will be storec unuer the value ot Ltnolcator!.

de2s lecad nora ang Wumber Actors

ius) will match Ued only if UnJ is a a nuaber. ror
example inums will match 3.

1Le35 nt will match any number less than the value aof n.

{GREATER nt will match any number grester than the value
Ol Nna

\rlELLS  specilications) whuere specificatlons is a
segment will match any fixed point number which meet aach
specl lication o3 a fiela in turn. A i1ixeo point number x will
meet & specification of the torm (pits pattern) only if the
numoer whicn is the byle of x uelinea by Dlts matches pattern.

itielas (ibits 3. U} 4) ({bits 1. 35.)0 1)) will

match a fideg point pumnper whose lower 3. blts are 4 and whose

sign bit is on.

G.o.l.2.4 List Actors



Al erpression weliwitea by “(" ana ") will only watcn a

list.

G.o.laces vector ana Tuple Actors

An expression delimited oy 0" ana "I» will only natcn 4

vector or 4 tuple.

d.9.l.£.0 Algebralc Actors

{sud terms rest-of-terms) where terms is5 01 type Segment
will match a sum of terms such that the rest of the terms matco
the pattern rest=of=terms.

{is isum a b 17}) (# ¢ b al) is true.
iprog (y z x)
tis {sum tet inon c} 5=z} S=y S~x} (+ C
B oalid
2 gets the value b
y gets the value ¢

X gets the value &

tprog (y x)

tis {sum $=y b S=x) (+ | ¢ b dl)l})
vy gets the valueg |
% gets the value (+ d c)

toulM=0F term sumt will match any sum of terms Lhat match

the pattern term such that the sum of such terms agatches the
Fabbern Sui.

Lprog (y)



tis tsum=01 iproauct x 1Y) &=y (+ (% j3
b (® X @llik
¥ gets Lhe value (+ (x x al) (% 3 x))
LPAVLLGT lactors rest-of-factors! where lactors is o1
type seguent will match & prouuct of 1actors such that each

Jactor matcnes « pattern in factors and the rest of the lactors

match Lhe pattern rest=-ol=factors.

iis iproouct 9 b ct {* c o 5)) (3 Lrue,.
prog (X vl .
w18 tproguct fet ianJ Se=x) oy LEl) (%
(+# 2 &) 3 alh)
¥ gets the value 3
¥y gets the value [+ £ al
iprog (x)
iis 1pruuuc£ 4 3=x 13 Uk
% gets the value U
LPROLLCT=UF tactor proouct) will match any proguct of
lactors that match the pattern tactor such that the proauct of

S5uch facteors matches tne pattern product,

tprog {(x1)
tls iprouuct=-of inoen tnumtlt s-xJ {(*x a 3

b b.ldl}}
* gets the value (& b 4)

(FUNEH base exponent} will match an exponential.
tprog (x y!
Lis tpower S=x S=y) (=% y 2)}})
% gets the value vy

¥y gets the value 2



Lprog (x vl
tils tpower s=x S=yJ ultl
x gets the value U
Lprog (¥ vl
Lis {power $+=x s=yl} |2
X gets the value |
Vprog (a vl
15 LEower Lel Lrdey 1) s=wi Ll B
¥ gers tne value u
bl faclor terms rest-of-terus) where Larms 1s of
type segment will matcn a sum where a [factor Loat matcnes Lhe
pattern leclor appears in seversl terns.
{15 15um <common X Lsum 3 al Liklr yy U+ (% a x) y (x g

X1y 15 Lrue,

{dellng guadraellc

(kappa
(x (tkappa (}} a) {(lkappa ()} o) (ikappa (J}) ¢l
LS
< COmRon
Lpower $3x /)
tet inon W o tnon tcontains $5x)) Lssaliz
< CoMlicd
S5n
tet {non tcontains SsxJ) VS55D))>
vet tnon tcontains Sox i) ASSciirli
1lnus 1T
iprog ol0id s speciallal Ll cih
vis
itguauratic
¥
wactour (zappa (J 3-ali}
iactor (kappa (J =0l
tactor (Kappa () s+-cl))}
(+ & (= 4 y) (% z (%= y 2) 4d) (% ¢ yI}}}
then

al gets the value {(w 4 2]
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2 gets the value (+ ¢ 3)

cl gets the value a

4.0.¢ bEXewples or the use of Actors

lne rest oI our examples ol the use 01 aclors will come
Irom giving & rigorous gefinition ot the syntax of Lis¢ in
MAIChLESS. lhose reavers who are not interestec 1n the wetails
need not read section 4.5.£ lhe Iollowing gramnmar accoudnts Jor
gssentially all the context dependent Jeatures ol the LISV
syntax. It speciifies that a 1unction call must have the right
ndmoer oI arguments. An expliclt go wust have a Lag to which it
can go. lhe syntax specifies that some icentifiers are free and

oOLhers are Dound.

(deflne Lop=ftunction (kappa ()
\ 56 me
({{<¥> special) (tags (1)) (poundvars (J))))

(lambasa {varlist) wformrdtl)

Thus for example ittop=ilunctiont) will mateh (lambda () ()). [he
actor top=1unction introduces the pattern ldentiriers tags ana

bounaovars 4no binas them to = = which is the null segment.

taegline varlist {(kapps (1)
istar
L Sane
({vatomicl) curvar) ((<?» speclal trea)
wounuyYars))
S=CUrvar
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Awhen (tis (S~boundvars) (sScurwvar
Sao0UnNGVarsht) it}

The actor varlist checss each foenti fier in turn to nake sura

Lnab it is an atom and then puts the fgentifier in Doundavars.

Ldeiine
form (fappa ()
111
Etntumic? ivel {constantsy {varli)
(latomics <22)
iir
({prog <?2) {progforml)
{{cond <%} ifconuforms)
({setg <2?>) (1%} ivar) {1orm}))
({go <y2) {golormsi
({ihas ((suDr L2400 =¢3) ({¢?) <s5tdr sformj>))
({ithas ((expr \¥2))} <€9») (exprioring)
({thas ({(fexpr (?)))) <22) L¢})
({ihas ((1subr (7))} <i>) (¢¥})
({ihas ({lsubr v¥J)J))} <22) (i¢} <star (formi>}}
({ilhas ((lexpr (¥)))}r <3} ({?) <star i{formlt>)}
[
Lt
ilsame (axpr) s=expr iwrite [(ssexpr
unaerineal i} )
({{lambda <7>) <¥>)) {lambda=1unction’)

({4) (lform) estar (forml=))J))
The above definition says that 11 a form is an atom then it must
be a constant or an loentiffers 11 its first element is5 an atou
then i1 it begins with the atom prog, then 1t must be a prugtorm

etC.d 11 it beglns with "({lambda" then it must be a lamboa-

funclions otherwise 1t must be a lorm followea by a formlist.



4 page a9

tdeline constant (RKappa tatomic) () ivel © () wmwms il

lae ohily constants are L, (), ahu Nuilbers.

{ueilne
var (kdppa tatomict ()
Lagle
({vatonics curvar) (<7 special Ifree) Dounavarsli
F=QAIvar
Lvel
twhen (tis (<72 sscurvar <:») (ssbounavarsttr)i
Lwrite (S3CUTrVar unoounwt st

A Jaentiifer is either in oounavars or it 15 unbodnd.

(define conaform {(kKappa () (cona <star (<star (forms>}2>)110}
[define
proglorm (kappa ()
15¢m?
((<?> special Iree) tags boundvars)
{{e¥> speciall
LLags (ss5tags)l)
(localtags (1)
(oungdvars (ssbounavarsltill

[prog
Lwarlistt
<et
vecollect=tagst
iwhen (1is (s-tags) (ssloucaltags sstagslil
istar (or tatomicl {rormiita>pr))

Un entrance to progrorm tags ano boundavars are rebouna to thelir
pravious values, lhe prog icentifiers o1 the prog are put in
bounavars, the tags in the prog are put in tags by colleci=tags,

and Lhne bogy o1 the prog is checked to see i it is well foraea.

tae llne
collech=tags (Lappa ()
Vale
Lve ]
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isame ({tatomic) curtag) ((<?> speciall
localtags )i
s=curtag
iwhen (VIS (<y> jScurtag <i»)
(33lucaltagsli
iwrite (wultiple Lag sscurtag)s)
{is-localtags) (Sscurtay
salocaltagslii

trrirh
(aelina
expriorm (Kappa ()
i Same

(args lambdavar)
£
thas ((expr (lambga S=lamoaavar <i>))))

<et istar i{forml} s~argss>) _
\when ({15 (same-num} (%3 lamuGavar SSargsitiiil)

An exprilorm is a call to an expr with the correct number of
arguments, hole that ilmmediately inside the actor expriocrm the

ldentirlierss args anu lamboavar are bounc to the pseuao atom

NovALUE.,

[daiine
Same-num {kappa ()

ivel
() (1)

Lsame
[i(<?» a ol)

(Led s=a) ({7} s-pl))

twhen ((is (same-num) ((5%a) (55pJ)r)}lr))
Ine pattern isame=-num’! will match any list witn two elements
proviged that tne elements poln have tne same number of
gledment s. ror exasple it will match any of the 1ollowing listste

(Ca00d, (laltbll, €C1 2 33 (5 2 1)).
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Lag llna
golorm (Kappa ()
Lgo
Lir
(iatomict
Lsame (curtag ((<¥> special ireel tagsi)
s=curtag
ior
tassign (€7> Sscurtag <7}
{sxCagslt
iwrite {iﬁcurtdg unuel inea
Lagliiil

(iTormtiilll
A gotorm is eitner an explicit call to go Lo & tay which must be

in s%ta3s or & computed go.

(deline
lampua-function {(kappa (1}
isame

{args lambdavar)

(
1 58 me

{
({=2?> speclal free) boungdvarsl)
i{<?> speclal) (bounuvars

(sspounavars) )l

{ lambaa
vel ivarlisiy s=lamoaavart
vFormt )4

<eb \star {lorml}) s«~args=) )
iwhen ({is {same-num/ (5% lamboavar 3%argslitililll

In a lamboa-tunction the bounu icentillers of the lambda must oe
gJdoec to pounavars ang the leapboa=funcbion must have Lhe proper
numper of arguments.

The above syntax coulu wasily pe extencea in several
girections. For exanple we coula easily modity 1t so Ehat 1t
woulc accept type cveclarations ana uo type checking. The synbax

o1 MATCHLEDS coulo easily we ceitineu in MATCHLESS.



d.0 Frimitive runclions

.0 Frimitlve Functlons

examples of the values of varilods expressions are given

Dalows

8 <valuates to &

{a b ¢) evaluates to (a o ¢)

i" tsalt evaluates to %5a

i+ | 2}t evaluates to 3

fa b i+ 2 3}) evaluates to (a o o)

{a o <" (a bl>) evaluates to la b a o)

IT a has the value 3, then ([{35a))] bl evaluates Lo
(L{3)) bl

4.0.1e1 Control Primitives

4.6.1.141 Single Frocess

tlz pattern expression) is true only 11 pattern matches
tne value 01 expression.

LASS]UK pattern expressiont is defineo only if pattern
matches expression. The value of the wunction "assign" is the

value 01 expression.



il ftyvpe geclaretion boayld where Lhe idenbifier bouy
is o1 type segment. [1 control lalls through the woltoo of Che
tunction prog then (L Ltakes as Lts value tne value o1 Lthe last
SLatement ol ThE LodY.

Vi CLmmdeikl ) 15 o comment which will net we seen by Lhe
interpreter or the compller.

iug tagt will transfer control to the place aelinea oy
tadga

iy activationt will restore the activation anda continue
processing irom there. A ceclered Lag is & local identl lier
whnlch nos as 1ts value the activation Jefined by the tag. [3J &
tag is aeclared, it must De declarec in the plock nead of Ltne
block in wnich it 15 a8 tag. 71he Tollowing expression will reac
in the currently copen file ana return Lhe elements o1 the rile

in reverse oraer as 1ts value. 1The function my=reaa transtrers

to its argument when it reaches the ena o1 file.

iprog ({(«<¥> (value (J)))(ilact) ena-oc1-1ilel)
t4 The segment icenty iier value 1s

tnitializea to the nwll segment and Lhe activalion engd=oI-1ile
is defined by the tag pelow!)
agaln
{assign (sivalue) (imy=-reag sSsena=of-
file) $svalue)) 15 11 there s another expresson in the rile
then put in value else go to eno-of-file)
tim againt
erna=cr=111e
{return (&svalue)t)

theTURN ®) will leave the current clock with the value



tEall % will leave the current fupction with Che value

(AICH % p) will attempt to evaluate x. lI an error
occurs in the evaluation then the value of the function catch is
tne value of p. Utherwise the value of the lunction cabch i3 the
value 01 X.

{UASE tyvpe n Or expressions) where the icentiiler
eXpressions is ot Lype segment will return the value of Lha nth
EXOres510N.

icase ¢ of a b ¢l evaluates to b

{HJLE type FUH x clauses) will give a rule for the
expression x. The value of x will be matched against tne rirst
glement of each clause until & metch is tounu. If there is only
one slement in the clause then the value o1 the function rule is
the value of x. Utherwlise the value is5 the value o1 the last
element of the clause.

trule 1or b (11ix})} evaluates to b

tprog (x) irule tor a ($-x (35X Ssx)i}i
evaluates to (a a)

irule 1or ¢ (o e)! evaluates to (I

ind]LE preacicate expressions) will sxecute the
expressions while the predicate evaluates to true. [t 15
gquivalent to the lollowingi

VRROG ()

AUGA TN
VU ONL



[LHUT preglcate’

RETUAN (203
HRUIeSsl0ns

el AGALNG 2
WAL IL prealcate expressions) will execute the

gpressions until the precicate becomes true. It is eguivalent

to the Tollowlng:

LFHOG ()
AGATRN
LU U
(predicate
CRETURN (22)2
expressions
LGU AGAIN I}

kU type declaration
({INITIAL initiall

(oTer step)
(TeST precicate test—action))
Lody )

where the ldentilfiers initial, step, test-action, and body are
o1 type segment i1s definea to be an aboreviation for the

tollowing where LOUF 15 a unigue generated lapel:

AU Lype aeclaration
intial
Louap
WUkl (preclicate test—action VHETURN (3J3ibi
ooy
step
tLl Loup i

Altarnatively, we have

VFUH type aeclaration
(CLNITIAL 1nitial)
(TeEaT1 precicate test=action)
(LIg] item conaition)
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(olkF stepl)
Loy !

wWnere the ldaentl llers initial, step, and boay are o1 type <i» 13
lite tne for loop previously cescribed except thal the value o1
Lthe lor statement 15 the list of all the items such that
ssconoltion Ls true. It is equivalent to the tfollowing adthough
it is implementec much more efficiently because it only uoes one

cons for esdach iltem in the value.

iFHUG type (ceclaration (ixpry (CULLeCTEL (D))}
tf geclare CULL=CTel to be an s=
edpression initializea to nill

initial
AGALN
LCUND
{prealcate
Lest=action
VReTURN S5COLLECTED Y X2
boay
LCUNL

(conulition

Ly aua ltem onto the end ot
COLLECTED i7 conaition is met lhe function "jgentity" is the
luentity functions

_ (AS5IGN $:COLLECTEU (<55
COLLECTEL> iteml)}ii

step
100 AGAIND

In adation to peing able to list the elements procuced we can

gppena or concatenate them.
(55 thetal is the value of the lcentifier which is the
value o1 theta.
tprog (0{Afix) comnond {x 13 (v x1)

188 85y )} evaluates to |



G4eBelal ez Multi=Frocess

Uiten it is convenlent anag more ef licent Lo have more
Lnan one MATCHLeSS process in existence at one Time. oy a
process we mean & program counter Logether wilh & stack.
Frimitlives are needeg for the lollowing functionsi:

I8 Creating processes

2% Causing Lhew to run

4% Lestroying processes

WHeATlE %) will create @ new process which will oegin
execution with The function call x. The value 01 the functlon
create is the name name of the created process.

{PARALLEL name x} will start the named process with the
execution of the wunction call x. [he calling process will
continie to execute the other arguments of the 1unction in which
tne call to parallel is mage. The value ol the function
parallel is the value of x. The nanec process will be destroyea
when LIL returns ana.the returneo value will be usea as an
argument. The celimiters i{ ang }i can be usea to acelimit
pararalles calls jor elements and < and >0 can be used for
Sagment 5. lhus in the 1cllowing expression the sum of 3 ¥ 15
computed at the same Time &5 the sum 01 V anug ¥i

th tvs 34 Wil o+ T w1
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(HeoUME name xJ will resume execution o1 the namec
process Irom the polnt that control last leit it &and suspend
eieclition o1 the calling process. lhe value o1 ¥ is made the
value of the cell to the function resume whilch causea control to
l2ave the named process. cxpressions of the Iorm AREZUME namel
gre used to start new processes. ror example iresume icreate
tloo £ aitl) will cause {100 2 &) to pe executea 1n a new
process,

tFOHK name x) will resume execution of the named process
from the point Lhat control last leit it and continue executlion
o1 the calling process. The value ot ® i5 made the value the
value o1 the call to the function resume which caused control to
leave the nameo process. The value o1 the function forg is the
value of x. Expressions of the form (FURK name) are used to
start new processas which will run in parallel with the calling
process. For example {fork {create (ilco i(bar} aii} will cause
{foo (bar) al) to be executed in 8 new process in parallel with
the calling process,

ille namel} will cause the namew process to be destroyeo
and return the name of the process killea. [f ne argument is
given the process which executes the call will die.

{PASS0N name xJ) will RESUME (See above) the named
process with the value ol x. The process which calls the
functicon passon will then cie.

WLUCK locations) where locations is o1 type segment will



attempt Lo lock the locations which are arguments. The process
wnich calls the function lock will be suspenoeo until all the
logcatlons are lockeq.

iLuCsel? locations) where locations is o1 type seguent
wWwill atftempt to lock the locations which are arguments. 11 tne
locations cannont be lockeo then the lunction locked? will
return (.

{UNLUCK locations}) where locations is o1 type segment

will unlock the locations.

d.G.1.2 Data Structure Primitives
G.0.1.2.1 Polnter Functions

tTYPE expressient will return the geclarso typs o1
expression. The function type is wseiul in macros to decide
how Lo axpanc the Bacro,

tKIND identitier) will return the kino of identi 1ier
that ioentiilier has been ceclarea to be. The kinas of
identifiers are local, special, and COmmMonN.

ibed x y) is true only if the value of x is lagentical to
the value of v.

LFUNCTION lamoga-expressiont will return the functional

argument of lampoz—eXpression.
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tltunction (lembda () J)}) evaluates to o
VACTUK kappa—-expressiont will return the actable
argument ol s3kappa-expression.
{is {lactor (kappa () 421} 4} 15 true
VAL n xt will return the location of the the nth element
Of X.
tassign [<7 1> ireplace aJ) <?2] [aa ob ccli is
equivalent to isetloc iat z [aa ob eclt al
{IW locationt will return the contents of s$location &s
its value.
tprog (fix) (C4fixd €x 1)) win s%x)) will
evalutate to |
{5eTLUC leocation valuet will store the value in the
location and return the value.
lprog ifix) ((4fix) x)) isetloc &"x 12} will
azs5ign x Lhe value |
{NIH n expression) will return as its value the nth
element ol the value o1 expression which must be a list, a
vactor, or a tuple. {NIH n exXpression) may be abbreviateg as {n
eipressiont.
{3 (a o ¢c)) evaluates to ¢
te [ & (o c) all evaluates to (o c).
LHEAR n expressiont will return as its value the nth
eélement of the value of expression trom the rear.

irear £ (a b c)l) evaluates to b
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{Hesl x nd will return as its value the result of taking
the rest of x nn Limes.
trest la 4 d 1] £4 evaluates to (o T
ABJTLAST x n/s will return as Its value the result of
Laking the putlast of x n Limes.
tbutlast (a 4 d ) £} evaluates to (& 4)
LINITIAL n expression) will return as its value the
initial n elements of the expression.
tinitial 3 (& b c d)} will evaluate Lo (& & ¢!
\Term INAL N expressiont wilill return s its value tne
terminzgl n elements of Lthe expression.
tterminal 3 (a b ¢ w)) evaluates to (b ¢ al
{LENGTH %t} will return the length o1 the value o1 x.
ilength (a b c)t evaeluates to 3
{PRINT x) will print the polnter x.
iSUBSTIIUIE x pattern z+ will substitute the value of x
tor all expressions in Z that match pattern.
tsubstitute a tatomict (1 (x zl)} will =valuate
to (a (a all
(pefine substitute (pingalambda ({(x (4"} pJ) z) o)

isubst x (val (genbraces actor (kappa ()
55pl) ssot zil))

(wefine subst (lamooe (x (lkappa () (%)} p} z)
tconu
({is 1s55ps s5z)
L55x)
(tis (atomic) sszi
52



(t
{ilsubst 3$5x ssp (1 55zl
<sUDsb 55x $3p trest sszis))})d

4.0.0ug.2 Atow ana Property List runctions

wueT atom indicator) will return the value Unaar
ingicator fer atem if such exists. OUtherwise it returns ().
\PUT atom inalcator valuel will put value unoer

Lnaicator for atom.

4.8.1.2.3 Mora ana Number Functions

LP [IXCUNS nt will return a pointer to a 1ixed point
mumber egqual to n.
\fixcons ¥} evaluates to a pointer to %
AFLOATCONS nt will return a pointer a floating point
numpber equal to n.
ifloatcons ¥.U) evaluates to a polnter to v.u
\RPIXIN p) will return a fixea peint number equal to the
nunmper pointed to by p.
(fixin «" &}} evaluates to the fixed point
number
AFLOATIN pt will return a iloating point rnumber egqual te

the number pointecto bg p.

tiloatin 4" %.0)) evvluatesto the 1leating

point number 1.0



tollTo s pt will dgetine a 1jela of s pits that [s p bits
irom the right sno of Lhe wora.
tLUAL pits i) will return an integer which is the wyte
Oof i which [s gefineg by bits.
tloaa wpits 1. 3b.4) =12 will loso the sign bit
@1 =1 which 15 1
tUEPUSIT bits source acestinations will aewposit the
source in the byte of the destination deilinec by pils ana
return the moullieu gestination as Its value.
tgeposit (bits | Uy 4) evaluates to 5 which is 4

with the low order bit fturnea on.
AF[APHIAT =) will print the tixeo point nuaber x.

AFLOATFHINL x4 will print the 1leating point number x.

d.8.1.2.4 List runctions

Any expresslion enclosea within "(" ana "JI" will evaluate

to oe a list.

d4.6.102.5 vector and Tuple Functions

Any expression enclosec within "[% and "J" will evaeluaties
to be & vector. On the the other hand, n expressicn enclosea
between "[" ana "1™ will evaluate to be a tuple. The only

Gidlerence oeteen vectors ang tuplaes (s that tuples are strored



in Ene stack while vectors are garbage collected.

tvellUh n template Jcns will create a vector of length
the value of n with entry 1 1nitializesd to {fecn i), 1ne
expression templdte speciiies the mark function sna the print

lunction of the vector.

ivactar
4
tbemplate
vfunction (lambda ()))
tfunction (lambda ((vi1ixts 1) x)
tfixcons fabt s3f ssx)idi

_ tfunction (lambpaa {3ix) (04 1ixy 1))
$31)1)

wlll evaluate te [ £ 3]. Given a locaticon 1 as its argument
the function I1ixcons will return a pointer to a 1ixea point
nunber which has the same value as the contents of 1.

{TUPLE n template fcn) will create a cefinite tuple o1
length the value of n with entry i initializea to (i1cn i). A
gafinite tuple can only be created a5 the inittial value o1 an
identirier in & ceclaration, as an element o1 a definite tuple,
Or a5 an arﬁument to a 1unction.

VINDEFINITE template ceclaration

({INITIAL initial)

(TEST test 1inal=action}
(ALU element condicion)

(STEP step))
Doy
will create an ingelinte tuple with template by setting up a for

loop In which the elements of the tuple are generated @lement oy

element such that conditien 15 met. Ao indefinite tuple can
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chnly be created a5 the 1nitial value o1 an laentiiller In &
weclaration, &5 an element ol a awelinlite tuple, or as an
argunent to a4 tunction. Ao inaefininte tuple is o gooo way Lo
pass arguments which are generated incrementally at run time.

ko tuples may be aeclarea 1n the declaration.

tingerinite

vilxss s the tuple Is o1 Lype "i1ixse

wnich is a tuple 01 1ixed point numbers)
({ifixs €L 1))) 15 uweclare 1 to

Cbe & fixeo point numoer initialized to 11

((test {is $sn 35it) (i i1 n I5 egual Lo
i, then we have createa our tuple!

faag £5iJ) 1§ each time tnrough the loop
add the value of § to the tupley

(step tassign $:i + 551 i) 4§ afvar

executing the boay of the loop, increase 1 by i3l
L4 the bouy o1 the loop is empLyl)
will evaluate to
L1 2 3 411 1t the igentifier n has the
value 4
LUNSHARE x) will create a copy o1l the value ol X at the
top level. The value of the function unsnare will pa agqual to
its argument pbut it will not pe eg.
wunshare [F x (v 2.00)F will evaluate to [ x Oy
ENVR
tprog ((ivecs (x [a (41121
leg (e ss5xd 12 lunshare $$xJit)

eva luates Lo Lrue.
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LAUD terms) where tarms is or Lype segment will produce
& SUm o1 tne elgebraiclly simplitfiea terms.
lado (= (%% X 2) 30 4 (% & X} (% 4 x) & (wk x
£} eva luatas to
(+ 7 (& & d)(w 5 (wen % 21}
WULLIFLY ractorst) where tsctors is o1 type segaent will
multiply together the algebraiclly simplifieg factors.
lnultiply 3 (+ x 2) (#+ x =2) x) will evaluate to
b+ (& 3 (% x 33 (* =12 xJ) 4.6.2 Exanples ol

Lneg Lbse of runctions

Ihe function lactorial is detinea oelow in order to
illustrate the syntax of functions that produce welues. The
program should almost pe sel1 explanatory toe any LI3F

programmer. Un entrance to prog, temp is immediately bound to

(gefine Jactorial
(lambaa  Afixs (((l2ix) n))) {prog {fix) ((ifix} (remp
133

again  {cono (145 (less 2} s5n)
texit sstemplt)i
Llassign $stemp (= 530 sStempls
tassign s:in (= s5n 1})
tgo againltll)

Using a for stotement, we can aeline flactorial as jollowss
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(aafine lactorial
{lampooue (tixs ({0Ltdxtd mh kil

vIor (fixt
(CLEimt Ctewmp 1))
(ltest 1is {less zi S50t ireturn

sitempi) )
{step {assign s=n (= 2%n 1Jit))

tassign s~bemp 1% S50 S3temptltil)

lmus the value 01 {1e@ctorial 3) is &3 ana the wvalus o1

iractorial {+ 2 21/ 15 <4
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4,7 MULdLE

section 4.7 is logically completely separste from the
rest o1 the language. It is nol necessary to reao this section
Lo understana the rest of the aocument.

WUsdLE is & proposed bluck structurea assemoler for
MAICHLESS which outputs relocetaole oinary. It & procass
encounlers an undetineag function or actor then it searches its
drcnive file ror the most recent version of the Ilunctiocn or
actor. [1 the search succeeas then the process ¢alls the
loauer to loso it ano continues exacutlion. There are two Kinas
of iuentifiers that are alloweo in the language. Ine first kind
L5 declared In block headers anc the value is obtelneo oy
prefixing the identiiler with the character *. ‘lhe secona kina
15 defined by appearing as a teg anc the value is abtalneg By

prefixing the Lﬂ&ntifier with the characher :,
d4.7.1 Commands
dodulal Contrel Structure Commanas
(MUMBLE neme form type argument-types aeclaration boay )

where oocay 15 ol type <¥> will oeclare a top level named block.

ing wllowaple Iorm types sre lambos ana Kappa.
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WA name geclaration boayl) where ooy 15 01 Lype =iz
will crecace a plock o1 nomenclature with name, geclaratlon, andg
Doy .«

LedTHY name Kino=olf=Ioru argument-Lypest will aeclare «n
gnkbry point. The allowable kinds ol forus are LAMLUA RARFA,
arnug sACHU .

tuo teg) will transfer control to tag.

1§ Ccomugnt) where copmenti 15 01 Lype <£¢> L5 a cOmugnk.

Urlk name

ueclaration

({INITIAL initiall
(leES] test test=acCion)
(Slel stepl)
boay /)
where Lnitial, test=-acticon olUlY, anc step are of type <§» 15 Lhe

for statement o3 the language. It expanas to the 1ellowing

where TAUG i5 a generateq symbol

LUPHUL declaration
initial

Tau
LULONL (ftest test—aciionltt
boay

step
WU TAGH)
LU OML clausest 15 the conaltional statement. cach
clause is o1 the rorm (precicate commands).
{CALL name return-type argument=typest will create a

function call to the nameo funcblon.



4.0 page 2o

d.Feled Data Structure Commanas

L* x} 15 the wora with the inoirect pit on anoc x in Lhe
right half.

tl a xJ is the wora with a in the index 1ield and x in
the right nalf.

t*1 & x} is the worda with the inosirect bit on, & in the

index 1iela, and x in the right half.

{= literals}) is the wora with left half ( ana right hal:
the aduress where the multiwora literal is storeao.

{SPECIAL fcentiiier typel) is the address ©1 the special
cell ol icentilier with typa.

{FATH path)} where path is ot type <?» 15 the location
namea by the path name. Fror example {path & bty is5 location b
within block &a.

{HALVES woral woraz) is the word whose left half s
wordl truncated to 18 bilts ano whose right half is wordd
truncated to 1o bits.

15mAF word) is the word with left and right halves
Swappec.

{LSHIFT wordl nt is word shiited n places to the leilt.

{514B1T x} is & reterence to the sixbit characters X.

LASCIZ %) is a reference to the ascii characters Xx.

{BLOCK nt will allocate n woras of memory.

L* theta) is the value ot the dUMelE ioentiaier theta.
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1P Lhetay is tne value ol the mUmbLE Lag theta.

e fae FreUlCales

Gadfecal Frimitive rreaicates

lhe primitive preaicales dare the conoltions that can be
recogniZea oy a PLP=1U in one Lnstruction. Fredicates are useq
for 1low o1 control. lhere are a greal nuaber of prlaoctive
predlicates. we will only mention & Jew.

(E a x) §5 Lrue if the accunulator a is kgual to the
content of Lhe efrective audress x

(W a x} is true 11 the accumulator a is Not equal Lo the
content of the ellective address x

(Ic a x) 15 true 11 the accumulator a 1s lumegiate Equal
to the erffective audress x

(IL & x) 15 true 1iT the accumulator a is Immeuiate Less
Lo the eiltective audress x

(oAE @ x) bet Lhe Accumulator a to the content o1 the

ejlective aduress x ana kgual zero

(SAN & x) Set the Accumulator a to the content of the

effective aocoress ¥ ana Not zero

4. facse Lompound Freolcates
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LUWCUND clauses) the congitional preagicate.

{UANL precgicatest is true it all of its preagicates in
turn evaluate Lo true.

{UUH precicates) iﬁ true If one o1 its precicates in

Lurn evaluates to true.

{UND1l precicate) is5 true if its predicate 1% not true.

Loed commands precicate) is5 true when the pregicate

predicate (s true ajlter executing the commanas.
4.7.3 sacros in MUMBLE

me can deline the macro cycle which s delinea to cycle

the contents of three accumulators as followst

{(Jde line cycle

(macro (a8 b cl) (faxch 5%a Ssb) {(exch &b &&cll)l)

Thus
tuprog (J <cycle al as @3>} will expana to
tuprog ()
(exch al aZ)

{exch ad ai)l}

4.7.4 Examples 1n MUSEBLE
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(oumizle factorial lambda (rix) (L{fixt)
iy
w3 th% &rgum&n;qis pessea on the tuple pdl tp An “aob ji"
pointer to theStuple of arguments is passed in register ap/
ipush up ut {§ save the old uil
itmove U upd {§ move the polinter to the unmarkea pual into
.t
iuprog lact
(irix
{n \if ap 14)
) {temg viou Fradd
L5 deline n to e inaexed o) ap by | and temp to
Be ingex u by §. nwe would use fixeo point ocutput Lo print out
the value o1 n ana temp in the MUMBLE debugger. )
{push up &= 1J)
Li push the literal | onto the top of the
unmarked pdl thus estaplisning the initial value of templ
again
iucond
(i58g
(nove & “nl) i wove n into
register a ana then test i1 the cuntantﬁ}uf a are less than £}
(1l a £J
(move & “temp) 1§ the value is returnea
in al
(move up u)
(pop u up) {3 restore the unmarkea pdl)
(pop] up) 1§ exit the current function)
(move a “nj
(imul & “temp)
(moven a8 “templ
(508 U “n)
tgo tagainltl))

(mumb e E?ctarial lambaa {fix) (41ixt)

tuprog factorial
({fix (n (1 ap 121)1))
(push up ul
[move u upl
vwlfor factoriell
({fix (femp 1w lrdl) )
{finitial (push up &= 1J}}
{tast
{seq
Lmove a “nl
(il a 234
{move a “teap)



(move up L)
{pop u u?}
(pop) up) 1% exit the
current rfunction))
(step (sos U “ni))
(move & “n)
(imul & “temp)
{movem a “temp) }}



9. PLANNEH

Consioer & statement that will match the pattern

(L#FLIES % v). The statement has several lmperative uses.
sti1# If we can deduce x, then we can deguce Y.

In PLANNEH the statement stl woulo be expresseda as (ANTeCeUENT
{) x (ASSERT yi) which means that x is declared toc be the
antecedent of & theorem such that if x is ever asserted in such

a4 way as to allow the theorem to become activated then ¥ will be

asserted.

st2s if we want to deduce y, then establish a subgoal to

first deduce X.

In PLANNER the statement st2 would be expressed as {CDHEEUUEHI
() y (GOAL x} (ASSERT yJ) which means that y is ceclared Lo be
the consequent of @ theorem such that 11 the subgoal x can be
established using any theorem then the consegquent y will be
asserted. e obtain two more FLAMNMER statements analogous to
the above by consiocering the contrapositive ol (IMFLIES x y)

which 1s (IMPLIES (NOT y) (MOT x)).



5.1 PLANNER Forms

H5.1«1 Hierarchical Control Structurs

FLANNKER uses a control structure in which the hierarchy
o1 calls is preserved 50 that a computation can back up to an
activation through.which it has already passeac. The primitive
functions " jail" and “jlajilure?" enable the back track process to
be controlled. The form {FAIL) will generate a simple 1ailure
wnich will back up to the most recently executed form {(FAILURE¥
expression (pattern body)...} such that the pattern matches the

message of the failure. For example

tprog (fixs C0L3ixd (x 3))
i+
(failure? ssx ({) lassign S:x 4})2
Lcond
(iis 3 ssx} {faill))
(t 511}
evaluates to (+ 4 5} which is ¢
The identitier x is ceclared to be a fixea point integer which
i5 initializea to 3. when the secona argument of the all to "+
is evaluted the conoitional cetects that x is bouno to 3 and so
generates a simple jajlure, 7The failure backs up to the call to

“failurei" with the message “()". The laentifier x 15 assignea

the value 4 and the rest of the computation proceeas normally.



The top level 1unction ot PLARNER is & read, evaluate,
print Lloop. #When the expression reaa 15 successiully evaluatea
then the whnole plerarchy of calls is reset, the value 15

printed, and the process repeats.
5. lee PLANNER runctional Forms

lhe functional 1orms in PLANKER are thlambda (which is
fna analogue of lamboa) ana thkappa (which is the analogue o1
kappal. [he syntax remains exactly the same. The so0le change
in the semantics is that the functional forms o1 FLANNER can
handle the mechanism of failure.

The tollowing example illustrates the syntax ol

functional forms. The function "among® which is deillned below

is a generally usefull FLANNER functicn. The particular way in
which the function among is uséd here does not accomplish
anything that cannot be done easily in LISP. whe give this
example because it 15 simple enough to De easily understood.
The next example after this w;ll give a problem that is more
difl1icult to solve in LISP than in PLANNEHR. One way to assign
to the loentifier x the value which is the first element of the
list %51 that is greater than 5 would be {(is (<?> tet Six
lgreater ssx 5}} <¥>) $%1}. Another way woula be {is $-x

tlarger % tamong 551J}} where



(de1ine among (thlambda ((<?» 1)) (thprog (first)
again
LtLhcond
(ils (s5l) ()
ti if 1 is empty generate a simple fajilures
{faili))
tassign {(&=filrst %=1} (551); 4§ set 1lrst to be the
first element of 1 and 1 to be the rest of 1}

{ failure? }return st first}
0l
t3 if the return fails with the message
Wil" then go to againy
tgo againk) til)

(deiine larger (thlambca (o a)
{thcong
{lgreaterp $%a 55hJ
{4y 1t a is greater than b then return al
£5al
(t
1i otherwise generate a 1ailure with the
message M()w}
tfall ()l
Thus the wvalue ol {greater 5 {among (2 4 6)}) is 6.

The following is an example of a proolem that 15 more
airlicult to solve in LISP than in FLANNER. The example is
5lightly artificial pecause we have not vet introcuced enough o3
the PLANNER primitives to give & more natural example. The
problem is to iind the 1irst repeatea atom 1n an s-expreéession.
For example “g" is the 1irst repeated atom in ((w y 2) {{a g) u
gl (g gqli. The MATCHLESS pattern (<contains {et latomicl) &-xi»
<contalins 5%x>) will set the variaople x to the 1irst repeated
atom. e will cefine {iirst-repeating-atom l}) to be the first
repeating atom of 1 11 one exists.

(define tirst-repeating-atom
(thlambda (1) {thprog ((i?} special) x)



tthcona
({fina-x} 551} 4¢3 i1 we find an x then
raeturn it}
ireturn 55x1})
(t 43 ocbtherwise generate a j1ailure wilh
the message "()")}
{fail C)h)2J}

{define find=-x {(thlambaa (1) ithprog (answer (17} special) x)
L Lheond
(iis tatomic) $sl) {3 i1 1 is atomic Lhen assign
% the value 1}
Lassign $=x 5517
Lreturn ()i)}
Ltailing?
(() 45 i1 we are 1ailing with the message “()",
then try again on the rest o1 1}
{return {flno-x irest 5s51))})}
iassign $-answer (fina-x {1irst s31}}) {; fing an % in
the first of 1J
tthcond (s$$answer ireturn $$answer))!
{raturn {within $$x 551}}}))

{define within (thlambda (y 1)
{4 the value of “within® is true only 11 ¥y 15 an atom
within 1)
{thecona
(iis {atomic) sslt {5 i1 1 is atomic then it
must be yi
Lis ss5y 5%1))
(iwithin s$sy {(1irst $51}}) {3 if y 1s wthin the
first of y then true}
£
(t {# otherwise y must be within the rest of lJ
iwithin $sy {rest sslliil})

B.1.3 PLANNER Theorems

The following three kinds of thecrems are Lhe ones which

are presently agefined in the language lor satisfying reguests

made in the body of proceaurest
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S.1.3.1 Conseguent

(CUNSEWJENT type ceclaration consequent boay) declares

that consequent 1s the consequent of & theorem which can be used
to try to establish goals that match the pattern consequent.
nnether or not the theorem will actually succeed in establishing
the goal gepends on the body. Typically the 1irst action that a
theorem of type consequent will take is to try to reject the
goal. we cannot emphasize too strongly the iuportance ol
analyzing the consequences of goals in order to reject the ones
which cannot be achieved. Even if no absurdity is detected, the
consequences are often just the statements that are needed to
establish the goal. The only way that a theorem that begins
with the atom conseguent can be called is by the function
{ACHIEVE pattern properties recommengationt which 1s explained
below. The following theorem says that 11 it is our goal to
prove X and we know that w implies x then we shoulu make it our
goal fo prove w.

(consequent (x w) S57x

tprovea? (implies $¥w $7x))

tgoal 5%wl)

B.1.3.2 Antecedant



{ANTECEDENT type declaration antecedent pody) declares
the antecedent of a theorem from which conclusions may De arawn
by the boay. The theorem can be usea to try to aeauce
conseguences from the lact that a statement that matches
antecedent has been asserted. The only way that a theorem that
begins with the atom antecedent can be callea is by the ifunction
tURAN statement properties recommencationt) which is explainea
below. The following theorem says that If we assert something
o1 the form (not (implies X Y}) then we shoula deduce X.

{antecedent {(x yJ) (not (implies $=-x $~y)) lassert $sxl})
The 1ollowing thecorem says that if something of the form (marry

x y) 15 asserted then (bachelor x) shoula be erased.

fantecedent (x yl
(marry &-x Syl

terase (bachelor %sx)i})

5.1.3.3 Erasing

(EHASING type oeclaration pattern body) can be usea to
try to deduce consSequences lrom the fact that a statement that
matches pattern has been erased, [he only way that a function
of type erasing can be called is by the function (CHANGE
statement properties recommencationt which is ceiinea below.

The iollowing thecrem says that if something of the torm (alive

x}) 1s erased then (dead x) should pe asserted.



{erasing (x)
(alive s=x)

tassert (dead $3x)J)



h.? Primitive junctions

b.2s1 Lata Structure Primitives

Some ol the functions in PLANMNER are listea below
together with brief explanations ol their function. Examples of
their use will be given immeciately after the gefinition ol the
primitives below. The primitives probably camnot be understood
without trying to unoerstand the examples since the language is
highly recursive. In general PLANNER will try to rememoer
everything that it is doing on all levels unless commanded to
forget some part of this injdormation. In the implementation o1
the language special measures must be taken to ensure that
identifiers receive their correct pindings. The most e3ilicient
way to implement the language 15 to put pointers on tThe stack
back to the place where the correct bindings are. value cells
ago not provice an efficient means of implementing the language.
The default response o1 the language when a simple failure
occurs is to back track to the last decision that it made and to

make another cholce.

...l Assertions



tUdANh statement properties recommendation) will cause
PLANNER to try to araw conclusions from the statement with the
properties using the recommencation to try to fino an antecedent
theorem (antecedent type declaration antecedent bouy). The
value of the function oraw is the value of the antecedent
theorem Lthat craws conclusions from statement. A recommendation
has the form (1RY theorems) or {(UStE theorems). The

recommencation (try thid thl th5 (?}) means that thi, thil, ang

thS are to be trieo in turn and then the theorems whose
antecedents which most closely match statement are to be tried.
The recommendaton (use th3 thl (and (not (th7 th5)) (has
(dijticulty ¥))) means that unless conclusions can be drawn
using thi, thl, or some theorem except for th7 or thS which has
the clfllculty 9% on its propery list, then the function araw
will generate & simple 1ailure. The recommendation (try $-x)
will try any theorem which can possibly match the statement andg
will bind the identitier x to the name of the theorem which is
used.

{draw (subset & b) () theorem5}) will try to draw conclusions
from the fact that the set a is a subset o1 the set b using
theoremb. ouppose that we are keeping a global count of the
number of assertions of the torm (subset x y) in the global

identilier count.



foefine theoremb (antecedcent
(x v ((iftix) common free)
count )
(subset S=x S~y
ti ¥ and y are locals, count 15 a global
rixeo point number that occurs iIree In theorems)

i35 the antecedent 01 theorems is
"{subset $-x s-yliw}

i3 the following statement will adu one
to countl
tassign Sicount (+ SS5count 13}}

LASSEHRT stdatement properties recommengation}) If the
statement has already been asserted then the lunction assert
acts as the null instruction. OUtherwise, the function assert
causes the statement statement with properties to be added to
the cwata base. Then (URAW statement properties recommendation}
is evaluated, I[f the recommengation o1 the draw statement fails
or if a lower level failure backs up to the assertion then
statement is removed 1rom the cata bDase. [1 the null
recommencation is made then the value of the function assert is

the header of the assertion storead in the data base. Otherwise

the value ol the function assert is the value of the draw

statement that it executes.

{assert
(subset a o)
((gifficulty triviall)}
will assert that the set a is a subset of the set b and put the

value trivial under the indicator difficulty. Expressions of

the form {v aeclaration alternatives) where alternativas Is of
type <¢> wlll genote an assertion with variables declar=a and

logical alternatives, ne shall use ":" as a pretlix operator to
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agnote variables in the guantificational calculus. he would
like to emphasize that the syntax for variables in the
guantificational calculus 5 not related to the syntax of
FLANNEH . For example
lassert
(v ({iset) x 3y 22))
inot (subset #x ¥y}
(not (subset &y 3z}

{subset x $z))}}

will assert in declarative lorm that the subset relation is
transitive for sets. The function v s logical ulsjunction
for clauses.

{ASSERT! statement properties recommencationt is like
the function assert except that if statement has already been
asserted then it will generate a simple failure insteaa of
acting as the null operation.

{PERMAKENT statement properties recommenacation? is like
the function assert except that statement is left in the data
base even 11 & failure backs up to the call to the function
parmanent.

({TEMPORARY statement properties recommencgationt) is like
the tunction assert except that statement will be withdrawn If
evarything succeeas in the ena. In other words statement is a

temporary result that will go away after we solve our current
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cver-all problem which is the top most call to the evaluator.

B.2s ]2 Erdsureas

{CoAluE statement properties recommendation’) {s usea to
try to deduce conclusions i1rom the fact that statement no longer
holdas using a theorem ol type erasing (EEASING type declaration
pattern bodyl. The function change 1s exactly analogous to the
function araw.

{EnASE statement properties recommendaton) will try to
find a statement in the aata base that matches statement with
properties. If such a statement {s found then It 1s erased ana
{CHANGE statement properties recommencationt is evaluated.
Otherwise the function erase acts as the null statement. 171 the
change statement falls or 1f & failure backs up to the 1unction
erase, then the statement that was originally erased 1s restored
and the whole process repeats with another statement irom the
data base., If the null recommencation {5 made then the value of
the function erase 15 the header of the statement erased.

Otherwise, the value is5 the value of the theorem that is used to

graw conclusions from the fact that the statement was erased.
The tunction erase is a partial left inverse of the function

assart,
terase (on-top=of brick! brick2)) will erase the fact that

brickl is on top of brické.
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LERASE] statement properties recomsendationt is like the
function erase except that If statement has not been provea then
it will generate a simple 1ailure insteau of acting as the null
operation. |

{PcHMERASE statement properties recommencationt is like
the function erase except that i1 a failure packsu up to the
function permerase then it will not put the statement back in

the oata base.
Heda1.3 Goals

(PROVEL? pattern old-properties new=-properties) tests to
see 11 a statement with old-properties is In the cata base. 1[1
there i5 such a statement, then the fdentl tlers in the pattern
are bouna to the appropriate values and new-properties are
installed as new properties of statement in the data base. [1I
there is no such statement, then a slaple fajilure 15 generatea.
[1 a simple failure backs up to the ftunction proved?, then the
identifiers that were bound are unbowna and the property list is
restored to its previcus state. Then the whole process repeats
with another statment in the cata ocase. PLANNER 15 designed so
that the time that it takes to determine whether a statement
that matches pattern is Iin the cata base or not is assentially
independent of Lhe number o1 irrelevant statements that have

alreagy been assertec. A list cooruinate is aelined by some
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atom being in some position. #When an s—expression L[s assertea
FLANNER remembers every coordinate that occurs Iin the s5-
gxpression. Two expressions are similar on retrieval only Lo
the extent that they have the same coordinates. Wwhen the bucket
under some coordinate exceeds a threshold then the bucket is
sub-diviced by teking the cooroainates by pairs. The only
reason that we don’t store statements unger all the possible
combinations of coorainates 1s that we can not affora to use
that much space. If MATUHLESS haa an efficient parallel
processing capability then the retrieval could be even Jlaster
since we woula do the look=ups on coordinates in parallel. [he
value o1 the funcion provea? 15 the header ol the assertion that
matches stalement.
Lproved?

(subset a bl

({di1ficulty triviall)} will succeed
only if it has been proved that a {5 a subset o1 b with the
value trivial under the indicator 4iiliculty.

{INSTANCE? pattern olo-properties new-properties’) is
like the function proved? except that the function instance
looks Ior a statement that can be lnstantiated to match the
pattern. e will use "i¥ as a preflx operateor to denote
variables in the guantificational calculus. The syntax that we
use lor varlables in the guantificational calculus (s unrelated

to the syntax that we use for the varlables of FLANNER.



5.2 pagae 16

givend
Lassert
v ((wobject) #x) ({setl) iy 82)})
{subset (f #1x) sy
(subset sy 3z)}
((di 1ficulty harall)}
The above statement says that 1or all objects x ana sets y z

that (f xJ) 5 a subset of ¥ or v i5 a subset of z. evaluates

ithprog ((isetty w ul) )
tinstance? (clause (subset S+w $=ull)
avaluates to ((clause ({i{objectt 2x)) (subset (1 :x) (1 3x)))
dijliculty haral
w gets the value (f #x)
U gets the value (1 1x]}
Suppose that we know that a 15 & subset of b or

a4 Iis a subset of c. In other woras we assert iv () (subset a b}

(subset b c)}. evaluate:
{thprog ((iset}) x))
iinstance? {clause (subset a $-x)}}}
¥ gets the value (either b c)
In other woras x is either b or ¢
{ACHIEVE goal properties recommendation) will attempt to

achieve goal using & consequent theorem (CONSERQUENT



declaration consegquent body) with accoralng to recommendation.
The goal must match the conseguent.
iGOAL pattern properties recommendation) the 1irst thing
that the function goal ﬂﬂﬂ5.i5 to evaluate (PROVEL? pattern
properties’. I[f the evaluation proguces a jajilure then the
value o1 the function goal is (ACRIEVE pattern properties
recommendation’.
givent [(subset a )
evaluates {thprog ({iset) x yi)
{goal (subset $-x $~y)}}
¥ gets the value a
¥ gets the value b
{GOALS) returns as its value a list of the currently

active goals,

bE.2.¢ Control Structure Primitives

{THVAL expression bindings statel) will evaluate
eXxpreéssion with bindings and local state. At any given time
FLANNER expressions are nainé evaluated in a state. A top level
a process pegins by using the global data base as its state. It
can switch into a local state by using the functicn stateprog or
the function thval. This local state determines what changes
have been maae to the aoata base l.2. what erasure, assertions,

gaiinitions ot theorems have been maae since the last time that



the cala base was updatea. 5States are stored as & linear list
of changes to the gata base. Thus there can be several
incompatible states of the worle simultanecusly under
conslaeration., However, the use of local states slows up data
pase manipulations since elements of the local state must be
searched linearly.

\alTATE) returns as its value the current local state.

LUPUATE statel) will upoate the data base according to
state.

{TACONL type clauses) where clauses is of type segment
evaluates the ifirst element of each clause in turn to try to
find one that doesnt cause a lailure or return (J as a value.
IT such a clause is found then the remaining elements &f the
clause are evaluated in turn.

\thcona (t {faill)} will fail with the message
Q)

tthcona ({fails 3) (t 7))} evaluates to 7

tthecond (() 3)) will evaluate to ()

{thcond (() 3} it 4)) evaluates to 4

itheond (t {1aill) (t 51} 1ails

{ATTEMFT type clauses) where clauses is of type segment
will attempt to find one whole clause which can be successfully
evaluat eq. The function attempt is very much like the the
function thcona. The main difference is the function thcond

will net try the remaining cluases if a failure cccurs in a



clause after the predgicate jor the clause has been evaluated.
tattempt (t {(faill)) will 1ail with the message
[J
\attempt ({3ailt 3) (t 7)) evaluates to 7
tattempt (() 3)) will evaluate to ()
lattempt (¢} 3) (t 4)) evaluates tc 4
lattempt (t {(fail}) (t %)} evaluates to 5
\TAPRUG type ceclaration progbody) where progbody is of
type segment is like the MATCHLESS function prog except that it
can handle the mechanism of failure.
{RETURN expr}! causes the value o1 expr to be returned.
{TEMFROG type declaration progbodylt is like the function
thprog except all assertions and erasures that are made within
the Scope of the function temprog must be undone when the
function temprog i1s exited. The tunction temprog is useilul 1or
dealing with hypotheticals. If we know that a Jlormula ol the
form {CLAUSE x y} is true ano we want to establish a goal o1 the

Torm g then we could writes

ATHPHOG ()

LTEMFROG ()
LASSERT xJ
{GUAL gl}}

{TEMPROG ()
LASSERT v’
{GOAL glJ

{ASSERT gl}J

Ihe above form of aisjunction elimination is often used when y
is of the form (NOT x). Goals of the lorm (CLAUSE x y) can be

established as followss



VITHPROG ()

L TEMPRHOG ()

(ASSERT (NOT xJ}
(GUAL v })

CASSERT AV () x yil

\SITATEFRUG type declaration boay) where boagy is of type
segment is like the function thprog except that within the
function stateprog assertions, erasures, and the ceilinitions o]
theorems are made in the current local state instead of in the
global data base.

\THANU conjuncts) where conjuncts is of type segment is
like the LISF function and except that the function thand can
handle the mechanism of failure. ([thang conjunct/l ...
conjunctsnt is equivalent to

\theond
{conjunctsl

L]

tthcond
{conjunctsn)
(t {faillih)
(t (faill)}

{THOR aisjuncts) where aisjuncts is o1 type segment is
like the LISF ifunction or. ({thor aisjunct/l ... aisjuncts2} is
equivalent te {thcond (aisjuncts1) ... (oisjunctsz) (t {1ail}))

\THNOT xJ is an abbreviation for {thecond (x {1aill}) (t
til. Thus ithnot ()} is t, tthnot tJ is (), and {thnot {faill)

s t. The iunction thnot is due to T. Winograc.
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tUNIQUE} will 1ail if the current goal is not unigue
amcng all the goals that are currently active.

AFAIL} causes a simple rajilure to be reported above.
PLANNER will reconsidger the last decision that it made. If
Lthere are any alternatives, it will ¢hose one ana continue
execution,

iFAIL point) causes a jailure to point. Fror example if
point is “"theorem" then the function fail will cause the current
theorem to jail. I1 point is “goal® then it will cause the
current goal to fail.

AFAIL point message) acts exactly like {(rail point)
except that once it has 1ailed back to the point then it
converts to & fallure with a message which can be caught only by
the functions failure? or fafling? which are explainea balow.

{FAILURE? expr fail-clauses) where fail-clauses {5 o]
type segment evaluates expr. If the evaluation does not produce
a fajilure then the value of the function "fajilure?”® is the value
of expr. If the message ol the failure matches the first
element of a clause then the rest of the elements of the clause
are evaluatea. Otherwise the faillure continues to propagate
Upward.

(1ailure? (faill}
({} hello)) will evaluate to helleo



\FAILING? fall-clauses) where fajl-clauses is o1 type
sagment will act as the null operation unless a fasilure backs
up to it. [T & failure backs up te it then it acts like the

function "i1ajilureyv,
vbhprog ()
tralling? (() {Areturn al)}
tfalls) evaluates to a
\FAIL-T10 tag) causes fajilure to a tag which must
previously have been passed over. Execution resumes with the

sStatement after the tag.

ithprog (a)
tassign s-a 3}
Lhere
ttheond
(iis 4 s55a)

traturn s%al)}
tassign S=a 4}
tfail-to therel}) evaluates to 4

WFAIL=PAST tagt) causes & fallure to tag which previously

must have been passed over ana then the generation of a simple
failure.

tthprog (al
ifailing? ({) {return ssa)}
where

tassign $-a 8!
{ fail-past wherel) evaluates to B

(SUCUEEDING? ceclaration boay) where body is o1 type
segment will act as the null statement unless the remaining
compuat ion succeeas. In case of success the declaration is

activatea ana the boay 1s executed.



Dedsged Finalize primitives

trINALLZEe=TO tags causes all actions that have been
taken since tag was passed over to be 1inalized so that if the
compuat fon later tails they will not be unoone. rinalization is
mainly used to save storage. The next statement to be executea
is the one ilmmediately after the call to the function finalize-
to.

{FINALIZE point) causes all actions that have been taken
since point Wa S passed to be finalizea. Fror example {(FINALIZE
goall will finalize all actions that have been taken since the
last goal.

B:2+3 Hepitition Primitives

A\THFOR type declaration

(CINITIAL initial)
{ FPROVED pattern ola-propertles new-properties)
(TEST test test=action)
(FINAL 1inal=action)
LSTEP step)
(LIST element condition))
body

where boay is ol type segment is the for statement of PLANNEH.

For each assertion in the ocata base that matches pattern with
old-properties, Lthe statement is given new-properties and an
attempt is mage Lo execute the body. ror example the iollowing

Statement will place all the bricks on brickl in the blue box.
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itthior
(iibrickt) =22
{{proved (on-top=of %+x
brickl}l)
\pick-up ssxJ
tplace=in (¥ (blue box) i
{FeH5IST type aeclaration

({INITIAL initial)

(TES]1 test test=action)
(LIST item congition)

(STEF step)
(FINAL 1inall)
boay s

whare body is of type segment is equivalent to the followings

{THPROG type (geclaration (ixpr+4 (COLLECTEL ()))
{i declare COLLECTED to be an s=

expression ang initialize it to nill
tFATILINGEZ () final (RETURN

ssCOLLECTED ) }
boay
ATHCOND (test test=action (RETURN

LTHCOND
(condition
{3 if the conajftion is met then
ddd item to the ena of COLLECTEL}
LASSIGN $sCOLLECTED (<355

$SCOLLECTEDY) }

COLLECTED> itemlJ)}

ste
iFh?L} i3 generate a simple fallurel)

"Are all the blocks in boxl green?® will translate to

ipersist ((iblock} b))
{({final ireturn tJ})
tgoal (in %+bp pox1)} (i find a bleck in
box |
{thcond
{lgoal (green ssblt (i if the
block Is green then continue with the loopit)
(t



5.2 page £5

t1ail persist) {jotherwise
generate a lailure out ol the persist loopllihi

e IHL
{BeTWEEN lower upper SJUCCE:=D)

geclaration
I1tem

body 4
will fino ocetween lower and upper items accoraing to the body.

The function find goes not consicer possible interactions

between the elements sought. The find primitive function is

equivalent to the followings

APERSIST (declaration ({F1X} (NUMBER U}))

(CLEST VASSIGN? ssHUMBER up?erJJ i3 11
wié have Jouna at least upper iteéms then we are done

(LIST item) (3 we will make a list o1
the items that we find)

(STEP (ASSIGN $1NUMBER {+ SSNUMBER 113))
ii aiter each pass through the loop, we will add one to NUMBEH!)

(FINAL ATHCOND (4ASSIGNY LLESS lowert
SSHUMBERY (FAIL})J)) (5 as our 1inal action we will test to see
that we have collected at least lower items [f not then generate
a8 simple failurel)

body }
UFind three boxes that contaln green blocks,.M
will translate to:
tiino 3 ((lbox) x) (iblock) bl) $3%5x
tgoal (pox $=x)!}

tgoal (contains $%x s$=bl}
tgoal (green s5bil)

H.2.4 Co=routine Frimitives
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In more complicatea situations, we lind Lhat it is
convenient Lo be able to have more than one FLANNER process.

{THACKEATE xt) will create a FLANNER process which will
begin evaluation with the function call x. The value of the
function thcreate is the name of the created PLANNER process.

LTHRESUAE process expression) wlll resume execution ol
process from the point that control last leit it. The value of
expression is made the value oi the call to "thresume® that last
cadsea control to leave process.

{TAPASSUN process expression) will resume (see above)
the pruﬁess and then cause the calling process to die.

{CUOFAIL process message) will generate a failure with a

massage within process at the last point that execution left the

process.

LEAHAUST type declaration
(CINITIAL initial)
(1EST test test-action!
(ACTION action)
(LIST item condition}

(STEP step)
(FINAL 1inalll
boay }

where body is5 of type segment will attempt to execute body once
tor esach time that action is successiully evaluatea. Every Ltime
that the body it executeo the function exhaust will send a
simple lailure to the action to see if it has any alternatives.
An "exhaust™ loop The functlon is wvery much like a “persist"

loop which is gefined above. Ooth kinds loops are driven by the



failure mechanism. The maln aifference 1s that the effects of
execuling the boay of & “"persist® loop are not preserved because
a tailure amust propagate through the body belore it can be
executed agaim. In an "exhaust" loop a separate process 1s
cradted for the action 5o that tThe ellects ol executing the boay
can be preserved. The Iunction exhawust i3 eguivalent to the

Iollowing expressiont

Lt [HPROU type
[
(ixprt (COLLECTED (X))

{tprocd

(CURKENT ACURHKENT )

{ACTION-PROCESS (TACREATE (ACTION-FUNCTIOMN
$SCURRENT 3 ) _ :

i3 declare COLLECTED to be & s—expression initialized to
{)3 CURRENT to be initializeo to the name of the current
processs ACTION-PRUCESS to be initialized to the name o1 a new
process which begins exection with the call {ACT [ORN=FUNCTION
$5CURRENT} which will pass the name o1 the current process to
the created process}

ATHSOND

(115 EXHAUSTED {(THRESUME SSACTION-PROCESS )}

t§ start the FLANNEHK process S$ACTION-PROCESS in
wnich the action will be executeds if the current process is
resumed with the value E{HAUSTEL then go to the tag EXAAUSTELS
the latter will happen only 1f the action 1ails before
successfully evaluating even oncel

{go EAHAUSTELD} )}
CONTINUE '

{THCOML (test test-action (RETURN s$COLLECTED})2) {3 if
the test is5 met then execute the test=-action

B

LTACOKD

tcondition

{ASSIGH SeCOLLECTED (<53 COLLECTEL> iteml))r)} (j
i1 the condition 15 met then ado the item to the end o1 the List
o1 collected items})

t% the expression (COFAIL 53ACTIUN-PRUCESS) will suspend
execution o1 the current process anc will begin failing I1rom the
point within the action process where executlon last left o1l

LTACOND

({15 EXHAUSTEDL {COFAIL 3$sACTION-PRUCESS)H)
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iy if the current process is resumed with the
value EARAUSTED then go the location EAHAUSTELJ

VD EAHAUSTEDY)
Vel CONTINUED
EAHAUSTEL
Tinal
VReETURN COLLLECTEDY}

Ihe following function is defined so that we can start off the
evaluation of the action process.

(define ACTION-FUNCTION

(THLAMBDA ({iproct WMAIN)) B
(FALLING? ({7} {THPASS50N SSMALN EXHAUSTEDJ) )

Li when the action finally 15 exhauseted resume the
process SSMALN with the value EXHAUSTED and kill the action

process’

action

LTARESUME $SMAIN SUCCESS) _

i3 resume the main process with the value SUCCESS)))
Suppose that we have a way to generate the elements 01 & set w.
For each element of w, we want to deguce Consequences i1rom the
fact that it has property q. Then we want to try to show that w
has the property q.

tthprog ()

texhaust (({set) x))
Ataction {goal (subset S~x wj}))
lassert (g ssx)}

(goal (g wil}
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h.3d Clauses in PLANNER

me would like to explore the putantlailtias for using
FPLANKER to control & resolution based deauctive system. Since
the guestion whether or not a given formula is a theorem or not
is undeciocable, a complete prool procedure using resoclution lor
the I1irst orcer quantificational calculus must in general
produce a large numbeéer ol extraneous clauses. The result on the
necessary lnefficlency of a complete prool proceaure shoula be
sharpenea up. HNew theoretical tools must be developed in order
to make any substantial advance on the problem. The importance
of resolution as a proolem solving technique aces not lie in the
fact that it appears to be the fastest known uniform proof
procegure for i1irst order logic. Hather, resolution proviaes
ona technique for dealing with the logic of disjunction anc
instantiation. Domain dependent procedures must provide most
of the direction in the computation to attempt to prove a
theorem. In erder to do this we would need the following
functionss

{RESOLVE (patl pat2) resolvent new-property—listl)) will
result in resolving all clauses that match the pattern patl with
all clauses that match pat2 in all possible ways to yielo a
clause which must match the pattern resolvent. The resclvent

will be storec in the cata base with new=property-list.
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tHeSOLVED (patl patg) result new-property-list)) will
resolve a ¢lausa that matches the pattern patl with one that
matches the pattern pate and assign the pattern result to the
result. If there are no such clauses then a sluople failure is
generated. 11 & simple failure backs up to the function

reasolvel then it trys agaln with a cifferent palr of clauses.

LFOR=-RESOLVENT type ceclaratiion

((INITIAL initial)

(CLAUSES patl pat2)

(FINAL 1inal)

{ HESOLVENT result new=-property=list)

(LI3T element conalticon)

(STEFP stepl)

boay )
wnere boay 15 of type segment will attempt to execute the Dody
o0l the for statement once for each resdlt of resclving a clause
that matches the pattern pat!] with @ clause that matches the
pattern pati.

It is possible for PLANNER to rum out of things to
evaluate belore it has deduced the null clause. A complete
prootl procedure coula be called to try to tinish o131 the prooi.
If in the course of its operation, the complete procedure
ganerates a clause that matches the antecedent ot a8 theorem then
FLANNER can be re-invoked. The complete proceaure could be run
in parallel with FLANNER. Thus using PLANNER we coula implament
a complete proof proceaure. The point is that implementing any

"raasonable" uniform proof proceaure should be easy In PLAKNER.

However, we should not rely on & uniform proof procedurs to



solve our preblems jor us.



2.4 A Simple Exanmple

S5.4.1 Wsing a Consequent Theorem

suppose that we know that (subset a o), (subset a al,
(subset b c), ana (all (lamboa \ooolel ((isett 1x) (isetlt sy)
(iset) 22)) (implies (ana (subset $x fy) (subset 3y 1z)) (supset
tx $z))) are true. How can we get FLANNER to prove that

{subset a ¢) holas? We woulo give the system the following

Ltheorams.

glivent
(subset a b}
(subset a d)
(subset b c)

(ge1ine backwara
{consequent ((iset) x y 2)) (subset $%x $%z)

{uniguet (3 the current goal must oe unigue!
tgoal (subset $%x siy) (J (try backwara {7})/}
tgoal (subset 5%y $¥z) () (try backwardl}
tassert (subset $s5x 85z} () 1} 1))

Now if we ask PLANNEH to evaluate {goal (subset a cl} then we

will obtain the following protocols



igoal (subset a c))
{proved? (subset a c)J)
fail
tachieve (subset a c))
enter backward
X pecomes &
L DEcames o
tuniquel
{goal (subset a s57y)}
tprovea? (subset & $%y}}
node 1,%
¥y DECOmes J
igoal (subset a cll
tproveao? (subset a chi
fail
tachieve (subset o c))
enter backward
X becomes d
I becomes c
tunique.)
tgoal (subset d s?y)}
{provea? (subset a $iy)}
fail
lachieve (subset d §7y)}
enter backward
X becomes d
2 becomes S7iy
tunique)
rail
fail
node 1,% jsnote that this node appears above
¥ bacomes b
tgoal (subset b c)i
(proved? (subset b c)i?
{assert (subset a cl}

Succeea

Alter the evaluation the gata base containst

(subset a b)
{subset a g

(subset b c)
{subset a c)

In other woras the first thing that PLANNER uoes is to look for
a theorem that it can activate to work on the goal. It 1inds
Dackward and binds x to a and 2 to c. Then 1t makes (subset a

#1y) a subgoal with the recommenocation that backward should be



used first to try to achieve the subgoal. The system nolices
that y might be a, so it binos y to a. Next (subsel a ¢) 15 mace
a subgoal with the recommendation that only backward be used to
try to achieve it. Thus backwaru is called recursively, x 1s
boung to d, @ano 2 is bouna to c. The subgoal (subset o S¥y) 1S
gstablishea causing backward to again be callew recursively wilh
X bouno to d and z getermined to be the same as what the old
value o1 ¥y ever turns out to be. But now the system Iinds that
it is in trouble because the new subgoal (subset u 5¥y) 15 the
same as & subgoal on whieh it is alreagy working. 3So 1t declaes
that it was a mistake to try to prove (subset a ¢) in the first
place. Thus ¥ 1s bound to b instead of d. Now the system sets
the up the subgoal (subset b c) which 1s established
immeciately. We use the above example only to show how tThe
rules o1 the language work in a trivial case, If we were
seriously interested in proving theorems in PLANNER about the
lattice of sets, then we woulu construct a finite latiice as &
model andg use it to guide us in finming the proof. Suppose that
M is model for the set of hypotheses H with conseguent C. Using
constructive logic a subgoal 5 of the goal C woula be rejected
if it could be shown that it was unsatisziable. by M. Uften

re jections are made on the basis ol a mogel., For example in the
intuitive mocel o1 Zermelo-Fraenkel set theory all the
descenaing element chains are linite and terminate in the null

set. Furthermore every set has an ordinal rank. Thus the



ordinals form the back bone of the set theory. The intuitive
meaning of (+ A b} where A anu b are ordinals is thea
concatenation o1 A with b. The intuitive meaning o1 (= A BJ} is
the concatenation o1 A with itself b times. [f two orainals
have the same orcer type then they are egual. Thus intuirtively
we would expect that (= (+ | omegal) omegal) Is true. Every well
vevelopea mathematical aomain is bullt arouna & complex o1
intuitive mooels and simple examples and procedures. Axjiom sets
are constructed to attempt to rigorously capture and delineate
various parts ol the complex. One of the most important
criteria for judging the importance o1 a theorem is the extent
to which it sheds light on the complex of the gomain. These
complexes must be mechanized. we concluae that it is unlikely
that ceap mathematical theorems can be proved solely Ilrom axioms
and. gefinitions by a uniform proof proceaure. A uniform prooi
procedure based on model resolution does not proviae the means
for mechanizing the complex of a domain. Model resolution is a
strategy for deciading which clauses to resolve. There is &
great deal more to machaniziqq the complex oI a domaln than
simply pruning proof trees. Furthermore, clauses are often
false in @ model even though they are ilrrelevant to the proof
that is being sought. One way Lhat is often usea to try to find
a8 counterexample Lo a lalse statement about orainals is to
attempt to construct the counterexample from well known

ordinals. Some well known ordinals are 1, £, 3, omega, epsilon
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naught, the least uncountable ordinal, etc. 1hus in seeking a
counter example to the statement that there are only finitely
many limit orainals less than a given oruinal we neea Qo no

Iurther than (% omega omagal.
5.4.2 Using an Anteceaent Theorem
Suppose we give PLANNER only the following theorems.

givent
{sunset a bl
(subset ¢ al

(define forward-right
{antecedent ((iset) x v Z)) (subset $=y s=-2)
tgoal (subset $7x 58y))
Lassert
{subset 5%x $5z)
[
(try torwaro-right ilorwarao-leitlil}))

{aeiine forwarao—left
{antecedent ((iset} x y z)) (subset s-x =y
igoal (subset Sy 5%5z))
tassert
(subset $5x 55Z)
() )
(try forwaru=right forwara=-left)lt))
Wow if PLANNER 1s askea to the theorem evaluate {assert (subset

bocy () ?), we will obtain the following protocols

{fassert (subset b c)J

toraw (subset b cll)

enter forwara=right

¥y Decomas b

Z Decomes C

tgoal (subset $7?x pDl}

iprovea? -(subset $ix bl}

X Decomes &
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tassert {(subset a c))
taraw (subset a ¢!
enter forwarg-right
¥ becomes a
2 becomes c
tgoal (subset 3Ix all
tproved? (subset 57x% all
1ail
enter 1orwarc-leflt
X Decomes a
L Decomes ¢
tgoal (subset c s7z))
lproved (subset c $7z)}
Z becomes d
tassert (subset a d)i
ldraw (subset a all
eénter forwarg-right
y becomes a
Z becomas d
tgoal (subset 57x a)l
lprovea? (subset $7x a)}
fail
enter forwara-left
X becomes a
{ becomes d
goal (subset d $7z))
tprevea? (subset o $?z)}
fail
1ail
Succeed

Alter the evaluation the data base containss
{subset a b}

{subset c a)
{subset a gl
({subset b c)
(subset a cl

Theorems in FLANNER can be proveu in much the same way
Used for ordinary theorems. For example suppose that we had the

following two theorems:

(aueIine th4 (consequent (({set) a c)) (subset $7a $ic)
tgoal (set stall
ttemprog ({{object) (x taroitrary {objectl}) }
tassert (element %5x 53a) () 2}
tgoal (element $Sx S¥c)l})
lassert (subset 5$%a $5c) () 2hb))



The runction arpbitrary will generate a unigue symbol which has
the type ol its argument. OUn entrance to the function temprog

tne identliler x will be bounu to a freshly createg symocl. The

apove theorem is & constructive analogue o1

ftall (lawbda {boolel((i{set) ta) (isett 2c))
{implies
(all (lambga
ibooles
((lobject) =x))

(implies {(element ix 1all{element sx
icll)

i{subset sa 21cl)l)
Going in the opposite airecticn, we have

(define Ltha=5 (antecedent
({isat) a b))
(subset a bl
{assert (theorem (antecedent
{(ielements) x))
(element %$7x 57a)
lassert (element $%x S57%b) €) 2)yb))

(define thd—& (antecedent
{({iset) a b))
(subset a bl
{assert {theorem (conseguent
({ltelement) x))
{element $%x s57b)
lgoal (element 5%x $7all}il))

;?iflna th3 (consequent (({object} x)(iset} r s)) (element 57x
5

tgoal (element $¥x S3r)J)

tgoal (subset $%r $7s)!

lassert (element S$%x $5s) () )} ))
The above theorem 15 & constructive analogue for

{all (lambaa
tboolel

({iobject) sx) ({(setl} 1s5)})



(implies
{some (lamibds

itboolel

({iset) tr))

fand {(element &x ir) (subset sr 1s)))
(element 1x #s5)))

rrom th3 and thd we can prove the 1ollowing theorem:

(consequent ({(iset) a b c¢)) (subset $%a s7c)
igoal (subset s$%¥a 5¥bll

vgoal (subset &b $7¥cll)
tassert (subset %%a ssc) () 7))

The above theorem 1s a constructive analogue for
{all (lambaa

itboole) _
((iset}) ta) ({set} ib) (i{setl} ic))

(implies
tand (subset #a fb) (subset b fcld)
(subset sa 1c))
Oiten we will treat the statement of @ theorem simply as an
abbreviation for the proof of the theorem.
he would like to examine the previous problem i1rom the
point of view 01 resolution based deauctive system. The pattern
Iunction clause will be used to match clauses. It will use the
fact that disjunction 15 commutative and assoclative. The
pattern function unify will be used &s & varient o1 the pattern
function clause in which the clauses to be unifyeo will be given
a5 the first element of the function unify. me will havet
l. {clause ({iset) za ) (lobject) 1x))
inot (subset fa b))
(not (element tx #all
(element :x ib))
2. (clause ((iset}) ta b))

(element (glement=of-alfference ia ol &)

(subset fa b))
3. (clause ((iset) ta th))
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inot (elemént (element-of-difilerence #a :b) fh))
(subset 5 tbhl)

(define necessary
(anteceaent

({iset) a b} (lobjectl) xJclause)

tet tclause (subset %S-a %-bp) <?2>) S=clause)
Lresolve
(55clause
wund 1y ()
({not {subset 55&a s53b)))
{not (element $7x $s5a8))
{elemant %7x 55bl)irl}))

The above theorem says that we should eliminate all positive
instances of the predicate subset from clauses. [t is a special

case o1 theoreml which hdas been partially compilea.

fdefine suillicient
[(antecedent
(({itset) a b) clause)

fet {clause (not (subset S-a3 S+b)) <72} S-clause)
{resolve

(55clause
tunify ()
({subset 55a 355b))

(element (element=-o1-di fference $5a 355b0)
sS5a)) )}

tresolve
(ssclausge
tunify ()
({subset ssa $%b))
fnot {element
(element-of-di 11erence 5s5a 5sb)
$5001)301))

Ihe above thecrem says that we shoula eliminate all negative

instances of the precicate subset from clauses.

5.4.3 Using Resolution



e shall assume that the resolution routines
austomatically cetect contradictory pairs o1 clauses when thay
are generatea. The theorem (implies (and (subset & b)) (subsat o

cl) (supbset & cl) can be provea as followst

{thprog ()
vtemprog ((isetl
{a {arbitrary {setl}})
(b tarbitrary {(setl))
(c larbitrary {setl}})d)
lassert (v () {(subset 5%a $sb) () %)
tassart (v () (subset s55b $%c) () 7}
lassert iv () (not (subset §s5a s$sci () 2}
igoal (resclve ())})
tassert (v ((iset) sx 3y 1z2))
(not (subset ix iy))
(not (subset &y $z))
(subset sx 3z))i}}

Ihe proof iss
4., (clause ()
(subset a bl
5. (clause (({setl} 1x))
(not (element i1x a)) (element :x b)) by . and 4.
6. (clause ()
(subset b c))
7. (clause ((iset) 1x))
{not (element tx b)) (element ix c}) by |, ana 6.
B. (clause ()
(not (subset a clll
P. (clause ()
(element (element-of-gi 1ierence a c) al)) by 8. anu 2.
0. (clause ()
(element (element—oj—alfference a c) b) by 8. and 3.
M. (clause ()
. (not (element (element-of-difference a c) cll) by Ti.
an -
12+ (clause ()
. (not (element (element-of-difference & c) bl) by %. and

13. (clause ()) oy 12. and 1.



G« More on FPLANNER

6.1 PLANMER EAAMPLES

&.1.1 London*s briage

Most o1 the time we decide which statements that we want
to erase on the basis of the justifications of the statements.
I1 we erase statement a and statement L depends on statement a
pecause a is part of the justification o! b, then we probably
want to erase statement D. Sometimes a decision is mede on the
basis of other criteria. Fror example suppose that we carejully
remove the bottom brick 1rom & column of bricks. me shall
suppose that each brick is of unit length. The statemant {(at
$~brick $-place $~height) will be definea to mean that brick
£3brick 15 at place 55place at & height %sheight. Suppose that
have the following theoremsi

{at brickl here Q)

(at brickd here 1)

(at bricks here 2)

(defineg london’s-briage
terasing

({ibrick} brick other=brick) ({place} place) (linteger!/
height ))

{at s=brick $=place S+height)
ithcond

(lerase



(at s=other-brick ssplace {ladal
ssheightt) 2} i erase the fact that there is another orick in
the place above brickl

tassert

(at Ssother-brick $splace

S5height)) (i assert that it is where brick used to bhelll)))

Thus alter {erase (at brickl here U)) we will have (at brick?
here ()) and (at brick3 here 1)J. The upper bricks in the tower

have all fallen cown one level. The above example comas 1ron a

suggestion made by 5. Papert.
G.l.2 Analogies

6.1.2.1 Simple Analoglies

Our next example illustrates the usefulness of the

pattern directed geductive system that PLANNER uses compared

with the guantijicational calculus of order omega. Given that

oo ject al has some relation to object a2 and that object ¢l has
the same relation to object c£, the problem is to decuce that al
is analogous to cl. We use the pregicate test-analogous within

the theorem pair to record that we think two ob jects might be
analogous ana that we would like to check it out. Suppose that
we give PLANNER the following theoremsi

(insice al a2l
(inside ¢l ¢l
{a=ob ject all
{a=-ob ject azZ)

{c=ob ject ¢l
(c=ob ject c&)
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(ae1ine pair (consequent
[
(lobject) a ¢)
(ifunctor (7} (7)) preaicate)
(<> argsal argsas argscl argscl)
(analogous $7a S$7c SPpreaicate)
tunique) {5 the current goal must be unigue!)
{thcona
{({provea? (test-analogous §7a §7¢c)}
i3 i1 a and ¢ are test-analogous then we
are gone}
traeturn ()4)J
iproved? (a—object &?all
tprovea? (c—object s7cli
Lj fing an a—-ob ject and a c—-ob ject)
{temporary (test-analogous $5a 5%c S$iprecicate))
(temporarily assert that a anu c are test-analogous)
iproveaid (sipredicate $-argsal 5%a $-argsal)l
{provea? (sépredicate $-argscl $$c $-argsc2l}
L4 fing a preaicate in which both a and ¢ are
arguments}

ttheond
(iis {non ()4 ($sargsall}

tgoal (corresponding—analogous
{$sargsal) (sSargscl) ssSpredicatell})}
{theond
({is {non ()} (5sargsall)
{goal (corresponaing=analcgous
($5argsa2) {$$ar?sc2} SSpredicate)}))
i show that the other arguments are analogous)
tassert (analogous 5%a 55c Ssprealcate)l}))

{(define chop-off-another {(consequent
|:' .

({object) a bl
(<?> ga bb)
({functer (2} (7))} predicate))
{correspongding—analogous ($7a $7aa) ($%c $7cc)
#ipredicate)
{thcona
{{proved? (test—analogous §%a $7c
$?prealcate))
iy If a and ¢ have already been asserted
to be test—analogous then we only have to look at the rest of
the wlements)
{go restil}
itprovea? (analogous $7a $7¢c $ipredicate))
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rest
tthecona
({is {non (J} s%aal
~ \proved? (corresponding-analogous ($7aa)
(57cc) S$fpreaicatell))ti})

Thus il we ask PLANNER to evaluate {(goal (analogous al $7x
insige)} then x will be bound to ¢l in accordance with the

following protocols

{goal (analogous al $7x inside)}
enter pailr
a Jgets the value al
¢ gets the value 57x
predicate gets the value inside
funigque)
iproved? (test-analogous al s$7c inside)!)
FAIL
{proved? (a-object al))
iproved? (c—object $37c))
node 1
c gets the value c2
x gets the value c2
{temporary (test-analogous &l c2 insiael)
iprovea? (inside al 32??
iproved? (inside cl c2)}
lgoal (corresponding-analogous (a2) () insidel}
gnter chop—=off=another
FAIL
FAIL
node 1§ note that this node appears above
¢ gets the value cl
Xx gets the value cl
itemporary (test-analogous al cl insidel)
{proved? (inside cl c2)}
{goal rcnrraspanning~analng¢u5 (a2} (c) insidell
enter chop-off-another
a8 gets the value a2
c gets the value cd
iproved? (test-analogous af cZ inside)l
FAIL
tproved? {analogous a2 c2ll}
enter pair
4 gets the value a2
c gets the value c2
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tunigue )t
iproved? (test-analogous ad c&
insicel)}
FALL
\proved? {a=ocbject azls
iproved? (c—-object c2l)
{temporary (test-analogous a2 c2
insice)}

{provea (insiae al a2)J
iprovea (inside cl cz2)}
tgoal (cerrespoinding=analogous {(al)

(el) Inside)}
enter chop-=oll-another

a gets the value al

¢ gets the value cl

iproved? (test-analogous al c¢1)J

sSUcceed
In the process of carrying out the evaluation the 1ollowling
additional facts will be establisheas: (analogous al ¢l inside)
and (analogous ag ¢ insicel). The reader might fino it amusing
to try to formulate the above problem in the first oraer

quantificatienal calculus.

Galadad Structural Analogies

Ihe process of 1linding &nalogous prools and methoas
plays a very important role in theorem proving. Fror example the
progls of the unigqueness ol the identity element and inverses in

semi=-groups are closely related. The.gefinitions ares

(equivalent (ldentity e) (equal (% a e) (% e a) a))
Clmplies (icentity e) (equivalent (inverse bl b} (egual (= ol

o) (» b pl) ed)y If e ano ef are identities, then we have (egual



g (% g ) e*), If al and al* are inverses of a,; then we have
(equal al (* al¥ & al) all. The general form 01 the analogy is
(equal w $=string w’) where $¢string algebraicly simplifies to w
and w*. In many cases analogies are founa by construction.
That is the proolem solver looks around for problems that might
e solved with an analogous technique. In other words we will
nave a methoa 01 solution in search o1 @ problem that it can
solvel Wow that we have found a8 technique i1lor proving that
various kKinds of elements are unigue, let“s loock around lor a
similar problem to which our technigue applies. we find that
Zeros in semi-groups are dejlned as Iocllows:

(equivalent (zerc z) (equal (* a z} (* z a) z)) Supposing that
Z and z¥ are zerocs we 1ind that (equal z (* z z*¥) z#), (ne
ma jor problem in the effective use of analogles in order to
solve problems is that it is very difficult to decide when and
at what level of cetail to try for an analogy. Another problem
is that often the analogy holas only at & quite abstract level
and it must not be pushed too far. Consliager the following two
algorithmss

{define number—-of-atoms

{lambda (x)
tcond ({is () $sx} ()
(iis latomicl) $s5xJ) 1)
it {+
{number-oi-atoms (1 $5xJ)}
{number-of-atoms {rest $sxJ)})}))
{de 1ine list-ci1-atoms

(lambda (x)
vcona ({is () ssx) ()}



(iis tatomicl) $5x) [(%5x))
LT tappend

tlist-of-atoms {1 35x)}}

{list-ot-atoms {rest $5x}1})}))
lhe iunctions number-or-atoms ana list-of-atoms are precisely
analogous. In most cases twe functions will not be nearly so
similar. very Iew of the ideas of onhe will be used in the

oLher. h. Bledsoe has suggestea that still another example of

analogous proofs 15 found in the Schwartz ineguality:

{not {(greater

[
{+
(* (x 1) (y 1))
x (x 2) (y 2)))
R ]
[ %
({+
(xx (x 1) 2)
(o (x 21 2))
{+

(wx (y 1) 2)
(k% (y 2) 2)))))

fnot {(greater
{ devir
(sigma | n (lambda ireall ((ifix}) 1)) (4% (% (x
1) Cy £33 23}

2)
(] .
(sigma 1 n (lamboa {real) (({integer) L))(#%%x (x
iy 23}
(sigma | n (lambda ireal} ({(iinteger) 1)) (*x (y
iy 232k}

inoet (greater
(#*x {(integral (« 1 g} 2J
[ *
tintegral (#% 1 2)})
{integral (&% g 2)))))



Galod Mathematical Induction

e can lormulate the principle of mathematical inauction

for the integers in the 1ollowlng ways

{define inductlion (consequent (({functor {poolel ({integert)}

pl
tall &-p)

{temprog (({integer} (n {arbitrary {integer}})
¥

{goal (s$sp W)}
lassert (ssp ssnlt
igoal {SEE (+ 5%n 1133}
lassert {all 85plll))
The type {iunctor iboole) ({integeri)} is the type of a ijunction

which returns a boolean value and has one argument ﬁhich iz a

fixed point number. 11 we are given the facts (= (+ U W) U} and

{clause ({lintegert x ylli= (+ ty (+ 85 1)) (& (4 sty 3x) 1))
then we can establish

fall (lambda tinteger’) ({({integer’ :n)) (= (+ U n} #nlilt.

The following theorem will do induction on S-expressions:

{de 1ine expr=induction
Icunsaqu?nt

{{ tunctor {boolel{lexpri)}

[+
fall s-p)
itemprog
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({texpr} (a tarbitary latoml}})
icar varpitrary {exprit)
{car larbitrary tlexpritjil))
tgoal (5%p s%atom)!
Ltassert ($sp $scar))

tassert (s$sp S$scarl?
tgoal ($3p (cons s$$car $scarliil
tassert (all sspitrli

We would like to Lry to do without existential gquantifiers. e
can eliminate them In favor of Skolem lunctions in assertions
and in favor oi PLANNE#® identifiers in goals. The problem o3
finding proofs oy inauction is formally ldentical to the proolem
01 syntesizing programs out of “cannes loops". The process of
procedural abstraction (which is explaineg in chapter 7) has an
analogue which is "induction abstraction" (finaing proofs by
induction from exanmple prools written out in full without

inductionl.

6.1.4 Descriptions

G.1.4.1 Structural Descriptions

FLANNEKR can be usea to find objects from partial or
schematic descriptions. The statement (perpencicular (line $=a
#=b) (line %-c 5+a)) will be.cefinec to mean that the lines
(line $%a $3b) ana (line $5c $%a) are perpendicular. The
MAICHLESS Tunction (HASvALY arg) tests to see if the identifier

arg has a4 value. The value of {(genbraces) {5 1) and the value
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o1 tgenbraces |} is (1). me shall soopt the convention that
{glueo a b) means that bricks & and b are gluea together anag
{orthogonal (line a o) (line ¢ al) means that the lines between
the centers of bricks a ana b 15 orthoganal to the line between
the centers of oricks ¢ and g. A three-comer is celined to pe a
group of three bricks jJoined together such that two of thea are
aiagonal to each other. A three=corner is shown in figure 1.

In other woras the following 15 a description 01 a three-corners

fdefine Ilind=three-corner
{consequent
(tibrick) a b c))
{three—corner $7a s$ib 57c)
tgoal (gluea 37a 7o)}
again tgeal (glued $%a (et {non $$bJ §2c¢clt))
tgoal (orthogonal (line $sa s$5b) (line $%a S5cl)l
ttheena ({thor
{goal
. (gluea s5a itet tnon &5b) {non $$cli)l
{goal (gluea 5%b {non $saJ)}
{goal (glued $s5¢ lnon s$sallltl}
{ 1ail-past againlii})

IThe gescription can be used in the covious way to 1ind three-
COrners. The statement (stick S+=a &=pDl) i[5 defined to mean that
£54 ang &%p are end bricks of a line ol bricks ana {(between 5S+=a

=D 3+c) is. delinea to mean that brick %%b 15 between bricks 53a

and $%c. Ekxamples of sticks are shown are shown in figure 1.

(gefine Tind=stick
(consequent
({ibrick} a o) (Lfix} n))
{stick s7a %ib %=ni
iprovea? (prick s¥all
iprovea? (orick sipll}
igoal (stick=-segment %%a 5%b (difference



A Three-cnrn&r;

(cubea ]
(cube 2%
(cube 3)
(glued 1 2)
(glued 2 1)

i

ﬁ* 5 < T?

A Stick.
{cubea 49 {cube 7} (glued g 7)
{cube 5) (2lued 4 5)
(cube §) (gluad 5 &)

¢ /3 /1o

Another Stick:

{cubg a)
{cube 9)
{cube 10}

(glued g 9)
(8lued 9 1p)
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55N £4)1}
tassert (stick S%a 5%b Ssniltl)

{Je 1ine [ind-stick=segment
{consegquent
((lorice) x y whitfixt nl)
(stica=segment 5¥x $7y %-n)
LEhcona
{iminusp §5.J
tthfails)
[igoul
(gluea 57w 5ix/J
tgoal {orthogonal (line $%X %5w) (line 55X
iy )i
tthiailr )
{igoal {(gluea %7x 53¥y)}
tthcona
{ithand
tgoal (glued 37w S7y)J
igoal (orthogonal {ilna 55y S5w)

{thiaill)
{return (1))
{goal (glued $7%w $5x)J
{goal (between $5x 55w Ssyll
igoal

{line 55y 55x1i)

(stick=segment $5w 5%y isubl %%nJ)
(]
{try 1ina-stick-segment 17))J}))

Geled.d Constructing Examples of Uescriptions

Given a description of a structure (such as a stick) we
woulu like to bable to gerive a general methoo lor building the
structure. The problem ol ageriving such general construction
methods from cescriptions is wvery giilficult. In this case we we
can construct a stick o1 length n with ends x and ¥y using the
functions (GLUE racel lace2} which glues the value of facel to

the value o7 lace? and the function new-brick which produces a

Naw Dricl.



(define make—-stick (consequent
(iilbricks =y w) (ifixt n))
(make—stlck $=x Sy &+-n)
tthcona ({lessp n 3J
tglue (bottom 5%x) (top Ssyl)i
treturn (1)}
{is 3-w {new-bprick}l}
iglue (pottom 5%x) (top $5wli
lgoal (make=sLtick S+=w S=y = 55n 1}1}])

Gelu.d.3 Descriptions of Scanes

5., Papert has suggested that theorem proving technigques
might be applied to the problem of analyiing Z-dimensional
projections of 3-oimensional bricks. Theorem proving techniques
have the advantage that they c¢an take into account very general
kinds o1 information. In this section we will give a jormal
dafinition of the problem. Acolpho Guzman nas developea a
program (called SEE) which tries to solve such problems. Many
hwmans solve such problems by mentally constructiing a symbolic
I=-dimensional scene which optically projects back to the given
Z-dimensional input. . he deiine & brick to be a connected open
opague region o9 3-space bounoed by a 1inite number of planas
such that if two planes intersect then they must be orthogonal.
Furthermore, the complement of a brick is reguirea to be
connected. Thus bricks are alloweu To have holes in them. A
J=cdimensional scene is an arrangement of bricks such that no two
of them intersect. A Z-aimensional sceneé is a collection of

straight lines in a plane. A Z-dimensional projection is the
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optical projection of a 3-aimensicnal scene onto & plane. A
statement p about 3-almensjonal scenes will be sald to be valiag
for & Z-aimensional scene r 11 for all 3-dimensional scenes t
such that t projects to r it 1s the case that p {5 true lor t. A
two aimensional scene ru will De said to be ambliguous 1o0r a
language 1 if it is the projection of two J-dimensional Scengs
t1 and t2 such that there is a senteéence pl in 1 with pU true in
t] and false in td. There are a number of primitive preaicates
tnat should be includea in a language for scene analysis:

(parallel x y) means that ¥ and y are parallel.

(coplanar % y) means that x and y are coplanar.

(normal planel girecteo-linesegment) means that the
normal of planel is in the direction o1 the directeda=
linesegment.

(restrictea planel ptl pt2 pt3) means that the normal
to planel is restricted to the angle ptl pt2 ptd.

(same-brick regionl regionl) means that regionl and
. regiong are part of the same brick.

(ad jacent regionl regiond) means that regionl anag
region2 are regions of the same brick that intersect at right
angles.

felement x y) means that x is an element o1 y.

{in-front=o1 brickl brickd) means that brickl is in

front of bricki.

{resting=on brickl brickZ)) means that brickl is resting
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on bricke.

(on=top-ot brick!l brick2) means that brickl is on top o1
brickd.

(subset x vJ) means that x 15 a subset o1 v.

{coorainates pointl cooral) means that point!l has 3=

dimensional coorainates coordl.

lhe following statements about examplel are valla as can be seen

by considering where the normals ol the planes might lie and

deaucing conseguences untll contradictions are 1ound,

(normal a (airection 7 13))
(normal b (oirection 12 13}])
(ad jacent a b)

{ad jacent a c)

{ad jacent b cJ

{normal ¢ (airection 1U
{normal d (direction T 4
{normal e (airection 2 4
{adjacent d el

(normal f (airection 3 4))
{adjacent . d 1)

(ad jacent & 1)

(normal h {(airection 16 l8})
(normal g {direction 15 1&3)
{adjacent g hl

The following statement about éxample 1 satisiiablec:

(and (resting=on (brick a b c¢) (brick e 1 d)} (resting=on

{orick a o ¢) (brick g hl))

The following statements about example example are wvallid:

tadjacent a ¢
{adjacent a bl



(adjacent b c)

tnormal a {oirection 12 14})
inarmal ¢ f(airection 3 (41}
(adjacent g h)

inormal g (alrection 5 &all
tnormal h {(alrection & &1}

(not (aajacent ¢ al)
(not faujacent B all
{adjacent a e)

(ad jacent & 1)

tad jacent o )

inorméal ¢ (direction 4 131})
tnormal d {(girection ¥ 131}
(normal £ {directien 11 13)}

The followlng statement about 1igures s satisfiables
{and

(same=reglion c gl

[same=-region b Rl

(same-brick & b ¢ g nlJ

The three dimensional coorcinates of points are obtainea by
using more than one camera to view the scene or using a focus
map . In the case where we have cooruinates as a primitive
predicate, the deillnition of & projection ol a d-daimensicnal
scene must be modifiea to include the J-dimensicnal coorainaltes
o1 all the projected uurt@cas. In the case where we have the
three dimensional co=ordinates of the projected vertices, we can
geduce that Lwo planes are part ol the same prick if they
intersect at an acute right angle. 5Since the object that is
beaing viewed might be s0 far away that accurete coorainates

cannot be obtainea, & veductive system should be geveloped which



goes not use coorolinates. At the very minimum a hara core
weJductive system for the analysis of 2=dimensional projections
shoulg be consistent and every vallo statement shoulo oe
proveab le. That is every theorem of the system shoula be
satisilable (there is at least one interpretation that satisiies
the theorem). Inteérest in guestions of satisilability comes
from the fact that some interpretations are far more likely than
others in the real world. Statements that are to be testec 10T
satisliability must be made as strong as possible in order to
provide a meaningiul test. Although the linking rules are
mathematically very elegant, in their present form they do not
adaguately represent the semantics of the optical projection
rules, The value of Guzman“s program 18 that it provides
conjectures apout which regions are satisilable in the relation
same-brick. however, the program suffers because It does not
have any explicit knowledge of optics. me would aavocate an
approach that makes greater use of aeduction to test the
valialty or satisiiability o1 a sentence. UWuestions o1
satisfiability ana validity of sentences with respect Lo any
given projection are decidable since the theory of real closed
fields is decidable. Eificient algorithems shoula be developea
to test whether a given sentence is5 valio or satisfiable in a
pro jection.

FLANNER woula benefit greatly from an eJdificient parallel

processing capapility. The system would run laster if It could



work on its goals in parallel. GQuite olten a goal will rail
after a short computation along its path. The use ot
parallelism woula enable us Lo get many goals Lo fall 50 thal we
coula adopt more of a progressive deepenling strategy. #fe woula
like to carry out computatlons to try to reject & proposec
subgoal at the same time that we are trying to satisly 1t. aany
computations can be carriea out much faster in parallel than in
serial. For example we can aetermine whether a graph with n
nodes is connectea or not in a time propertional to (% {log nl
{log n}li. It has been known for &4 long time that LISF
computations using parallel evaluation of arguments are
determinate i1 the functions rplaca, rplacd, and setq are
prohibiteaq. me could impose a similar set ol restrictions on
FLANKER . Anocther approach is to introduce explicit parallelism
into the control structure. he coulo have "i{" and "}i¥ delimit
parallel calls for elements and “i<" and "»>i% delimit parallel
calls lor segements. A parallel tunction call will act as a
fork in which one process is createo to do the lunction call and
the cther proceeds with normal orger evaluation. For example in
{+ Ji* 3 4}i {+ 7 B)) we coulo compute 3%4 in parallel with 7+b.

The copy function coula be spea up by a factor proportional to

the number of processorst

(deline copy (lambda (x)
L ConG
(iis tatomic) 55xJ
S5X)
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:?iCupy L1 s5x})i <copy {rest ssxts)ill)
Howsver, wa woula sti;l have problems communicating between the
branches of the coaputation proceeding in parallel. Fartly this
& problem o1 sharing an lnocexed global Jata base between
parallel processes. we would neea the standara lock anda unlock
primitives and unlimitea use ol assignment in order to keep the
computations synchronized. But 11 we allowed the use o1 lock
and unlock and unlimitea use 01 assignment, the programs might
become indeterminate. One of the most important properties that
can be proved about & program 1s that it is determinate. A more
poweriul wait primitive would make synchronization easler. [1 a
process calls (wait predicatel then its execution will be

blocked until the preaicate becomes true.

6.1.5 Semantics of Natural Language

Although proolems for PLANNER are typically phrasea in &
paerfectly iormal, preclse, unambiguous syntax, we will usually
not find the semantics 45 well ceiined. 11 we say ( (4 (very
happy )) john) insteaa ol “John is very happy." we will not
thereby have made the concept of happiness any less nebulous ‘lor
the machine. Nevertheless it is convenient for a problem solver
to have such concepts although they are not rigorously delined.

Froblems of semantic ambiguity ana clarificaton can require



arpitrary amounts ol computation in oroer to be agequately
rasolved. For example consicer the lollowing sinple example o3
how semantic ambiguities can be resoclveai

(is=smaller-than hana (¢ (pig penl))
(de 1ine example=ol-bar-hillel

Llantecegent
({{objectt x y))
(in $=xX S+y)

tthcona
{i{is pen ssx}

tgoal (is-smaller=-than 5%y (* (pig
penlilhi

tassert (in (¢ (fountain penl)) Ssylll}))
Now 1T we assert (in pen hanal, PLANNER will conclude that (in
(< (tountain penl)) hana) is true since a hand 1s smaller than &
pig pen. Une o1 the important aifficulties that have plagued
most ol the programs that have been written to answer questions
in English 15 that they are trying to solve two very hara .
problems at the same time. First they must make sense ol

English syntax anc second they need a poweriul probolem sclving

capability to answer the guestion once they have "unaerstood®

it. Ambiguous cases should be resolved on the baszis o]
deductive logic ano not on the basis o1 some linking scheme such
85 "semantic memory®™, As it stanaos PLANKER provioes
sophisticatea mechanisms lor solving problems in formal
languages. A program could be written (perhaps In PLAHWEH?) To
translate English into PLANNER theorems for problem solving.
Conversely we coula try to translate PLANNER theorems into

Simple natural language. OSurprisingly translation into natural
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language can be very ackward becasue natural language lacks many

@1 the descriptive and procecural primiftives of PLANKER.



Current Froblems ana ruture nork

me shall call the loglstic system basea purely on the

primitives of PLANNER "robot logic". Hobot logic 15 & kinu of
hyorid between the classical loglcs such as the guantificational
calculus and intuitionism, ang the recursive functions as
represented by the lambda calculus and Post productions. lhe
model theoretic definition of truth in robot logic is
complicated by the existence ot the p}imltive erase ana the
whole PLANWNER Interpreter. The semantics o1 FLARNER theorems
adre most naturally deilinec dynamically by the properties o1l
procedures, The semantics of theorems in the guantiilicational
calculus can be ageflnea by moaels of possible worlus. In
comparison with the guanditificational calculus PLANNEH would
appear to pe more power jul in the lollowing areast

control structure

pattern matching

erasure

local states of worlao

There are interesting parallels between theorem proving

and algebralic manipulation. The two filelas face similar
problems on the issues ol simplification, equivalence of
expressions, Intermeciate expression bulge, ana man=machine
interaction. The parallel extends to the trade o311 between

domain dependent knowleoage ano eiliciency. In any particular
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casa, the theorems nmeed not allow PLANNER to lapse inmto its
aefault conditions. It will sometimes happen that the
heuristics for a problem are very good and that the proof
proceeas smoothly until almost the very end. Then the progam
gets stuck and lapses into default conaitions to try to push
through the proocfs On the other hanga the preogram might grope
for & while trying to get started ana then latch onto a theorem
that knows how to polish of3 the problem in a lengthy out fool
proocl computation. FPLANNER 15 gesigned for use where one has
great number of interrelated procedures (theorems) that might be
of use in solving some problem along with a general plan for the
solution of the problem. The language helps to salect
procedures to refine the plan and to segquance through these
procedures in a flexible way in case everything doesn’t go
exactly accoraing to the plan. The fact that PLANNER 15 phrasea
in the form of a language forces us to think more systematically
apout the primitives needed for problem sclving. ne do not
believe that computers will be able to prove deep mathematical
theorems without the use o1 & powerful control structure. Nor
do we believe that computers can solve diificult problems where
their domain depencent knowledge is limited to linite-state
difference tables ol connections between goals and methoas.

Ui jiterence tablec can be trivially simulated by conditional

expressions in PLANNER.
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Lizaticult problems for FLANKER

he would be grateful to any reader who could suggest types ol
problems which might be witfiicult to encompass naturally within
the present formallism, PLAMNNER is intenced to be a good
language for the creation ana description o1 problem solving
strategies. Currently it operates within the restriction o1
generalized stack aiscipline. by relaxing this restriction we
coula make the language completely restartable at the
considerable cost in efficiency of having to garbage collect the
stack.

Memory? There Is never enough fast rancom &ccess
storage.

Exploding cefinitions: we cannot afford to replace every
term by dits.geifinition in trying to prove theorems. However, in
the proof ol almost every theorem it is5 necessary to replace
some Cerms by their definitions. Uomain dependent methods must
be developed to meke the decision in each case.

Creating PLANNER theorems: he need to determine when It
is desireable to cons up PLANNER theorems as oppeosed to
aynamically linking them together at run time., AL the present

we have only a Jew examples of nontrivial constructed theorems.

We can generate some from the functional abstraction of

protocols ana Ifrom attempts to construct schematic proois o1
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Lheorems. Others are generated as the answers to simple
proolems. ror example if we ask the computer how it woula put
all the small green and yellow bricks in the red box, then 1t

might answers:

tthfor ((ifacel} tacel faces) (ibrickl} brickl)
({provea (small-brick s+~brickl}}

iprovea? (lace $~facel Ssbrick))
iprovea? (color $s5facel greenl’

{proved? (face S~faceZ ssbrick)}
iproved? {(color 55tace2 yellow)

{pick=-up ssbrick}

{carry-to (above ( (rea box)))}

tarepl}

T. HWinograd has ceveloped & program to translate kEnglish into
PLANNER theorems. An interestiong expreriment that could be
attempted would be to modify a chess porgram so that {t would
return a PLANNER program as well as the symbolic cescription ol
a position. The jlcea is that the PLANNER program would
represent the plan of action that would be taken in case of the
various moves that the opponent might take, W. Henneman has
investigated some o] the possibilites Jor doing planmning in king
and pawn end games. The problem seems to be very gifficult but
not impossible given the present state of the art.

Manipulation o1 PLANNER theorems® PLANNER provides a
flaxible computational base for manipulating thecorems that can
beg put in aisjunctive normal form. wme need to deepen our
understanaging so that we can carry out similar manipulaticns on

FLANKEK Lheorems with the same facility.



Frogressive deepenlngd me need Lo make more use ol Lhe
style of reasoning in which we construct a plan lor the solution
01 a problein Irom necessary conoitions that the sclution must
have;, attempt to execute the plan, find cut why it doesn“t work,
and Lthen try again. The style is oiften used in chess where very
mJdch the same game tree 1s gone over several timesi each time
wilh 4 deeper unoerstanaing of what factors are relevant te the
solution.

varbage collection of assertions: Statements which have
Deen assertea should go away automatically when they can no
longer be of use. Unilortunately, pecause o1 some logical
problems and becuause o1 the retrieval system o1 FLANNER, we
have alificulty in achieving completely automatic garbage
collection. lhe erase primitive of the language provides one
way to get rio of unwanted statements. |[f the asserted
statement appears in the local state of some process instead of
in the global data base then it will disappear automatically.

Simultanecus goals: We otten find that we need to
satisfy several goals simultanecusly. WMe usually try to
accomplisn this by choosing one o1 the goals to try to achieve
Iirst. However, when working on the goal, we shoulo keep in
mind the other constraints that the goal must satisfy. One
solution 15 to pass the goal to be workeo on as a list whose
first element is the goal anoc whose succeeding elements are the

other goals which must be Simultanecusly satisfiea.



Wonconstructive proolst The most natural way to go a
prool oy contradicton in PLANNER 15 to try to calculate in
ddvante Lhe statement which ultimately will produce the
contragiction. The methﬂu.is Lo 1ing a statement 5 such that 5
is provable and (not 5) is provable. More precisely, we compute
& statement 5, make 5 a goal, and then make (not S) a goal.
Another type ol problem that FLANNEK will not solve VEery
naturally is given a preagicate p defined in the first order
predicate calculus to show nonconstructively that there is some

object x such that (p x) is true.



1. Mooels ol Procedures and the Teaching o1 FProcedures

T«! Mouels of Procedures

T.1.1 Wodels ot cExpressions: Intentions in INTENWLER

A problem solver needas Lo have some way to Know the
properties of the procedures which It uses to solve problems.

It can use the knowledge which it has as a partial model of
itself. In order to  be able to mocel itsell, it needs:

I+ a way to express properties of its procedures.

21 A way to establish that the properties do in jact
hold for its procedures.

he shall express the properties ol an expression x by
the following function.

{ INTENT predecessor x function successors) is true {1
predecessor evaluates to true, the Tunction applied to the value
o1 % is true, and the successors all evaluate to true. The
value o1 the functien intent 15 the value ol x. The Iunction
intent is Jused to state a model for an expression x. As might be
expected the models are statea in PLANNEK. The intentions are

established by INTEWNDER which 15 the language in which
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intentions are stated. The procof is5 by induction on the
activations of the procedure. Thus for the control structure o3
LIaP, the prooi is by recursion induction. To aveoid confuslon
we shall write the intention varialbles in JUpper case. Also we
shall wuse !{ and }! as meta=braces for { and } respectively.

for example the intentions in the prog below are all true.

tprog t1ix) ((41ix) (a 1) (b 2)))
{intent {goal (= I $s%alti
{3 Yes the loentl fler a4 was lnaeed initialized to 1 3
hWill wonoers naver cease?l
tintent {goal (= $spb !{+ 55a&a 14!)}}
tintent
lgoal (= s3b 2)}
{assign %ib (+ S5 1.}}
(thlambda (X) {goal (= 35X 3}})
{goal (= $s5b 3141
{3 We have Jjust verifiea that an assignment statement
can change the value ol the identiilier b from 2 to 3}
treturn s$sbl)

The essential fdea for intentions comes from the break junction
of LISF introduced by ih. Martin. The expression (INTENTION
pattern expt) will be used to express the fact that the pattern
must match the value of exp. An intention {5 not allowed to
assign a value to a non—intention identl lier and crdinary code
is not allowed to relerence intantlnn identiilers. We shall
aistinguish intention identifiers irom ordinary ldentiflers oy
putting them in all caps. The intention {INTEND ceclaration
predecessor expression function successors) is exactly like Lthe
function intent except that intention variables can be declared
in the declaration. In adaition we need a function {0VERALL

geclaration predecessor expression function successors) which is



exactly like the function "intena" except that it is useu to
state the overall intention of a proceagure. All the intentions

in the function fact are true where

(de1ine fact (lambda (1ix} (({fix) n))
toverall ()
igoal (not (lessp s5s5n (1))
tintent
tassert (not (lessp Ssn U))}
iprog (fix) (({1ix) (temp 1) (i $5n)))
{intent {goal (= $Stemp 1))}
tintent {(goal (= %51 1)})
again
loverall ()
tgoal (= $stemp !{1actorial s55ir!}}
vintent

lassert (= $s5temp {lactorial s$sil})}
Ltcona
(lis O ssil
tintent (thcond
(lgoal (= s$s5n U)}
tgoal (= S$Stemp 1)1}
{({goal (not (= $s5n 0)J)}
lgoal (= sstemp !i% %5n
I{1actorial I{= ssn 1313130003 ))
; i{intent (goal (= s$stemp !1{iactorial
ssndil)}

Areturn sstempl))
tintent {goal (= sstemp !{(factorial s$i}1)}}
lassign $:temp i+ sstemp $51})
lassign $:i (= %51 1)}
igo againlt}
(thlambda (X)
tgoal (= $s5X !{factorial $sn}i)})
{thlambda (X) {assert (= ssX !{factorial ssn}1)}))

where

A{deline factorial (lambaoa {2ix) (({fix) n)J
toverall ()
{goal (not (lessp %$sn Q))}
{intent
lassert (not (lessp ssn Ul))
Lcona
(iis 0 s5n} 1)
{(t {x {factorial {= s$sn 1}) 5%n})}
(thlambaa (X)
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ttemprog ()
{assert (= $sn 0))
tgoal (= 35X |)}}
{temprog ()
iaﬁﬁfrh {not {T s5n U))
cal (= 533 Iw& %550 147 Ii= 33
1311010} ° et = s
tgoal (= 55X !{fact s$snll)})
(thlambda (X1
{assert (theorem (antecedent ()
(= %an W)
tassert (= s5s5% 1)1) 1)
tassert (theorem (antecedent ()
(not (= 55n (J))
lessert (= $3X !{(x ss5n !{3a 1{=
IFENIRINDINY, faact di= sen
tassert (= ssi !{fact ssntll}))

The intentions 1or the function fact“ . deiined below are

not so easy to establish.

{deline fact* (lambda {1ix} (({fix) n}))
loverall (({fix} (ARG ss5n))
igoal (not (lessp ssn U))}
{intend (({fix} (ARG s53%nJ))
Lassert (not (lessp $%n ()1}
tprog {(2ix) ((i1ix} (temp 1))}
tintent {geoal (= S5temp 1)}}
{3 test to see if the identl tier temp was really
intialized to 1)

again
toverall ()
{goal (= $stemp !{combinations Ssarg
£5ntil}}
tintent
lassert (= sstemp !{combinations ssarg
$snltll)tl
L cond

{{is (b ssnl}
tintent (= sstemp !{factorial S$AHG}!)}

lreturn sstempl))
{intent {greaterp $s5n (}}

{assign sitemp {* sstemp ssnl)
tassign Sin (= ss5n 1}})
{go againl}



{thlambda (X) {goal (= $3X !{factorial S5AWG)!)})
(thlamboe (X) lassert (= sk !{factorial S$SARGII)}) 1))
(define combinations (fix) ((11ix) n)({1ix}) ri)
toverall ()
{thana :
igoal (not (lessp %5n U)))
tgoal (not (lessp $sr Gl)}

{goal (lessp $5r $sn)ll

tintent
{thand
lassert (not (lessp $sn (1)}
tassert (not (lessp $5r L))}
{assert (lessp $&r $5n)})
{cond

(iis s3n ssr) 1)

(t {* 5%n {combinations (= $3n 1} $sri)}
(thlambda (X)
t{theond .
(i{goal (= $sr U)}
{goal (= s5k !d{factorial ssni!iid}))
(thlambga (A)
{thocona
{igoal (= s55r ()}

{lassert (= 35X !{tactorial s5nt!)}i}))
e can.deiine the data types o1 LISP and write
intentions for the LISP primitives. The type "xpr" is the type

s—agXpressions

{detine xpr (type () {vel () {atomic) ({?) <xpr>)}))

The type “plist® is that o1 property list. A property list is a
list o1 odd length such that the even numbered elements are
atomic.

(define plist (type () ({7} <star {atomic} {(2}>))

hie can write the intentions for car as follows.

{deiine car (lambaa ((ixpr} x))
ti the ilunction car has one argument which is of type {xpri}
loverall ((OLD=X 55x%))
{goal (not !{atom S$x}!)
lcar ssxl
(thlambda (Y) (thprog (k)
tassert (eq 5S30LL-X $s5x)J1}))



{ue 1ine cdr (lamboa {xprt} ({{xpr} x))
toverall ({OQLD=X $5x1]
igoal (not !{atom 5sxii))
{edr $s5xi
(thlambda (%)

tassert (eg $S0LL=¢ %Sx)3)}))

The function “"identity"™ which 1s used below Is the ldentity
function.

{(de iine cons (lambda (xpr} (((%) x)} (lxpr} yi)
toverall ((OLL=X &3x) (OLL-Y $%8yl)

t

tcons 55x 55yJ)

(thlambda (2]
tthprog ({(t (nowl!))

tassert {theorem {(consequent {(u w)

{not (descendant 52 itime $iw
Ul

{goal (before ss5u 55t} J)J)}
lassert (eq ssO0LL=X %5x))
lassert (eq $S0LU-Y s$3y)}

lassert (eg !{car $$Z)! 35s5x))
tassert (eq l!lcar S$$Z)! Ssy)l
tassert (not !{atom S$Z310}))2))

Allowing side effects considerably complicates Lhe

process of proving intentions. We shall proceed by borrowing a
trick from the the Greenbplat—Nelson LISP compiler. #With each
computed expression we will associate the time at which it was
computed, The actor (TIME e t) will match an expression e that
wads computed at time t. The current time will be the value o1
the the function (NOW}!. The function {(WEXT t} will evaluate to
the next time si1ter t. The statement (gescendant x v) wil be
true only if x can be obtainea from a car=-c¢dr chain Irom y. For

gxamp le {(gescendent {car (car x}) x}) is true.



{define get (lamboa ({latomict p) (latomict ind})
toverall ((OLU=F $%p) (OLD=INLU 5$indgl)
t
tget s&p s5indy
(Lhlambda (£
tassert (eq $30LLU=F s5s5pli
tassert (eq SSOLLU-IND ssindgllil}))

(de 1ine put {lambos ((latomic) pl) (latomiclt ina) ({2} value))
{overall ((ULD=IKL $sina) (OLL=VALUE ssvalue))
t
tput ssp ssing ssvaluel
{thlambda (X)
lassert (eqg S$X sSpl)
tassert (eq $sSULD=IND S$5ina)l
lassert (eq $SOLU=-VALUE ssvaluel)
tassert (theorem {(antecedent ()
fnﬂt (= $71 E?inu}} ) (
assert (eq !{get 5% §1}1 liget
ssind)1))).}) G tloet tip #3l get =op
tassert itheorem (consequent (1)
(eq !iget ssp $70)! !diget $5p $%inal!)
tgoal (= s3] ssind)}il}}
tassert (eq ssvalue !{get S5%p ssinalll) )i )

Using the above intentions, we can prove the following
intention.

{overall (Y)

L

iget
{put ssp ssinal $svalue!
551indd}

(thlambda (X)
{theona

({goal (= $sindl 55ing2)}

tgoal (eg $si S$valuell})

(tgoal (not (= 3$5inal $s5ingz2)ll

tgoal (eg s$si !dget 5Sp sSind2)!)}it)}

(define rplacd (lambda ({{xpr} x)} ({7} y))
toverall ((OLL-X 3$5x) (OLD-Y 35y) (1 {now)l)
lgoal (not !{atom $$x}!)}
irplacd %5x $SyJ
(thlambda (£)
tassert (eq 55 55x))
{assert (eg S5s0LU=Y 355y)}
lassert {theorem (consequent (W)
(eq Lttime 37w $5T) (time s¥W {next

$5031)



{goal (net (descendent 55x {time s5Sh
S5 Lkdiiddl tassert (eg !{car $30LD=X}! licar ssxil)i
tessert itheorem {anteceaent (wm)
{not (descenaent $%x (time $¥wm 5861410 10)

fassert (eg (time ssw %51} (time SSi
inext ssTir)ril}

tassert (eg !icdr $sx}! Sssylilrl)

{deiine rplaca (lambda ((ixpr} x) ({7} y))
tovera ll ((ULL=4 s$x) (OLD-Y s%y) (T {tnowil)
igoal (not !tatom Ssxi!d}
irplaca s$x Ssy/
{thlambda (£)
tassert (eq %54 $5x)J
vassert (eq &s0OLL=Y Ssyli
tassert (theorem (conseguent (n)

feq {time sIn 55T} {time 570 (next
55T3))

{igoal (not (descendent 55x {time Ssh
§3T32)h )4} tassert (eq !icar SS0LD=X)! !car ssxi!)l}

vassert ttheorem {(antecedent ()
(not (descendent %% {(time $¥h 55TJ)))

{assert {(eg {time $sw 55T} {time 355K
tnext $$T ri})lti

tassert (eq !dicar S$s0LO-&}! ldlcar &sxitl)}
tassert (eq !dlcar ssx}! S5y)liiil)

T7+1.2 Mogels in Patterns: Aims

Aims are like intentions except that they are actors and
cccur in patterns.

LAIM prececessor pattern down up successorst) is the form
for & call to the actor alm. An aim will be said to be attalned
when the following canaltianﬁ are satisiied:

(1) 1ts predecessor evaluates to true

(2) e apply the function gown with two arguments. The
first is the expression to be matchea. The second is () 11 ana
only 1if pattern doesnt match.

(3) we apply the ilunction up with two arguments. The

first is () if anu only if the rest of the pattern doesn‘t



match. Tne secona is () if and only if pattern fails.

{4} The successors evaluate to true.
The function down expresses the intent of the cownward action of
the pattern and the function up expresses the upward golng
action, The actor {AIMING declaration . predecessor pattern gown
Up successorst) Is exactly like the actor "aim" except that
intention variables may be declared. ror exauple the alm in the

Iolowing expression is attained:

talming ((OLD-F $s$1))
L
ST
(thlambda (X Y)
{assert (eq 5%f 554))
{assert (= s5%Y t).1)
(thlambda (X ¥)
{thcond :
{{goal (= 5%k ()}
{assert (eg $5f $S0LL=F))
{assert (= &8Y (J)})
({goal (= 554 £)}
lassert (eq 551 %5X)J
{assert (= &sY titii)l

The value o1 f changes only if the rest of the match succeeds.

The actor L{EN1IRE declaration predecessor pattern down up
5ucceasur51 is exactly like the actor "aiming" except that 1t is
used to express the entire intent of the pattern. For example
for the actor "atomic" which takes no arguments and matches only

atoms can be characterized byt



(del1ine atomic (kappa ()
tentire ()

t
tatomici

(thlambda (X Y1)
tthecona
{{goal !tatom 55421}
fassert (= s5Y tJl))
{{goal (not !latom $5ii!))
tassert (= s8Y ()h2)i}
(thlambda (X YY) )
tassert (= %8k 55Y)r}J

Talaed Mocels ol PLANWNEK Theorems

We shall construct mooels for PLAMNER theorems in much
the same manner as lor MAITCHLESS patterns.

{THINTEN] predecessor X cown up successorst) is true if
the following conoitions are mets

(1) the predecessor 1s true.

(2) he apply the function cown with two arguments: The
first argument is () if ana only if the evaluation of x fails.
If the 1irst argument is not () then the value ol the second
argument is the value o1 X.

{3) We apply the function up with Iour arguments. [he
first is () if and only if the rest of the computation 1ails.
If the i1irst argument is ()} then the second argument 1is the
message of the 1ailure. The third argument is () if and enly If
the evaluation of x dails. 1f the third argument is nat () then
the fourth argument is the value ol X.

The function TnINTEWND is exactly like the iunction



"Ehintent" exceptl that a geclaration of intention variables must
we the Jirst argument. For exsmple the folliwng intention is
always satisrfiect Hecall that the function YassertI"™ will

assert a statement if has not alreaoy been provea.

ithintena ((alreaav=proved ()13}
T
tassert] (subset a bli
{thlambda (& ¥)
tthoona
{ilgoal (proved (subset a b))
tassart (= $5% (J)))
tassign $*alreaacy-proved t/J
flassert (= 5s5Y (J)))
(tgoal (not {(proved (subset a b)lJ)}
tassert (proved (subset a bl))
lassert (= %54 L)}
tassert (= 55Y (subsetl a oDlliilt)
{thlambda (X Y U V)
tthcong
({is () ssalready-proved)
{thcona
{igoal (= 58X ()}
lerase (provea (subset a
blyridil
{lassert (= 55U 55%))
lassert (= $sv $sY)J))}

e would like Lo show that 1f we reverse a list twice

tnen we get the orligimal list.

{aefine reverse (lambda (1)
{overall ()

L

tintent
T
tprog (<?> (u S51) (v (1))
again

toverall ()
lgoal (= $5v !{reverse !isub %51

sswliial)}i
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{intent
Ssv31)13}} lassert (= $5v !lreverse !isub ssl
{cong
(iis () ss5ul
{return ssvi)}
lassign $sv ({1 s3ut s5v))
lassign 5tu {rest ssul)

tgo againtl}
{(thlambda (X)

tgoal (= 55X l{rev s51)!)}
_ tgoal (= 5351 !{reverse 55X)1)})
(thlapmoga (X
tassert (= $5K Iirev $51}!1)}
tassert (= $51 !{raverse $$X)1)J)))))

(de fine sub (lamboa (x y)
loverall ()

t
{intent
L
tcona
(iis $s5x &6y}
()l
(t

i{T;ast <sub trest $$x)> 35y))1))
(thlambda (Z)

{theond
({goal (= $5y ())}
lgoal (= ssz ssx)iith}
(thlambda (£}
vthoonad
({goal (= ssy ())}
tassert (= 5357 s$s5x)})})}

ldefine rev (lamboa (1)
{overall ()

L
{intent
t
{condg
{latom $511)
551)
(t

(<rev i{rest $sll> {1 s55133))
(thlambda ()
tgoal (= $s5X !'reverse s551)1))
lgoal (= 5351 !'{reverse ss5X}1)})
tthlamboa (1)
tassert (eugl $sX !{reverse s551)!))

I



passert (= s3] !ireverse s5X}Li)}11)1))



T2 Teaching Procedures

Crucial fo our understanaing of the phenomenon o1
teaching is the teaching o1 procedures. Understanding the
teaching o1 proceaures 15 crucial pecause o1 the central role
played oy the structrual snalysis of procedures in the
foundations of problem solving. How can procedures such as
multiplication, algepraic simplification, and verbal analogy
probplem solving be taught efliciently? Once these procedures
have been taught, how can most eifective use of them be made to
teach other proceaures? In addition to being incorporated
directly as a black box, a procedure which has already beeén
taught can be used as a model for teaching other procedures with
an analogous structure. One ol the most important methods o1
teaching proceaures is telling. For example cne can be told the
algorithm for geing symbolic integration. Telling sheuld done
in a high level goal-oriented language. PLANNER goes a certain
gdistance toward ralsing the level of the language iln which we
can express a procedure to a computer. The language has
primitives which implement fundamental problem solving
apilities. Teaching procedures 1s intimately tied to what
superilicially appears to be the speclal case of teaching
procedures which write procedures. The process of teaching a

procedure should not be conlused with the process of trying Lo



get the one being taught to guess what some bDlack Dox procedure
really does (as 1s the case in in sequence extrapolation Ior
axample). ihe teacher 1s duty bound to tell anything that
might help the one being taught to understana the properties and
structure o1 the procegure. he assume that the teacher has a
good model ol how the student thinks. Also, Just because we
speak of "teaching™, we do not thereby assume that anything lLike
wnat classically has been called learning is taking place in the
student. However, this does not exclude the possiblity that the
easlest way to teach many proceaures is through examples. We
can give protocols o1 the action o1 the proceaure for various
inputs anda enviroments., oy "variablization" (the introduction
o1 ifgentifiers for the constants o1 the examples) the protocols
can be formed into a tree. Then a recursive procedure can be
generated by ldentifying indistinguishable nodes on the tree.

Wwe call the above procedure for constructing procedures I1rom
examples the procedural abstraction o1 protocels. Frocedural
apstraction can be used to teach onesell a procedureé. Tf.<.2 By

Frocedural Abstraction
Te2sed Examples of Procedural Abstraction

Tedadeda]l Building a hall



he shall explain procedural abstraction in more detall
using the example ol building a wall. . We deline (brick-at sS-w
$=h) to mean that there is a brick at the location with width
3w and height %5h and define the statement (wall $=w 3n} Lo
mean that there is 8 wall of wiagth $%w and height $%h using the
gefinition {conjunction ({({fix} w)) w initial U step 1 until {=
$5ww S5wlriconjunction (({fixs hh)) hh initial $5h step =1 until
{=0 $shhl {(brick—-at S$ww S5hhl}}}. Thus (wall 1 2} means {(and
{(and (brick-at 0 2) (brick-at U 1)(brick-at 0 0)) (and (brick-at
1 2) (brick=at 1 1} (brick=at 1 G}}s DHotice that the syntactic

definition of a wall runs orthogonal to the way in which a wall
has to be constructed, Thus we could not use purely syntax

directed methods to construct walls.

(define build-tower
({consequent
((l2ix} w h) (<7> (actions ()J)))
(brick-at %$%w $%h)
t{thcona
({not {hasval? 3$sh}}
{assign Ssh O}
{go restl)
{i= 0 s35h}
{go restl})}
{assign (s-actlons) {goal (brick-at $7w (- $3h
1))
rest
{thcond ({proved? (brick=-at $Zw 5$thl}
{return () })}
{goal (put=brick=at $¥w 5%hl)
{goal (check-brick-at 55w 5%h)}
{assert (brick-at $5w 55h)}
{return (ssactions !{put-brick-at 55w S$5h}!)}})

If we give PLANNEK the task of constructing a (wall 1 2), then
the actions that will be taken ared
{put-brick-at U0 Q)



iput-brick=at O 1}
{put=prick-at 0 2}

[1 the goal is (wall 2 1) then the actions are:
{put-brick=at U U}
iput=brick=at 0 1}
{put=brick-at 1 0OJ
{put-brick-at 1 1}

. We shall use the expressicn new 5 to mean that a new identi jler
i5 pound and initialized to 5. wme shall use the expression (3%
9} to mean a reierence to an identi fier whose value is % the
expression {52 3 7} means that an lgenti fier with value 3 is
assigned the value 7. More precisely, the protocol tor (wall 1

21 1s

tnew [1 2]
{new [NO=VALUE NO=VALUE]
tassign {%$: NO=VALUE U} 02
FALSE: {= {35 O} {53 11}
a0
tassign {s: NO-VALUE G} )
FALSEs {= {35 U} {ss5 21}
50
{put-brick-at (5% L} {535 O})
{assign (53 0O 1) {(+ {55 U} 1}
FALSE: (= {53 1)} {55 2}}
50
{put=brick=at (55 0} (355 1}}
{assign (s 1 2} i+ {55 1} 1}}
THUE}Sé- {ss 23 (58 2}

{assign (52 U 12 {+ {55 W} 1}
TRUE: (= {55 1} (5% 1}}

50

coL)

The protocol for (wall 2 1) is
tnew [2 1]
tnew [NO=-VALUE NO=-VALUE]
tassign {52 NO=VALUE O} U}
FALSEs 4= (35 () 455 2}J



30

iassigﬁ (53 NO=-VALUE O} 0O) FALSE® (= (53 O (35 1)}
3

{put-brick-at (5% O} {35 U}}
tassign (62 O 1} {+ (5% 0} 13}

ThUE: 1= (55
20

b {ss 1)

lassign (53 (O 1} (+ {55 L} 1})
FALSE: 4= {55 1} {355 2)})

S0
tassign i{s: 1 0} 0}
FALSE: {= {355 0} 1}

1) 13}

The protocol for (wall 2 2) is

inew [2 1]

tnew [NO-YALUE NO-YALUE]

tput=brick-at (55 1} {355 L))
{assign {$¢ U 1} «+ {83 Wl 1)}
ThRUE: (= {55 |} {85 11};
30
{assign {($: 1 2) {(+ (33

TRUE: (= {535 2} {55 2}
=0 ()

lassign ($: NO=-VALUE U} O}

FALSEs {= {s$35 0} {55 2)}

20

{assign (s& NO=-VALUE U} 0}

FALSE: {= {3s
50

{put=brick-at
tassign (s: O
FALSE: {= {53
S0

(put-brick-at
{assign {51 1

=10

U 1ss 23}

(55 0 (35 03}
1h A+ (355 Q) 1))
1h {ss 23}

35 U} (55 1))
2 {+ {35 1} 1))}
THUE: (= {355 2} (%5 2}

tassign {ss O 1} {+ (55 0} 1)}
FALSE: {= {85 1} {ss5 2}}

50

{assign {5 2 ul} )

FALSEs (= {355 0O} (55 2))

aU

{put=brick-at 1 ()

{assign (53 O 1} 4+ (85 O} 1}}
FALSEY 4= {55 1} {55 2})

20

{put=brick=-at 1{ss

1} {ss 11}



tassign (s 1 20 {+ {85 1} 1}
lassign (53 1 2J (+ (35 1) 1}
THues = {353 21 (35 2))

=10

)

By introgucing fgentifiers Jor the constants the proltocols can

be arranged In a tree as follows:

new [w hl
new [ ww=NU=¥ALUE; hh=NU=¥ALUE]
lassign $iww UJ
i1 t= &5ww 35w)
then
()
glse t(assign S#hh U If = S65hh $5hi
then
tassign Stww (+ S5ww 1))
if (= 53ww S5wi
than
o0l
else
Llassign s$thh W}
if = 35hh OJ
then
tassign Stww {+ S5ww 1})
if (= S5ww SSwih
Lhen
o0
ElSai'I
8l58.aa
glse
{put-brick-at $Sww 55hhl}J
tassign sshh {+ $shh 11}
if {= s$shh $sh’
then
{assign Ssww {+ S5ww 1))
i1 = s5ww 1}
then
()
glse
tassign $:hh U}
if {= s%5hh %%hi
Lthen

1.2 page

tput-brick-at ssww $5hh}
tassign $thh {+ $shh 1}}
if (= sshh $5h)

then

tassign Stww {4+

Ssww 11}

I



it (= SS5ww 35w)
then ()
alse,..
Bls5e ...
Blsg ...
e2lse
tassign sshh (+ %5hh 1))
it (= sshh sthl}
than
lassign $tww (+ SSww 1)}
if (= S5ww 55w}
then ()
else,..
else. ..

#we define the protocol of an evaluation to be a list o1
the evenis anc the places in the program where they happen that
occur when the evaluation is being carriea ocut. by examining
the protocols o1 the system as it tries to build a wall we fing
that it always uses the same procedure. 03I course it will not
always be the case that the protocols 1rom the sclutions of the
instances of a goal con be combined into a procedure. The basic
idea is to combine the set of protocols into & tree and then
consider any two nodes of the tree which cannot be distinguished
on the basis o1 the protocels to be identical. In other words
it is necessary to compute a minimal or almost minimal
nomomorphic image of the set of available protocols.
Unlortunately it is often diificult to extract the Information
needea Lo do proceaural abstraction from the protocols producea
by PLANNER thecorems as they sclve problems. The procedure that

tha theorem 15 in fact using can be expressed as followss



{de iine coapile-buila (lamoda ((4fix) w) (ifixs hl}

toverall (J
LB hand

igoal (greaterp 5%w W)J
{goal {greaterp s$$w ()1}

tintent
{thanu

iprog

column

height

lassert (greaterp $sw )}
{essert (greaterp $s5w UJ})

((L1ix) ww hhl)

lassign Stww U}
lgoal (= $5ww (J)

Ttoverall ©2
{goal (wall 5S5ww 55h})
tintent
{assert (wall $5ww $3hJ)
L conag
(l= SSww 55w/
{intent {wall $5w $$hlt}
treturn {)}+})J
{fassign S#hh U}
{intent {goal (= $shh )}

Ltoverall ()

Lthana
{goal (wall $5ww 55hlJ
{goal (column £sww $5hhl )}
tintent
tthand
{assert (wall 5Sww 35h)/J
{assert (column S5Sww S3hhl)}}i
{ cona

{{= s5hh s55h)}

{assign Stww (+ S5ww |}}

{go columnlt}l}
{intent {goal {support-for $Sww $Shh)}}
{put-brick-at s$sww 3%hn’
(intent {goal {brick-at $%ww $3hh}}}
{assign $ihh i+ $&hh 123}
tgo heigntlt)

(thlamods (&)

{goal (wall $5w $Shil)

(thlamboa (X}
tassert (wall 55w 5Shli)))

(dei1ine check=wall

[consequent



(w* w h* hl
(wa ll %3%w® 57h")
tthcona
(ithor
tgoal (= SIh* U))
lgoal (= 3w’ L))))
(tls i+ $2h 1}! ss5h*)
lgoal (wall $%w* 5%5hli)
\goal (column $3w’ §24)}))
({is i+ s%w 1}! s5w’)
lgoal (wall $7?w $5h*)J)
{goal (column $2w’ $2h*)})
(t

tfail theoremit) )

(define check-column
(consequent

{w h "}
(colunm S%¥w $%h")
tthcond
({goal (= $Th* U)})
(lis !i+ s5%h 1}! 35h")
{goal (column $%w $7h)})
(t '

{fail theoremt)}))

(define check=support
{consequent
(w h)
{support—-for $%w 57h)
{thecond
{{geal (= $th Ui}

({goal (column 55ww 35hh)})
(t {fail theoreml))t))

(define put-brick-at
(thlambda (w h)
toverall ()
tgoal (support-for $5w $5h)}
{put-brick=-at ssw 55h)
lassert (brick—=at $sw $Shl}}l))
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The function ceompile-build has been Simplified by transilerming

the recursive tunction thet correspond to the tags column and

height into loops.

The structure of the abstracted procecure

must at least retlect the structure oif the PLAKNER theorems 1irom



winich 1t has been abstracted. Ihws the abstractlion of a ror-
provea loop will generate & recursive equation which might be
simpliiieu to & loop. Some of the recursion in abstracted
tunctions is5 primarily generatea by the structure of the gata of
the problem. If we consiager the tags column and height to

ae line functions, Lhen the proof is essentially by recursion
induction. In the above proceaure $sw ls the wicth o1 the wall
to be built, %$%5ww 13 a running index over the widih, %3h Is the
height, ana 35hh is a running inoex over the height. WUsing the
intentions in the above procedure as subgoals we can easily see
that the procedure does build walls. w®otice that we can use the
protocols o1 the procedure (in a process that we call "protocol
rejection") to re ject 1alse subgoals in much the same way that
Gelernter used diagrams in his geometry theorem prover. For
example we might evaluate {compile-build 1 2}, {compile-build 2
1}, and {compile-build 3 2} remembering the protocols of the
avaluations, Thus when consiaering the case where the

intention

{intent
{or
tis ssww (F
{wall {subl $sww} $%nhhltl)
is evaluated immeaiately arfter {go column} is evaluated, it will

beé The case that 1is Ssww () is false ana so cannot possibly be

a provable subgoal even though it implies the intention. Thea



Suogual will be to prove (implies {(not {is $s5w UJ) {wall {supl
SewWwws S5hhi). Of course using protocols for the pUrpose ot

rejecting ralse subgoals does not help us to eliminate those

Lhat are true out unprovable.

Tedacadad Heversing a List at All Levels

Considger the following protecels for & procecure rs

inew Lal
TRUE:s {is (atomic) (335 al}
50 {55 a}

thus (r al is a

tnew [(nll

khLEhéu{is {atomicl) (5% (n)}}
K
<naw [lrest (%5 (n)i}]
TRUE: {is {atomiclt (55 ()})

S0 (55 ())»

tnew [{1 (55 (n)J})
THUE: {is {atomicl} (55 nl}}
' S0 s nird

thus 1r (n)} is (n)

tnew [(a bJl
FALSE* {is {atomic) (55 fa b)}}
S0
{
<new [irest 155 (a bll}}]
FALSE: {is {atomic) (55 (b)})
S
{
<inew [irest {55 (o)}}]
ThUE: (is {atomic) (55 ()}
S0 1858 ())»



tnew [{1 {55 (D)J}}]
THUEsS tis latomict 455 b}l
50 135 blll=>
{new [L1 (5% (a bl})]
1HUES 1is tatomict {355 a)l}

50 (55 atk)

thws «r fa bll) is (b a)

tnew [(fal)}l]
rﬁLSEL {is {atomiclt 135 ((alll})
A

)
cinaw [{rest (5% ((a))lirl]
TRUE: {is {atomicl) {55 ()}
S50 ()=
inew [{1 {5% ((a)i}i]
FALSEs {(is {atomic) 1% (allt)
50
N
cinew [lrest (%5 (alli])
" THUEs 1is {atomic) (55 ()}
S0 (i
{new [{1 {55 (a)t}]
TRUEs {is {atomic} (3% all
SO (s ajinl

thus {r ((all)} is ((all

we obtain the followlng protocol treetd

tnew [x1)
i1 {is {atomic} ssx1}
then 5%x1
aglse
[
<new [x2 {rest $sxilt)
if {is {atomic) ssx2}

then 5$sx2
glse
{
¥ cnew [x3 (rest ss5x2))
- if (i5 {atomic) $5x3)
thqn 55x3

BlEg..e7

{new (x4 {1 s$x2)]

i1 {is latomic) $sx4)
then 55x4



ElEﬁtt-}}}
tnew [x2 (1 ssx|)]
if {is {atomicl) s33x5)
than 5%x5
else
)
<new [X6 (rest ss5x5t]
it {is {atomic) ssxal
then 53x6
gl5g..as
tnew [x7 {1 s55x%9)]
i1 {is latomictl s$x7i)
then £%x7
Bli@aasd))

by. iwentitying indistinguishable nodes we obtaint
(define super-reverse (lambda (x)

{cona
(iis {atomic) ssx) s55%)

Tad page =26

(t (<super-reverse {rest $s5x)> {(super-reverse {1

$5X1J3311)
- - Consider the lollowing set of protocolss
J.2..244.3 Finding the Description of a Stick

suppose that we have the lollowing data bases

iolock a)
(block bl

{(glued a bJ

The above gata base represents a stick on the the basis

of the lollowing protocolt

tgoal (stick a bp)}

tnew NO=-VALUE WO=VALUE WO-VALUE] (3 we have three new

igentifiers that co not have values}

conseguents (stick ($7 NO-VALUE a) {57 NO=VALUE bl})

tncona
tpravea? (glued (57 al} (s7 b))}



Figure 1.

e
a | b

(block a)
(block &)
(glued a B)

Figure 2.

a | b |c

(bleck a)
(Black b}
(block <)
{glued a b)
(glued & c)
(between a b <)

Filgure 3.

(':- |

.tslguk a) " (not {between a b ¢))
(block b) '

(block &)

(glued a b)
(glued b )




{return t}

ow suppocse that the data pase iss
(block a)
(block o)
(block <l
{gluea a bl
{glued b ¢l
{between a b ¢l

ne obtain the Jollowing protocols

tgoal (stick a cli}
[new NO=VALUE NU=VALUE NO=vVALUE]
consequent: (stick (s? a}) (57 cl})
Lhoond
tprovea? (glued 157 at (87 cll}
fail
{proved (block {57 a}l)}
lgoal (glued (55 a) (%= NO=-VALUE bDl)}
iprovea? (between (%5 al {55 b} %7 cl)}
{goal (stick {55 b} (85 c})}
[new NO=VALUE NO=-VALUE NO=-vALUE)
consequent: (stick (57 b} (57 ch)
thcond

iproved t?lUuu (57 bl (57 cli}
treturn t

By variabalization we obtain the following protocol tree:

{goal (stick u v)!
Inew x y zl
consequent? (stick %7%x 57zl
{thcond

(lgoal (glued $%x 5%z))
Areturn tl))
{provea? (block 57x)}
{goal (glued $%x $=y)}
{provea? (between $3x 5%y 5%2))
{goal (stick s$sy $5z)}
[new x1 vl zil
consequent: (stlck s¥xl &3z1)
{thcond
({goal (glued $7x! $2z1)}
{return t})}
{proved? (block 57x1)}
lgoal (glued $5x1 s=yl)i
{provea? (between 35x| S5yl §7z1)}
tgoal (stick S$3yl s$szl))
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by igentitying lnaistinguishable nodes we obtain the

following consequent ftheorem which 15 the gescription o1 a

stick.

fdefine stick-cescription (consegquent
{(x y 2]
{stick $7x siz)
ttheond
({goal (glued $3x $7z))
{return ti)}
tproved? (bleck $7x)}
tgoal (glued &sx S+~yll}
tproved? (between s%x $5y $7z))
tgoal (stick $5y &sz).))

TedeZadod Finding the rFibonocci Numbers [teratively

Somatimes it 1s possible to improve the efficiency of a
procedure by procecural abstraction. For example consider the
protocols o1 the schemaé f definea Delow.

(define f (lambda {1ix}) ((ifixt ni)

{eond {3ix} (lor P n} (P {5 nl}} Q)
(t LA {145 ndd {1 45 {5 nth)1}))

He shall used the abbreviation that {(f*0 xJ) is x and {1*n+l x)

is {f {1*n xJ}J} where f is a function. Thus (r*2 x} is (f {1
xlla The protoceol for the above schema iss

i1 {or (P {570 nl}} (P 1531 n}h)

then O
elsa
LA
i1 {or (P {5°1 nit) (P (572 nli}
then O
glse
LA

i1 tor (P (5°2 n)) (P (5°3 niti
then O

BlSg ..



i1 tor (P 1573 n}) (P (5™4 niti
thenm U
Bl5E ...l
11 tor (P 145°2 nl) (P {5°3 n)l))s
then O
glse
LA
11 {or (P (5%3 nk} {p 574 niti
then u
2l5e...
11 tor (P {574 ni} (P (5™ n}phs
then o
ElS@.aslt}

by prn&aﬂural abstraction we can obtain a function fl
which 1s equivalent to 1. The function is obtainea by
identifying some of the nodes that are not on the same branch of
the protocol tree. The type {(fix) Lelow is the type o1 1ixed

point numbers. The type (loc (fix}) is the type o1 where the

location of a tfixea peint number can be stored,

{deiline 1 (lambaoa {fixs (¢{zix} nJ)

{prog ((iloc {1ix}} m))
{12 n mli))

(define 12 (lambda {1ix} (n ({loc (fix)}) m))
{cona
(lor (P nt <P {5 n))
i3 In this special case smash the location m to
contain O} .
{assign {smash %%m) 0Q))
(t
lprog {(fix) (({loc {fix}} 1))
tassign {(smash $s$m} 4f2 ss5n S5l})is; set
the contents oi m to be {12 $5n 551}
ti the value of f2 is the function &
applied to the contents ?f m &nd the contents of 1}
A
tin 55m)
tin $51)3)130)

Another approach is to use some of the theory ©1 recursive



schemas. The function 1 definea above is schematically

eguivalent to the funclion fi1.definea below

f{deiine If (lamboa (fixd (({1ix} nJ))

{tor ifixy ((U1dwd (x O0) Ly 0)Xi))
{{test {F ssn} {return ssx))
{step {assign 5in L5 $%nii)

lassign i[s3x Seyll J0{A s5x Ssy) ssx]ild
{3the previous statement 15 just & tricky way to
siuultaneously accomplish tassign $tx (A 55x ssyt) ana lassign
S8y S5 i)
Note that (fib n} the nth ribonacci number can be defined as

follows

A{de 1ine fib (lambga {(fixJ) ({({fixs nl)

{cona (fix}

(lor (is 1| 3%%n) tis 2 3snt) 1)

(t {# {fib (= ssn 1} {= s3n 2}21}1 1)
Using the interpretation that 0 is 1, {P xJ) tests to see i1 x is
1, and A is add, we seg that the lunction fib can be rewritten
iteratively.

The process of proceoural abstraction is very much llke
a generalized lorm of compilation. The relationship between the
compiled version and the intérpretaﬁ version can be very subtle.
In classical compilers the relationship i{s much more
straightforward. Every time that the interpreter for the
language changes the compiler must ¢hange., In fact the
interpreter and compller are two mooces of what is essentially

one program?® an interpreter-compiler. In compile mode it would

actua lly produce the compiled code for the sSource codei in



interpret moge it would take the actions corresponding to the
compiled code that woula be produced in compile mode. The
interpreter=compiler can b&_wr:ttan in MATCHLESS so0 that in
compile mode the KATCHLESS skeletons have as value the compilea
code. Une preoblem with interpreter—compilers 1s that they
suilfer from the inefiiclency of double interpretation. Insteag
0l directly interpeting the expressions, in Interpret moce the
interpeter-compiler interprets the skeletons that would produce
the code in compile mode. The problem can be solved by

compl 1ing the interpreter-compiler for interpret mode. We would
like te try to extend this ldea to PLANNER in & more nontrivial

way so that goals would be crested to produce the compiled code.
Jedelatabd _Defining a Lata Type
We can do procedural abstraction of protecols along the

same lines for actors. For example if we obtain the iollowing

actor protocol

({i1
({J))
{{atomiclt)
({if
()
({atomicl)
(i1
(L)
(latomicl)}
<if

(C))»
i1



{Cx
{iatomicd)

(iir
i{J)
{{atomici)
({irf
(€33}
<if

L

(tatomicil=>r)li)
1hen by lagentifying euivalent nowes we obtain the actor expr
Where

{define expr (kappa ()
it

({2}
(latomicl})
({lexpr) <exprs>)}i))

Goodstein has many inouctive prooils ol the the
properties of recursive programs. John MeCarthy was cne of the
first to popularize the use of recursion induction 7or proving
the properties of programs. The easiest way to do recursion
induction is to provide at least one predicate lor each
recursive equation. Hobert rleyd has propased that predicates
in the 1irst order quantificational calculus be attached to the
edges on flow charts in order to provide subgoals for proofs o1
properties of programs. In general we would prefer to proceed
more constructively ano to write intentions in PLANNER rather
than in a Iform of the quanti ficational calculus. Finding an
intuitionistic proof o1 a sentence In first order logic 15 the

same problem as finding & recursive Iunction that realize the

the formula. GSince the logistic system of PLANNER is very



constructive, a proof of a PLANNER theorem entails being able to
write the procedures which compute the values that identifiers
in goals take on as a result of the geoal being established.
Intentions are a 1irst step toward constructing models o1 the
environment in which a process executes, He need to aavelop
good ways to lncrease the expressive power of intentions.
Current ly the model of the computation must be expressed by
intentions within the process being executed which makes it
difficult to get a global view of the model of the execution o1
the process. The application of intentions in which we are most
interested is their use to provide subgoals to enable us to
deduce PLANNER theorems with loops in them. We shall say that
an intention i characterizes a function f i1 whenever {1 x}
converges then f{equal {1 xJ yJ if and only if {1 x vy} is true.
A long time ago John McCarthy and others proposed that the
debugging problem be solved by proving that the procedure is
correct once and for all. Using inauction McCarthy and his
students have proved that certain compilers are correct. The
most important practical difficulty to the realization o1 the
proposal is that for many functiens f written in higher level
languages it seems that all the intentions that characterize T
are at least as long as 1 because the only way to tell whether
the value o {(f x} is correct or not is to do an equivalent
computation all over again. A good example of such a functicon

is eval in LISP. The function eval is an extreme example o1 a



function that has no simple declarative input ocuput
characterization. A real challenge in automatic program
writing is to develop a 5ympnlic inetegration routine Ifrom the
criteria that the derivative of the answer must be equivalent to
the input. OUne approach toward constructing such & routine
woulo be to make use of some results ol Risch on what must be
the form o1 the integrand as &8 function o1 the form o1 the
integrang. In the case ol the factorial function there are two
obvious ways to compute the function: wsing recursion or using
ca loop. In other cases It is not so cbvicus how to find a
sufficiently aigferent equivalent program. Whe shall say that an
intention 1 is implied by a function 2 if whenever (f x!
converges then if {equal (f x} y}, then (i x y} is true.

Implied intentions are useful when we are only interested in
some property of the lunction and don*t care to try to
characterize it completely. For example we might not care
mhether a function that determines how to stack cubes always

. puts red cubes on the bottom of the tower that it is trying to
build. Or we might be Interested in proving that a scheduler
for a time sharing system passes some test jlor fairness in its
distribution of time to users. Another potential use ‘1or
implied intentions is to provice subgoals to prove thal & given
function that uses lock and unlock and unlimited use of

assignment in parallel computations is indead determinate.



T.£4.3 Teaching Procedures by Deducing the Bodies o1 Canneo

Loops

If the type o1 control structure is known a pricri, then
the rest o1 the function can olten be deduced. Often Lhe
control structure needed is & very commonly used loop such as
the "for® loop in MATCHLESS, recursion on the tree structure o1l
lists, or one of the loops in PLANNER such as "try", "fina", or
mact"., Whe shall call loops such as the above ®canned" ]|oops
since we will o3ten pull them out andg use them whola when we are
in need of a control structure for & routine. The appreoach o1
using canned loops is the one used by Kleene for constructive
realization functions for Intuitionistic logic. OSuppose that we
know the following theorem about the preaicate (REVERSEP x y)
which means that y is the reverse of x. For example (reversep aa
aa) and (reversep (1 2 (3 4)) ({3 4) 2 1)) are true. We shall
use l< ana »! as meta angle brackets tor < ana » respectivly.

As pafore !{ and J! are the meta braces for ( and !.

A{deiine ths? (conseguent
{a b cl
[reversap %7a $7b)
ithcond
{{hasval? al
{theono
{{goal (atom 55a)}
{3 i1 a is an atom then b should be
ajqual to ai
{goal (= $sa $ibliy)
(t
{goal (not (atom ss5all}



{goal (reversep !irest ssal! $=c))
{3 otherwise let ¢ bethe reverse ol Lhe
rest o1 al
{goal (= (l<identity S$$5c=! !4 ssasl)
SFLI L)
(Lt {geniaill)i))

e would like to find @ Junction reverse such that (reversep x
(raverse xJ) 1s always true. The theorem above suggests that we

Ltry to use linear inouction on lists as the control structure,.

The schema Ior linear induction epplied to the Iunction reverse

iss

Adeline reverse (lambda (x)
. Mcond
(!{atom S5x}!
{temprog (Y)
{assert (atom Ss5x))
{goal (reversep $$x §=Y)}
t% find @ ¥ which {5 the reverse ol the
atom "3%x" and return it as valuel
et 55Y3)

{temprog (Y)
tassert (not (atom %5x))}
{assert (reversep
rest $sx}l
Hreverse !{rest $sx}i}i)}
{goal (reversep S%x S=Y)}
$5Y1 1))

The above expression evaluates to the following definitions

{deiine reverse (lambda (x)
icond

(ltatom $5x) 55%)
{t (<identity {reverse {rest s$sx))> {1 Ssx}i))}))
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fed.d, Comparison of the Methodas

Thare 15 not much to be sala about teaching procecures
by telling. It 15 not always clear whether the procedure should
be taught 1rom the top down or the primitives should be taugnt
Iirst. However, the basics of the method are simple ana
direct. Unfortunately the teacher will not always know the
code for the procedure which is to be taught. He might be
engaged In wishijul thinking hoping to 1ind a procedure with
certain properties. The method ol canned leops is oiten
applicable to such cases. Trying to use the method ol canned
lnnps has the problem that the control structure must be
supposed. . Often it 1s very difficult to guess the kind of
control structure which will prove appropriate. Alsc the method
of camnned loops works on the problem inm the abstract a5 opposed
to specific examples where the identiiiers are bound to actual
values. The advantage of the abstract approach Is that i it
succeeads then the procedure will be known by fts construction to
have certain properties. On the other hand it {5 oilten easier
to see what to do on concrete cases. The approach of procedural
@abstraction is to combine together several concrete cases into
onea supposed general procedure. Properties oi the general
procedure must then be established by separate argument. If the
protocols of the examples are producea by a goal-oriented

language such as PLANHER, then there will be peoints along Lhe



protocols where certain predicates are known to De true. Lhe
predicates express the fact that some goal was established as
true at that point. Often it iIs possible to show Dy
mathematical induction that the correspondlng properties in the
apstracted procedure are always true when the procedure passes
through the points. In this way a problem solver can have a
partial model of his problem scolving procedures. The mooels can
be expressed naturally in PLANNEH. Also the method o1
procedural abstraction has the advantage that the control
structure does not have to be supposed in advance. Uften a
problem solver will have the basic problem solving ability to
solve any one of a certain class of problems. But he will not
know that he has the capability. #riting a procecure which can

be shown to solve the class enables the problem solver to

bootstrap on his previous work. Procedural abstraction itsel?
is further evidence for the Principle o1 Frocedural Embedaing.
To implement the principle as a research program requires a high
level goal-oriented formalism. FLANNER and scie embellishments
that we have made to the language are first steps toward

realizing the Principle of Procedural Embedding.



7«3 Current Problems and Future Work
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