MASSACHUSETTS INSTITUTE OF TECHROLOGY

PROJECT MAC

Artificial Intelligence
Memo. Ho. 174 April 1969

The Greenblatt Chess Program

Richard D. Greemblatt
Donald E. Eastlake, TII

Stephen D. Crocker

The Greenblatt chess program®

by RICHARD D, GREENBLATT,
DONALD E. EASTLAKE, Iff,
and

STEPHEN D CROCKER
Muassivchiessetts Inefiinre of Techialagy
Cambridpe. Massachusells

INTRODUCTION
Since mid-November 1966 a chess program has been
under development at ihe Artificial Intelligenco

Laboratory of Project MAC at M.LT. This paper de-
scribes the state of the program as of August 1967
and gives some of the details of the heuristics and
algorithms employed,

Development of the program

The first step we took was to produece & simulated
chess set, whereby the computer would display the cur-
rent board and accept moves in standard chess notation
through @ teletype. Routines to evaluate the board,
generate Jegal moves, and perform a minimax search
of a game tree were quickly added, and with further
development the program played in its first tourna-
ment in February of 1967, Tt played in local tourna,
ments again in March, April and May, The improve-
ment it has shown is due to additional programming
and debugging, not learning.

Table 1| summarizes the program's performance in
tournaments. For comparison, the mean of all U. 8.
tournament players is about 1300, while the mean
of all chess players is in the 800 to 1000 range. The
program wins about 80% of its games against non-
tournament players,

*The propram was written primorily by the first author who

wis pesisted by the second author. Work reported herein
was supported in part by Project MAC, and MUOIT. ree
search program sponsored by the Advanced Research Pro-
ot Agency, Department of Defense, under Office of Maval
Research Contract Number NWoar-4102(01%. Reproduciion
in whale ar in part s permitted for any purpose af the
United Seares Government.

801

Tahblz 1
Perlormance
Won Lost Drew Rating Rating
Feb 0 4 1 1243 1243
Mar 1 4 0 1330 1360
Apr 2 0 2 1450 1640
hay 0 4 0 14061 (weakest

opponent was 1630]

The program is an honorary member of the United
States Chess Federation and the Magsachusetts Chess
Association, under the name Mac Hack Six. In the
April amateur (non master) tourmament the program
won the class I trophy.

A short history of chess playing programs

The first important paper dealing with methods
for programming chess playing programs was writlen
by Shannon in 1949 (1). In his paper the concept
of minimax tree search i5 uwsed. Tn 1950, Turing
described a hand simulation of a chess program (21).
In Turing's paper the concept of a dead position is
introduced. A dead position is one in which neither
side can immediately gain by making a capture. These
papers and two programs known as the Los Alames
program and the Bernstein program (B} are de-
scribed in a paper by Newell, Shaw and Simon (3).
Thelr paper describes a chess program which deviates
from the analysis done in the previous programs in that
it employs cxplicit plans and goals in making its moves,
A more recent program in the Newell, Shaw and
Simoa tradition is the MATER program of Simon and
Baylor (4). This program, however, deals only with
mating combinations of a few moves. The program
which 5 most similar to our program is described
in a Bachelor's thesis by Alan Kotok {5). A wanani

B2 Fall Joint Compuler Conference, 1967

of Kotok’s program was used by John Mecarthy
in a chess maich with a Russian orogram {6). It is
fair to say that oui program is stronger than any of
these programs in across the board play.

Approsch and enviromment

The approach we have taken in writing the chess
program has been quite pragmatic. We did not pretend
to be writing & general problem solving system, but
addressed ourselves directly to the problems of chzss.
The goal of being able to play complete games under
tournament conditions has meant that most of the
effort o far has gone into building an efficient and
effective tactical base. Therefore, consideration of
learning mechanisms, strategic planning mechanisms
and special case treatment of opening and end play
were forestalled. Book openings were recently added,
although it turned out that the computer plaved much
better in the openings without them than was expected,

The environment in which this program has besn
developed is, we feel, more advantageous than for any
previous chess program. The machine vsed is the
Digital Equipment Corporation PDP-6 in the Artificial
Intelligence Laboratory of Project MAC. This machine
is oguipped with a 256K Fabritek memory, a DEC 340
graphic display, a model 35 teletype, a line printer,
and four Dectape drives.

The machine was originally wsed on-line by one
person at & time and the teletype and graphic display
provided & high degree of interaction betwesn the user
and the program.

The software provides for the editing, assembling
and debugging of programs and makes full use of the
interactive facilities, The mass memory and a time
sharing svstem were added after most of the initial
work on the program was done,

The mass memory haz proved very wseful in later
versions of the program, but it showld be noted that
al the time of the first two tournaments the machine
had only & 16K memeory.

The program was written entirely in MIDAS, a
PDP-6 macro assembly language (7). MIDAS was
chosen for this program because of the ease of con-
structing and debugging in it the complex data and
control manipulations involved in writing a high per-
formance chess program. Large economies of time
and memory are also effected by writing in assembly
language, The order code of the PDP-6 computer is
exceptionally well suited to assembly language coding.

The program has heen edited and reagsembled over
200 times and has plaved several houndred complete
rames; consequently, thosa portions of the code which
Fave been in use for o while are extremely reliable

and the program’s performance has yiclded many ideas
for improvement.

Debugging aids

The chess program contains several powerful ioter-

action debugging aids. These are briefly listed below:

1) scope display of the board and game history

2) acceptance of standard chess notation input (e.g.,
P-K4)

3} scope display of evaluation at any selected node
in the gam: tree

4} tracing of specific move in plausible move genera-
tor, displaying all factors that went into plaesi-
bility and a comment about each. (eg., 10
points for unblocking the white quesn bishop so
that it now attacks ONS)

5) printed record of plausibility of all moves at
top level and main variation from each top level
move investigated

fi) statistics on how long the computation took,
how many plausible move generations, feed-
overs and static evaluations occurred, ete. (These
terms are desicribed below,)

An outlinsg of the program

We begin this section with a definition of soms of
the important chess terms and then describe the major
components and the flow of control.

Chiess berting

Ply—one play by one side, Two plies equal one com-
plete mowve,

Pinned—a picce is pinned if moving it exposes {dis-
covers) an attack on another piece, rendering that
picce en prise (sec below). If an antack on the king
is thercby discovered, the original move is illegal.

Safe move—a legal move for a piece that does not
render it immediately en prise.

Trapped-—a piece is trapped if it has no safe moves,

Isolated, backward, doubled, irpled—various pawn
structure defects, {See section on static board evaluator
for further discussion,)

Development value—refers to a plece’s range over
the board (number of squares and importance of
those squares) in a particular position.

Principal varnation—the sequence of moves the com-
puter thinks most likely in a position,

Game tree-—ihe set of all positions considered by the
program in a search, visualized in the form of a iree,
This tree is diagrammed with the ancestor positions
near the top of the page.

Game tree node—a node in the game tree represcnts
& position. The line leading to the node represents
the mowve which lead to that position. The lines down

The CGireenblait Chess Program 803

from the node represent moves leading (o sugcessor
positions,

En prise

A picce is en prise when it is under attack and is
inadequately defended, An example iz a knight under
attack by o pown and defended by a pawn (or any
other piece), Clearly it is in the opponent’s intercst
to tuke the knight even though he would loss the
pawn. A more complex case is where a knight is
under attack by a bishop and rook and defended by
a pawn. In this case, it is the existence of a second al-
tacker (the rook) which makes the knight ## prise. The
sitwation is further complicated when some of the af-
tackers or defenders are pinned. Often o complefe
check for whether a piece is en prise can be quite com-
plex, =0 in the program only partial checks are made
al various stages, A typical determination is made by
considering the value of the piece attacked, the numi-
ber of attackers, the number of defenders and the
values of the least valuable ottocker and defender.
En prizg checks are maode to determing whether or
fipd the board is stable {in a dead state) and are also
made at several places in the plausible move generator.

Deseription of a simplified minbmax search

The program is organized around a minimax scarch
! of @ game tree, The branches of the tree correspond to
altermative moves and the nodes correspond to posi-
tions. Beginning with the actual position in which it is
the machine’s turn to move, & routine known as the
plavsible move generator lists each legal move and
pesigns & plavsibility valwe to each move, The moves
are then ordered according to their plavsibility score
and a subsct of the moves is sclected for further con-
sideration. The first move of this subset is then postu-
lated and the resulting position calculated. This process
i repeated recursively until @ certain depth is reached,
at which point the position 15 evaluated using another
routine known as the position evaluator, The position
eviluator makes use of o function called the static board
evaluator o compute o numerical value for the position.
This numerical value has the significance that a positive
value represents an advaniage for white (the larger
the number, the greater the advantage), a negative
number represents an advantage for black, and zero
represcnls an even game.

After a position is evaluated, the value is returned
to the level above and it becomes the “'best value so0
far” for that position. Each other move of the subset
selected by the plavsible move generator is treated in
the same manner, and when a value is obtained for

= the move, the value is compared to the best value found

5o far. If the value associated with the move just con-

sidered is better for the side o mowe than the best
value so far, the new move 8 remembered and ifs
value besomes the new best value so far, “Better”
is synonomous with “algebraically greater™ if white is
the side to move and “algebraically less™ if black is the
side to move, I owo moves lead to the same value,
it 15 presumed that the first 15 slightly better because
it received a higher plausibility score. After all of the
selected moves at a position have been considered, the
best value so far and the move associated with that
vilue are returned to dhe level nbove. The process ig
continued until a value for the actual corrent position
i determined, The sequence of moves which are the
best moves is called the principal variation,

Since o not feasible to consider enther all moves at
any level or an indefinite number of levels, some severe
constraints are placed on the search. The basic
search (just described) starts from the current game
position and procesds & fxed number of phes,
A position evaluator s applied to each of the end
positions of the basic secarch tree. This routine tests
a eopdition Enown as the feedover conditicn (sce
below) of the position, If this condition i tree, then
the plausible move generator is reapplied (up to cer-
tain limits) and the position evaluator called at the
resulting nodes, If the feedover condition is false, a
value for the position is developed by calling the static
board evaluator and by exploring all plausible cap-
tures. Plawsible captures are gemerated in a manner
similar to regular plausible moves, but they must ap-
pear to lead to relative gain of material, either through
an actual capture or a pawn promefion. Positions re-
sulting from plausible capiures are turned over to the
position evaluator. The program will explore sequences
of favorable captures or pawn promotions without a
depth or width limit. This is necessary because other-
wige pieces might be left en prise and this would result
in Blunders of the first magnitude,

Should the program at any depth reach a check-
mate, stalemate, or draw by repetition of the position,
it will immediately return to the previous level with
an appropriate mate or draw value. Also the alpha-
beta alporithm may provide an exit at any level in
the tree except the topmost level.

The details of the static board evaluator, the plausi-
ble move penerator, the feedover conditions and the
determination of the width of the search are all given
In the next section. The alpha-beta algorithm is de-
scribed in & later section.

The plausible move generater has three basic goals.

The plausible move gemeration
1} To sclect a subset of legal moves for inclusion
in the move free.

g4 Fall Joimt Computer Conference, 1967

2) To order these moves so as o opimize the ad-
vantage the program receives from the alpha-beta
tree-pruning algorithm.

3y To calculate the positional and developmental
values that will decide the program’s move if
several moves lead to the same static value,

The analysis done in the plausible move generator
15 done on a per move basis rather than a per position
bisas—that 15, for example, “this move is bad because
it blocks my beshop” rather than “the position result-
ing after this mowe 15 bad because the bishop is
blocked.” To determine the latter fact starting just with
the board position would reguire considerably more
processing and analysis of irrelevent details.

Murerous heuristics are available for the plawsible
move generator. As is frequently the case with hewris-
tics, they may not be valid in particular situations,
therefore @ program organization is reguired which al-
lows for the interaction of the heuristica o determine
which of them most nearly apphes in the current
situation.

Very generally speaking, two types of heurstic moter-
action are wsed in the chess program. One iype
of interaction involves enumeration of all com-
bimations of facts, Such an enumeraion leads to
the familiar tree structure with the nodes of the tree
corresponding to subdecisions. Each node is dependent
upon only one fact. The size of this tree grows ex-
poncntially with the number of facts involved, severely
limiting the wsefulness of this technigue.

The second tvpe of inleraction uses weighted sums.
A value 15 assigned to each fact proportional to s
averape importance, and each move is scored as the
sum of the weights of the attributes which apply to
the move. In the simplest case, the move with the high-
est score is chosen. The complexity of this process
grows linearly with the number of facts; not exponential-
ly. Also there s opporiunity for a large number of
small factors to add wp and sway the final decision in
a way hard to achieve with the enumerative process.
While it is true that any lincar weighting process can
be simulatcd by am appropriate cnumeralive process,
for large numbers of facts the size of the enumerative
process becomnes absolutely unmanageable. So for prac-
tical purposes the techniques are distinet, Linear weight-
ing methods have been used before in game plaving
programs; nevertheless they have a weakness in that
they basically fal to take into account the relation-
ships that may exist between the facis. To put it an-
other way, the importance of a fact may vary depend-
ing on the position. Mon-lingar techniques have been
proposed to solve this problem, but chess is a game

where the relationships are so complicated and nu-

merous that it 5 unlikely muech addiional headway
could be made by making the weighting nonlincar.

The solution incorporated in the current chess pro-
gram is a nested combination of the two methods,
The top level decision process is cnumerative; that
i5 & game tres is searched. However, seleetion of moves
for the game tree s controlled by o weighted decision
process, the plausible move penerstor. Many of the
“facts” going into the plausible move score are fhem-
selves enumeratively determined using such criteria as
whether the move 5 a capture or not, whether various
pigces are er price or not, ele, These predicates (or in
some cases weights) are themselves decisions which
are made by cnumerative or weighted sum decision pro-
cesses and g0 forth, The net result is that the program
is frequently able to grasp the effect of particular fea-
tures of the position (hat make 2ome otherwise insignif-
icant factor more important,

Derafls of the major componenis

The major reason for the gquality of the program’s
play is that considerable chess knowledge has been
programimed in, In this section much of the detal is
présented. To some extent, these details are volatile,
so what follows is more representative than definitive.

The plausible move generator

About 50 identifiable heuristics are wsed in compt-
ing the plavsibility, Many, though, apply only in special
cases such as caplures, moves with certain picces, or
certain stages of the game,

Each square is assigned a importance during each
plausible move computation, corresponding roughly to
the estimated worth of having an additional piece bear-
ing on the square or the cost of taking away a piece
presently bearing on the square. The principal criteria
used for assigning these values include the closéness
of the square to the center of the board, its proximity
to the opponent’s king, and its occupation by one of
our pieces which is en prise, Small values are given for
oceupition of the sguare by one of our picces and for
its closeness 1o opponent’s side of the board.

The current developmental valuwe of a picce is the
sum of the values of all the squares it attacks (can
move to in one move) plos values accumulated for
actual attacks on enemy pieces. The new developmental
value is similarily computed assuming the piece &5 in
its proposed new location. The difference between these
is used as a factor in the plausibility, encouraging de-
veloping moves and discournging apositional moves.
Gains or losses in development resulting from block-
ing or unblocking the oppoment’s or our pieces are
also considered in the developmental value. OF course,

The Greenablalt Chess Program 305

s R

pulling opponent’s pieces on prise is plausible. Further-
more, factors are added to encourage certain types of
attacks on probable weak spots (weak pawns, pinned
picces, pleces defending ofher pleces, efc.). When a
capture 5 made, the capturing move receives the de-
velopmental value of the piece captured. Some very spe-
cilized heuristics also are employed, such as, “it is
bad to move picces in front of center pawns on their
original squares, thereby tending 1o block your own
center.”

Beveral wepknesses were noticed in the early play
of the program and measures were taken to eliminate
them. For example, sometimes an apositional move
would receive a high value because it was an attacking
maove. Tf this leads to gain, all is well and good; but
if the opponent can simply move away then the move
it 0 pointless waste of time. So, moves are scored
separtely on their pjﬁiﬁ:}ﬂ:ﬂi.t}' and if this iz bad these
moves are rejected if there is some other move which
lends to an egual terminal =core

Evaloation of the board

The wvalue of the board is given by
S=B8B+ R+ P+ K + C, where

B iz o matenal balance term,
R is a piece ratio change term,
P iz a pawn structure term,
K is a king salety term, and
C i a center contral term.
The material balance term makes use of the cvalua-
tion shown in table 2,

Table 2

Fiece WValue Value Relative to Pawn
Piaan 124 1,

KEnight 418 1,25

Bishop 4438 3.50

Rook 640 5

Ouesn 1248 8.75

King 1536 i2

The value of B is the sum of the values of the white
pieces on the board minus the sum of the values of the
hlack picces on the board.

The piece ratio change term is aimed at promoting
even of near even trades when ahend and avoiding
them when behind, The ratio of white pieces to black
pieces at the current node is compared to that ratio
at the top of the tree. If the side to move is three pawns
ahead, for example, a trade of a bishop for 2 knight
will receive a positive picce ratio term,

R = (N/AT-1}11*15*M, whers

% W ois the ratio of white material to Black material at

the node being evaluated,

T is the ratio of white material 1o black materinl at
the top node of the tree, and

M is the material for one side at the begineing of
the game.

The ratios are evaluated using the fahle above,
except that the king is valued at 1 instead of 1536,

It has been pointed out that the piece ratio change
is slightly asymmetric with respect fo color, but this
i of hnle consequence snce this term only has cffect
when one side is very significantly ahend.

The pawn structure term depends vpon four sub-
terms, which score positively for ecach of the follow-
ing: tripling up of opponent’s pawns (doubling only
if isolated), the isolotion of opponcnt’s pawns, ouor
own passed pawns, and the opponent’s backward pawns,
Backward pawns are considered weaker if they occur
on an open file or if the opponent has rooks or queens
on the board.

A pawn s isolated if there are no friendly pawns
on an adjacent file.

A pawn i3 passed if there are no enemy pawns in
front of it in the same file or an adpcent file,

A& pawn it backward according to the following cri-
tiria:

If it is defended by a pawn, it is not backward.

Tf it can be defended by & pawn in one move, {ns-
suming moves through friendly pieces are permitted],
it is not backward unless it is on the second rank and
the only pawn move which would defend it is a double.
gdvance which would then subject it to em passans
capiure.

If there is & defending pawn mowve blocked by an
cnemy picce, if the pawn is blocked, the pawn is
backward. If an adjacent pawn is blocked, the pawn
is not hackward.

Chherwise, if there are friendly pawns in adjacent files
such that the pawn would become defended if ad-
vanced far enough, the pawn is backward. Otherwise,
the pawn i% not backward [i.e., it's probably isolated),

The king safety term applies only if gueens are
on the board. The king safety term (K} is cight times
the rank of the black king minus cight times the rank
of the white king.

The center control term (C) is 41 if there is at least
ong white pawn in the center four sguares and no
black pawn, —1 if there is at least one black pawn
in the center four squares and no white pawn, and
zero otherawise.

Feedover conditions

The feedover condition is troe if;

1) the side to move has & piece en prise ond one
of the following:
A) the side to move i in check,

LIUY

Fall Joint Computer Conference, 1967

Bl the en prise plece is trapped or pinned,
21 The side o move has two or more pieses e prise,
3} Both sides have exactly one piece on prise and
the piece of the side not to move @5 tapped or
pinned, while the picce of the side to move iz
nod.

The reasoning behind the first two of these condi-
tions is that while the side o move could undoubtedly
save @ piece that was simply o peise e might not be
able to save wwo pieces, bivth en prise, or one if it
is trapped or pinned or if the side to move is also
constrained 1o cscape a check. Thus the side w move
i3 forced 1o try his plavsible moves and give the op-
ponent an opportunity o ey W caplune the o prise
material,

The reasoning bebind the thicd condition #s that the
side 1o move may be able to save his piece instead
of capturing the opponent’s pece, Then the opponent
will 1ry 1o save his piece, which he may not be able
o do since 1t it wrapped or pinned,

The width of the search

Like the depth, the number of moves considered at
cach level is a constant tempered by some heuristics,
The constanis {a different ome for each leveld are
wsually all & for normal play, and are increased to
15, 15 9, 9, 7 for wornament play, which means
that the basic width at the top two levels is 15, while
the basic width ar levels three and four is 9, and the
width 15 7 for all succeading levels.

The hevristies involved all have the effect of extend-
ing the width beyond the basic sstting, so the only way
that the program can fail to consider the indicated
number of moves iz either that the requisite number
of meves simply do not exist or the tree-pruning algo-
rithm provides an exit from the current level.

The heuristics are:
[} All safe checks are investipated,

I} At the first or second level, all captures are
inviestigated,

3} An aftempt is made fo investigate moves of a
cerfain minimum pumber of distingt pieces, This
minimum is either half the basic width or the
number of pieces with safe mowes, whichever is
less, This heuristic covers the case where all the
moves of a single piece are highly plausible {say
the queen, because it's en prise) and the rest of
the board is not looked at.

4} Mowes which lead to mate against the side to
move are ignored and not @ibed against the
basic width, This guarantees that when a princ-

pal variation shows a mate, that mate is forced,

s

Additiomal featuwres

Two algorithms for speeding up the search and three
heuristic components for improving the reliability of
the scarch comprise this section. The algorithmas do
not affect the quality of the program’s play.

The alpha-beia iree-pruning algorithm

The alpha-beta algonthm (sometimes misnomered
hewristic) has been a standard component of every
modern game playing program. It was apparcently first
wsed by Mewell, Simon, and Shaw (3.

In the search as described above, a mowve 15 dis-
carded of it keads o a walwe which 5 worse Tor the
side to move than some already considered move, IF
we look, however, at two kevels of the tree, sav moves
by white, followed by replies by black, we notice the
following: As moves by black are being explored, the
value which is going te be returned back up to the
white level (black's best value so far) cannot be get-
ting any better for white and may be petting worse
and worse, If o white move has already been evaluated,
it is possible to check a black move not only to ses
if it is worse for black than some alternative, but also
to seg if it is so good for black that white would never
make the move leading to that chaice for black, or in
other words, whether the move is “too good™ for
Black. If the move = “too good,” it is useless o consider
any more moves for black from that position and the
white move leading 1o that position may be discarded
immediately, Thus, only one refutation is reguired
to o proposed move and once it % found further search
may be discontinued. The probability of alpha-bets cut-
offs is increased by the fact that moves are investigated
in order of decrcasing plausibility, and o move s
refucd if it is equally good as the best so far at
the previous level.

Such a consideration leads 1o a tremendous specd-
up of the search, especially if what turns out to be
the best move at ench position iz considerad first One
of the attributes of the plausible move generator is that
it wsunlly assigns the highest plausibility zcore to the
best move, 0 almost maximal sdvaniages iz gained,
(Rough calculation shows that the workload of the
search is reduced by o faclor of abowt one hundred,)

The name “alpha-beta”™ 35 denved from the fact
that in the classie implementation of the algorithm, two
recursive variables are kept: alpha, the best value so
far for white, and beta, the beat value 30 far for black,

Hash coding

One obvious way to speed up the searching process
is o avold considering the same position Twice (as
could happen through a transposition of moves). To

The Greenblatt Chiess Program =0T

this end, the program incorporiates o hash table into
which an cntry s made for each position considered.
The eotry records nol only the results of the search but
lser i measere of how deep the search was which yvielded
the walve, 1f the position is reached again, and the
search in progress will not penetrate any deeper thap
the storced eniin, then the resulis are immediately ob-
taind from the hash ble. Due to the tree pruning
algorithim, it s mot alwoys known cxactly what the
value of & mode is, but only that it is greater or less
than w wertain viellee, Provision is made for storing this
information in the hosh tible. On retrieval, the waloe
i ocompuinsd with alpha or beta (the treg prune wari-
ables) amd o determipation s made if further investiga-
ton 15 peeded, Presently, the program uses a hash
table of 32,000 enires with two machine registers per
entry, An additional boaus of the hash table feature
is that it enables the progeam (o detect draws by repeti-
tion conveniently.

Modifications o the value refurmed by the search

If two moves are found by the search o Jead to the
same static value, the move which has the higher
plavsitility score is preferred. However, in some situa-
tions, this move is not the most desirable one to make.
In order to take such cases info account, two types
of small modifications may be made to the value re-
turned from lower levels in the process of move fres
searching.

The first modification subtracts a few points if the
current move being investigated was marked as being
developmentally poor by the plausible move genérator,

The second tvpe of modification occurs only if the
principal variation that is returned is two or more pliss
long. If so, and it is found that the same piece was
moved two plies down as is being moved in the cur-
rent move, variows small amounts are subtracted, de-
pending on whether the piece is mowed back to the
squara it came from or ook two moves to accomplish
a translation possible in one legal move or the position
occurs during the first eight moves of the game (moves
which are almost always devoted to rapid development).
This second type of modification was introduced to
give the program some sense of tempo and to counter
s early fendency to make senseless attacking mowves
that were easily forced back,

Secondary search

A feature called secondary search was recently in-
troduced, This was dong in an attempt to obtain im-
proved search depth at low cost. By increasing the
depth of the search one can prevent the program from
. walking into traps which would not be recognized
with a search conducted wp to the normal depth.

ar ——— e

Moreover, one can discourage the tendency of the
program to make delaying moves which foree inewvita-
Ble losses to occur bevond its normal lookahesd, A
secondary search is employed when the normal scarch
results in a new candidate for the best move at the
top level. What is done is to move down the principal
varation for that move as far as this varation was
computed by the plausible move generator, and then
to comduct an additional search, The depth of this
search 15 wswally limited to two plics, afthough cap-
ture and feedover conditions cin imercase this number.
The value produced by the secomdary scarch i then
used in place of the value first found for the principal
variation if it 15 worse for the side to move.

This feature seems to improve the program's evalua-
tion of many moves even though it is somewhat prob-
abilistic in pafure, since it looks at only a small subset
of the positions that may be reached if the particular
top level move is made. It scems to cause greatest
improvement at tournament width settings when the
principal varation is more reliable.

Book opemnings

The program incorporates o table of opening posi-
tions amd selected replies. This "book” was compiled
by two MLT. students, Larry Kaufman, = chess master
and the top rated U. 5 Jumior player, and Alan
Baisley, a chess cxpert.

The lines in the book have been selected to suit the
computer's “style” The book contains over 50K
moves; however, actual games rarely follow book for
more than approximately 10 plies, The book abds most
the computer in avoiding “book traps” when playing
against experienced players,

SUMMARY

Toumament play

The computer enters the tournament under tlse same
rulzs a5 a human contestant. Moves are tranamicted
from the tournament site dircetly into the PDP-6 by
teletype. A human operator is at the tourpament who
observes the opponent’s move, types it in using standard
chess notation, reccives the machine’s reply, plays it
on the board and operates the clock. Of the two hours
allotted to the machine for making the first fifty moves,
about T minutes are normally Lost in these operations.

The machine never offers a draw, but if the opponent
offers one, the operator types in “draw™'. The machine
replies either *accept™ or “decline.” If the machine be-
comes hopelessly lost, human operators resign for it

Resulis

The program is estimated to hove played in excess

B8 Fall Joint Computer Conference, 1967

of 300 games in over the board competition with hu-
man players. 1t has played 18 tournament games. We
will guote several tournament games. These games
were played wnder rules calling for 8 minimum of 50
imoves im two hours or an average of 2.4 minules per
move, Actually, the program played most of its recent
games at about twice that rate. A single plausible move
gencration takes about 30 milliseconds for a tepical
position. Inm the early urnaments the computer did
not keep track of the time used for each move, although
this informution is incloded with the game from a later
tournament. The time guoded i2 aciual computer time
and does not inclede the operator overhead, This
later tournament also saw the introduction of the book
opening feature, which ks nof present in any of the other
games gqueted. (To convert the times given to ma-
chine operations, multiply by the PDP-6's approximate
gpeed of 200,000 operations per second.

Cowiputer Tournament Cliess Games

Tournament 1 the Winter Amateur Tournament of
the Massachusetts State Chess Association Jan 21-22
1967

First Tournament Game Played By a Computer
White—rating 2190 Black Mac Hack VI

l P-KMN3 P-E+4
M-KB3 P-E5
3 N-04 B-OB4
4 N-0ON3 B-0M3
5 B-KN2 M-EB3
1] F-0OB4 P03
7 M-CE3 B-K3
] P-03 PXP
9 BXP M-
1n PXP R-OM 1
11 B-KMN2 O-Ch
i2 O-0 B-KM35
11 Q-0B2 R-Kl
14 P-4 P-OB4
15 B-K3 PXP
16 NXP MN-E4
) P-ER3 B-0)2
18 P-(N3 B-0B4
19 OR-01 (-OEB]
20 k-KR2 M-ENT
2 B-KN% R-K4
2 RXM FXEB
23 M-K4 P-KE4
24 M-KB6ch K-EN2
25 NAB N
26 N-OBhA OR-K1
27 NXR RXN
28 Q-0B3 P.KB3

29 R-02 R-K7
a0 R-02 EXR
3 OXR N-K4
12 R-031 0-0B2
33 -0 K-KEN3
34 P04 B3
i5 Q-0B2 N-OR3
36 B-Ké& W05
37 RXN BXR
3 QXPch K-KN2
19 O-KMN4 K-KR3
40 OXB Q-2
41 O-Rdch K-KN3
42 B-KRBS K-KMN2
43 OXRPch K-KB1
44 O-QREch K-KB2
45 Q-ORE 0-0B2
46 Q-05 K-N2
47 K-N2 0O-K2
48 P-KR4 K-R3
49 P-4 K-N2
50 PR3 0-K7
51 P-RA K-KB1
52 P-RT OXKBP
53 KX k-K2
54 P-RE=0 P-OR2

55 0O-K6 MATE

First Mon-Loss By Computer in Tournament Play
Ciame 3 Tournament 1
White—1410 Black—Mac Hack VI

1 P-K4 P-K4
N-KB3 N-QB3
3 B-B4 N-KB3
4 M-M5 P04
5 PXP N-OR4
6 B-M5ch P-B3
7 PXP PXP
S (-B3 0-04
9 OX0 NXO
10 B-K1 B-KB4
11 P-Q3 B-ONSch
12 B-O2 BXB
13 NXB 00
14 P-OR3 P-KB3
15 EN-B3 QRN
16 P-4 N-0ON2
17 o-0 N-0QBG
1E KR-K1 NXHB
19 RXN N-03
20 MN-K4 MHXM
21 PXN B-E3
22 ROl B-OBS5
23 R/K202 R-0QN2

The Greenblatt Chess Program 809

14
25
26
27
2R
9
K]
3
32

13

R-0Q8
RXRch
MN-R4
HN-B5
P-M4
R-0M5
R
R-KMAch
M-NTch
M-BEch

RXR
K-R2
M-KM4
R-O@2
K-KMN1
B-KT
BXP
K-KR2
K-KR3
F-ER4

cte. and drawn by repetition

First Game Won by Computer in Tournament Com.
petition, Game 3 Tournament 2, Massachusetts State

Championship 1967
White Mac Hack WI

W G0 -l Th o fa b B —

[
P-4
OxP
(3-03
M-0E3
M-Kh3
B-KRd
B-KM1
000
P-OR4
K-OM1
OXP/O6
B-KR4
M=%
W-DETeh
QX0
R
(0-05
MXKP
QXM
E-08 MATE

Amateur

White Mac Hac VI Computer Time in sec
Black Unrated

OO el O W e LD D

- B

- 12

(R

P-K4
MN-KB3
B-OM5
BXM
0-0
P-4
PXP
OXB
P-0OR3
P-KM3
R-KI
P-KR4
B-KN5

PB4
PXP
MBS
N-B3
P-KM3
P03
K4
PR3
P4
B-FEich
[
B-32
M2
MEKP
M
M-B4
B-KEl
R-B1
B-K3
RXO

BOOK
BOOK
BOOK
BOOE
B
BOOK
BOOK
BOOK
BOOK
18.3
44.9
ey
T8.5

Black—I510

A More Recent Game With Times For Computer
Maoves, Game 2, Tournament 3 Massachusetts Spring

P-K4
N-QB3
P-0OR3
OPXB
B-03
B-KN5
BXMN
BXP
Q-R5
Q-K2
P-KR 4
0-0-0
P-B2

14
15
16
)
]
19
20
21
22
23
|
25
26
27
28
29
n
3
32
33
34
35
il
a7
iR
39
40
41
42
43
44
45
46
47
48
4%
A0

cte. finally drawn by repetition

B-KEB4
BXEB
PXP
K RS5ch
PO
P-OB4
N-OB3
P-0MN3
M-K4
BEXMN
P-KR#a
P-KR?
R-Crich
RXRch
E-KR2
KEXP
R-K2
K-N4
R-E4
PXOP
R-ES
REXMP
KEXR
P-KB4dch
P-KBS
P-Bé
P-KET
F-BE=0()
Q-0B35ch
O-K6
QOXRP
K-B4
K-BS
K-KM4
K-KE4
K-KRS
K-Ra&

74.5
45.3
41.5
k5
2]
31K
7.0
it ALY
2R.0
433
1%.0
1.0
25.8
228
HhE.25
76,6
22.6
1.5
28.3
9.4
23.2
14.0
4.5
6.0
E.5
4.9
51
12.1
27.7
29.2
42.8
2045
14.9
21.6
16.3
4.7
20.8

ACKNOWLEDGMENT
Many thanks go to the people al Project MAC who
have written various routines, assisted in debugging
the program by playing i, and served as operators
at tournaments.

REFERENCES

i

C E SHANMNOM

P-KN4
OXE
PXP
OX0
MN-B3
P-RS
R-07
P-Ré
MMM
[
R-03
R-E3
R-033
PR
R-KE]
RxP
P-4
R-NZ2
P4
PXP
k-3
RXR
K-K4
K-Ks
P35
PO
P-O7
P-0R=0
K-Ef
K-B7
Q-04ch
O-05ch
-0dch
C-KBfich
OXKNPch
K4
Q=R

Programmung o dightal compater for plaving chess
Phitesphy Magazing wol 41 March 1950 pp 3156-375

A M TURIMNG
Fasier rhan thowghi

A NEWELL

BV Bowder (Ed)
Putman, London 1953 pp 286-204

1€ SHAW

H SIMOM

Clesy plaving programs and the problem of romplecife
I6M Fournal of Research amd Development vol 2
Octoher 1953 pp 320-33%

=

B10 Fall Joint Computer Conference, 1967

4

b

OW BAYLOE H A SIMMON

A cheus sraling combirationr prograsr

Proc. Spring Joim Computer Conference wol 28 April
1966 pp 43]-447

o KOTOR

A chesy plaving progrem for the TEM T

Bachelor's Thesis, Depariment of Electrical Engineering
MIT 1982

G M ADFLSOMN-VELSEY WV L ARLASAROWY

A O USKOW

Frogrmnone plowime oless

Repar) o Symposiim on Theory and Computing
MMethoads in the Upper Mantle Problem

TP SAMSON

MIDAS

Artificial Inielligence Project Memo 90 MIT Oclober
19Es

A BERMSTEIN M DE ¥ ROBERTS T ARBUEKLE
Wi A BELSEY

A cherr playing pragram for the {BM-TO4 compiter
Prac, 1958 Western Joint Compuler Conference

Los Angeles Calil pp 157155

I KISTER P STEIN 5 ULAM W WALDFN

W WELLS

Experments fn clicss

Tournal af the ACM vl 4 Apsil 1957 pp 174.177

