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refection rule and presents a peneral relation between the error
and reject probabilitiés and some simple properties of the tradeoff
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evaluated from the reject functiom. Some practical implicacions of
the results are discussed. Examples in normal distributfons and
uniform distributions are given.
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Invraduactiion

The error rate ind the reject rate are commonly nsed
ta desceribe the performance level of pattern recognition sysicms.
An error of misrecognition occurs when a pattern from gne
class ig identified as that of a differeont cless. The error is
sometimes réfcrred to s o substitution error or undetected
error. A reject occurs when the recognition system withholds
its 'r.'ecj'crgnitiun decigion, and the pattern i# rejected for excep-
tienal handling, such as rescan or manual inspection,

Because of uncertaintics and noise inherent in any
pattern recognition task,. errors are generally unaveidable.
The option to reject is introduced to safeguard against excessive
misrecaénitiun: it converts potential misrecognition into
rejection. However, the tradeoff between the errors and
rejects is seldom one for one. Whenever the reject option
is exercised, some would-be correct recognitions are also
converted into rejects. We are interested in the best error-
reject tradeoff in the optimum rejection scheme.

An optimum relection scheme was derived in Raf, 1,

The error=reject tradeoff curves have been vused to describe

and compare the empirical performances of recognition methods.



(. g. Refls. 2 and 3), and they have also been found wsclul

in the actual system design of an optical page reader (Rel. 4).
However, fow theoreticel results on the error=rejoct trade-
off are available,

This paper first describes an optimum rejection rule
and then derives a general relation between the error and
reject probabilities. The error rate can be directly evaluated
from the reject function, This result provides & basis for
calculating the crra.r rates {rom the empirical rejection curve
without actually identifying the errors. Some simple properties
of the optimum tradeoff are presented. Examples in normal

distributions and uniform distributions are given,
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where v 15 the pattern vecter, n is Lhe number of classes,

i?’.' P.:l' - pn] is the a priceri probability di striligtion of the
clisses, F-[*.-'li] is the conditional probability density for v
civen the :i.th class, diﬂi £ Q) is the decision that v is [dentificd
as of the iLh class while dn ia the decislon to reject, and L is

a constant between 0 and 1 (0 =t = 1), The probability of error,

or error rate, is

T 1
E{t} = ﬁ, I I & {djlv}pir{vli}dv (5}
- i=l je=l
-_"ri_- o
j#i

and the probability of reject or reject rate, is

m
R{t) =ﬂ.ﬁfdglvn E pFivinay ©)
i=]

where ¥ is the pattern space. Both the error and reject
rates are implicit functions of the parameter t.

The probability of correct recognition is

n
Clt) = _A‘,. £ 8 (4 |v)p,Fivia)dv
i=1

el - E{t) - R(t) ' {7



and the probability of acceptance {or acceptance rate} is

defined as

Aft) = Clt) + E{t). (8}



Rejection Threshold

The parameter t in the decision rule will be called
"the rejection thresheld"., For any fixed value of t (0 St 5 ])
the decision rule § partitions the pattern space ¥V inlo two
disjoint sots (or regions) - "-"ﬁl:l:} and "FR{'L]I whers eguations

{2} and (3) respectively hold, namely:

V= {wlmpx [p Fivii)] 2 (1-1) Fiv)] (9) .
1 i
Vi) = [vlmax [p Flviy] < (-t) 7(v)] (10)
i - i
whara
b n
F{v) =L p Fiv|i). {11)
j=]

Without loss of generality, it will be assumed that
F{v) is nonzero over the entire space ¥V, otherwise the set
over which F(v) is zero is first deleted. VA and "-"R are
called reapectively the "acceptance region'' and the "'reject
region' of the decision rule. An example is depicted in
Fig. li{a}) where the shaded region is ‘l.."H and the unshaded
region is Vﬁ.

We shall now present some simple properties of the

rejection thresghold t:



{a#)} both the error and reject rates are monotonic in t,
{b) tis an upper bound of the error rate, and

{c) tis a differsntial error-reject tradeoff ratie.

{a} Monotonicity

It follows immediately from the definitions of {9)

and (10} that for any t, and £, in fo,1] if b, <ty then

Vo)V, () and
‘r"R[tl} = Voit,),

o Withthe aid of equations (1) and {4}, {9) and (IO},

the various probabilities can be written as

R(t) = IvR{tj Fiv)dv (67
Alt) =Jr‘fﬁ{t} F(v)dv (8"
and
Ctt) = "‘rvﬁm i [ Fiv]idlav (71
r n
) = ‘]v_,,ict} (x PF(vli) - max

[piF{vli}'Jfld.v (5"



All the integrands in the above integrals are non-
negative, hence if the demain of integration expands,
the value of integral increases. Mare specifically,
if tl < tz, then \'A{tlfl = V,p.{"z]' and ?R{tl} = VR{IE};
therefore, E{tll = E{tz} and R{:l} = RI{LE}.

In other words, E increasecs and R decreases with

increasing t. In particular, whent =0, E = 0 and when

t=1 A=1land R = 0. “’hunavertzl-%,l’{:ﬂ_

(b} An Upper Bound of Error Rate

We shall new show that

Eit)=t. {12)

For any v in "n'h {t), we have

Mazx EpiF{vii;] 2 (1-t) F(v}.
i

Therefore,
p

- Max [p. F(v]i)ldv 2 (1-t) Fiviév
Vo R "L.rﬁu}

which, with {7') and (8"}, is

Cit) = (l-t) Afr),
Hence

Eft) = Al = ¢,
() is shown in the following section.
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A complete description of the perfor mance of recognition
systems 1s given by the error-reject tradeolf, i.e., the functional
relatien~gif E and R at all levels, A typical tradeeoff curve is given
in Fig. 2. B5Since both E and R of the optimum recagnition
Bystems are monotonic functions of the rejection threshold
t, one can compute the tradeoff E va. R from E(t) and R{t).

We shall now show that the rejection function R{t) alone
suffices to completely characterize the epilimum recognition
performance, In otherwords, E can be derived from R{t),
or from itg inverse t{(R). The central result ig the simple
functional relation between E and R, namely

rl
E=l g HRNR, (13)

Thia relation {8 valid for all optimam decision Tules
as defined in Equations (1) - (4)., No explicit forma for the
density functions F{v! i} are required in deriving the integral
relation of (13). However, it will be assumed for convenience
in the following f:'ltri.\l'él.ﬁ:i.ﬁn that R{t) is differentiable with
n .
respect to t. Under this assumption, the inverse function t{R}

is single=-valued: Howewver, this assumption will later be

removed.
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Consider an decrrmental change in the rejection thres-

hold from t tot - At; the reject region expands from "p,-"H.{ﬂ to

\’R{I:—E.t}. Lt I'-‘."R[t:l denote the incremental region ‘l.-"R[t—L-.t}

v For any v in ﬂ‘ir"Rl:t:l. it was accepted at the threshold

RM'

t and is now rejected at the lower threshold t - At. Eguations

{2) and (4} now give:

1-t) F{v) & Max piF{vlliJ < (It + B Flv) for v €AV (1)
i

{14]
By intggrating the last expression over the incremental
region EVR. one cbtains
(1-t) AR = -AC < {1l - t + At) AR {15)

where AR and AC are respectively the increments in the

rejection rate and correct recognition rate, namely

i
AR =‘|.w Fiv)dv
R
r
J 13 1 dw.
AC = av, fo [pir{vl i) ldw

Of course, the lacrement in the error rate s simply

LE == 4R - AC.
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By substituting (16) into {15}, one has

JWAR S AE < - (t-4t) AR (174)
AR _ AE AR

g 8RB e 20 AR, .

Ly el T T 17k}

""""""dE = '-1-"“1—& l:.].ﬂ-:l-
gt dt +

By integraging (18) from t = 0tot, one has

t

E@) - E[0) = 'fu‘ g

Rt)
= "fR{ﬂ‘J 'r.{R]dFr..

Sinece E(0) = 0 and R(0) = 1. the above expression becomes

l.
= tdR “-3]'
E fR i

This relation is depicted in Fig. 3. Equation {13} can also

be written, through an integration by parts and as indicated

:i..l.'i. lFigl -31 s

t
- E =fﬂ R(t)dt - tR(t), {19)
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Equation (18) gives

=t S0 (a0)

The rejection threshold is the differential error-reject
tradeoff. In particular, the initial slope cf the error-reject curve

is =1 + }I{nr greater while the final slope is 0. Equation 2Dalso gives:

2
..{_'*..Ezz,.%%'zn (21}
dR

The optimum error-reject curve is always concave
upward and the slope increases from -1to 0 as R increases
from 0 to 1. (Figure 2

Although the intagfal relation {13) is derived under the
assumption that R(t) is differentiable, the assumption of
differentiability is not essentiable. For example, it suffices
to assume that R{t) is continuous. A proof for (13) would start
with (17a) instead of (17b). Actually no assumption about R(t)
is necessary for the validity ;.I {13}. ER(t) is, of course, mono-
tenic and bounded function of t and is thus of bounded variation.
Consegquently, the Stieltjes inte-gra.lj.t t dR(t) always exists.

t=0
The error-reject integral is in general
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t
E(t}) a - f t dR{t) {2}
t=0

To show [22) we first sum (17a) with t stead ily increasing

throughout the range of interest to obtain

- E; AR % Eft) % -y tAR -y AtAR

and then let At tend to zero. As At tends to zero the last

sum of the above expression vanishes and {22) results.
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Another Proof of the Error-Reject Integral

We shall now present another proof* of the error-reject
integral of (13) with a hope to provide additional insight to the
relation:™ et M({v) denote the random variable:

rmax p, F{v l i)
. i

Mv) = —= (23)
Flv)

Mi{v) is the maximum of the a posteriori probabilities of the
classes given the pattera v, Let g(m) be the density function
of M. In general g(m) is rather complex function of the under-

lying density functions F(v|i), however, its explicit form does

not concern our proof here, Interms of the variable Miv),

the reject condition, Egq. (4) becomes
Miv) £ 1.t (24)

and the probability of reject is:

i
1=t

R(t) Efﬂ glm) dm (25)

which also gives

g{m) = drn

% This proo! is due to Mr. M. Hellman and Dr. J. Raviv of
IBW Watgon Besearch Center.
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Since gl{m) is non-regative, R{t) is a monotonic increasing
function of the upper limt of the integral of {23}, or & meno-

tonic decreasing function of t. DBy the defin:tion of M(v),

the probability of correct recogaition for a given reject thres-

hold t is

1

C () =J‘1+t mg{m}dm_ {27}

By substituting (26) in (27) and integrating by parts, we ocbtain:

0
Cit) = f . [-t) dr ()

t
=1 = {l=t)R(t} = f 0 R(t)dr. (228)

The error rate is then

E{t) = 1 = Rit) = C(t)
t
',[D R(t)dt - tE(t).

which is {19) and is equivalent to (13).

f__,q-.-r‘-
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Rejection Threshold of a Minimum Risk Rule

It is known ! that the optimum decision rule given in
Equations (1} to (4) is also a minlmum rish Tule if the cost
function is uniform within each class of decisions, i.e. if no
distinction is made among the errors, amnong the rejects,
and amgne the correct recognition. The rajection threshold

is then related to the costs as follows:

W= W
c

AL =
a L=

where WE. Wr. and wc :Iu-e the costs for riaking an error,
reject and correct recognition respectively. Usually ‘l.-'u"‘_E >
Wrﬁ' w_. The rejection threshold is simply the normalized
cost for the rejection. We can take Wﬂ = (0 and we =1, and
the minimum risk is
t
Risk (t) = E{t) + tR{1) = .l-:} Rt} dt (30)

which is also depicted in Fig. 3.
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Exuvmples

For numerical illustration, two examples are given
here, In these examplas, the pattern vecior v is one-dimen-
gipnal and there are two pattern clagses with egqual apriori
probability of occurrence, 1. e. Py =P, " -%-. The examples
respectively are concerned with the normal'distributions and
uniform distributions,

For two classes, the condition for rejection, namely
Eg. '{'1'}'.. can never be satisg fied when t > “21— , hence the reject
rate is always zero if the reject threshold, t, exceeds %. The
effective range of t for two clagses of problems is, therafore,
irom 0 to -% Withn=2and 0 =t iv—-al-—. it can be readily

verified that the condition for rejection, {4) is equivalent to

+ R el

= = 31
N O (5l

(L} Normal Distributions of Egual Variance

Consider two normal distributions with means 5-t1 and

H, and equal covariance Uz {(Fig. 4). Take Hlﬁ' ”'3' The

2

density function is, i =l or &,

v ) ®
exp [= —r-‘g—-Zl (32)
o/ 2 2e

Fiv|i) =
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W'.ith{ﬂl} and som algebraic manipulations, (3Z) can

Le trangformed to

1 1
- —{ s — -
[ve 50y #1850 in(—-1) (33)
e , the optimum rule is to reject whenever the pattern lies

within a certain distance of the midpeint between the two

means. The corresponding error and reject rates are:

Eft) = § (a) (34a)

R{t) =% (b) = % (a) [ 34D)

where # is the normal cumulative distribution function, namely

| iz 'xz 5
'i'{a}df%ﬂ— Voo e~z (33)

k.

and the pararmeters are

SR S 1 '
a = -5s-—ta(=-1 | (2)
1 1 1, '
ba- ety taig-d [b) (36)

s = - (e}
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The parameter.gis the (normalized) separation between
the means of the distributions and is the only (composite)
parameter of the distributions that R(t) and E{t) depend upon.
It is straightforward to verify (18) and hence (13} for this
example, A set of the erroer;, reject, and tradeof! curves
{for 5 =1, 2, 3,and4) is depicted in Fig. 5.

. DUniform distributions

Consider two anilerm distributions:

I when 0 =+ =1
Fiv!|l) = : {37a)

0 elsewhere

1 1 il
—_— 8 |

Flvlz) =| 2 When g =¥ =3 (37h)
8] clsewhera

which are shown in Fig. 6.
The reject function R{t) is simply:

-Eé- when 0 ¢ 5 i?-
Bit) = [38)

0 whcn%{ t=1

which is discontinuous (Fig. Ta) and the integral of {21} is

o
evaluated to
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0 whenOSts= -;-
Eft) = (39)
%— when—= t & ]

which is shown in Fig. (7b) and the tradeel! can assume cnly
1 3 .
two values, namely (E, R) = {T. 0y or (0, E} (Fig. Te¢). How=

; - 1
ever, if & randomized scheme is used in the range s =v=],

R may vary continuously from -IE- to 0 as shown by the dofted

line in Flg. (Tc)-

Y
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Some Practical Implications

Wost of our resulis on the error-reject tradeoif scem
consistent with. our intuition, although the simple integral
relation between the ervor and reject rates is somewhat unex-
pected. These results have some practical implications are
are useful in system design and performance evaluation.

Since the slope of the error-reject tradeofl curve (Fig. £}
is the value of the rejection threshold, the tradeoif is most
effective initially (i.e. at the low level of rejection) and it gets
harder ;.s?me error rate is lower, This iz certainly commmon in
our practical experience; excessive rojection is generally
required to reduce residual errors,

Practical applications of the present results are in the areas
of gystem design and performance evaluation of the recognition
systems, The general characteristics of the error-reject trade-
off curve provide the system designer a convenient means of
verifying the; basic assumption on the underlying probability
distributions, The integral of (13) makes it possible to caleculate
error rates, and consequently the tradeoff curve {rom the empir-
ically observed reject rates, No class identification of the sample
patterns are required in obtaining the empirical rejection

curve,.; Or equivalently one can just obtain an empirical density
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i'1L:n'1’.-.:-:|1'"~i§'H'|l: maxirmun of the o posteriori probabilities, and
then ealculate the error and reject rates using equations (25)
and (27},

In most recognition tasks, the underlying probability
distributions of the patterns are not completely known and the
design of the recognition systems is generally based on empirical
data. A commen design procedure is to assume, on the basis
of available (usually limited) a priori information and the designer's
intuition, some functonal forms of the distributions and to derive
the system structure based on these aaa:}mptiam and to adjust
the system paramcters by using the empirical data, Itis not
always a simple matter to verify the validity of the assumptions
on which the system structure is based, However, one can
always, though laberiously, obtain the empirical error-reject
tradeoff curve and cﬂmpu;a the theoretical one [rom the basic
assumptions. A comparison of the empirical and theoretical
trade::;ff curves can guickly reveal how well the theoretical model
agrees with the empirical data and serve as a checkpeint for
initiating the process of revising and improving the theoretical
model,

The data uae;:l in any me.-'arﬂngful evaluation of a recog-

nition system is usually large and it is extremely costly and
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Conclusion

A openeral error and roject tradeoalf relation is doerived
for the(Bayes) eptimum recognition system with an option to
ri_'_icct.‘l'l‘hc' error probability is a Stieltjes integral of the
rejection threshold with respect to the reject probability,
The error function ¢an be directly evaluated {rom the reject
function. Hence, the reject function determines the recog-
nition error and reject tradeoifl and complotely characterizes
the performance of the optitmum recognition system.

Some practical implications in the system design and
performance evaluation of the recognition systems are dis-
cussed. The error-reject integral provides a simple mecans

of calculating the error rate from the empirical reject curve

without actually identifying the recognition errors.
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time consuming to detect the recognition errors., To identify
a recognition error, additional information usually human
inEpEéﬁﬂ:n at some stage, i5 required. On the other hand,
the rejection is the explicit result of a deflinite decisien,

ant the rejects can be readily recorded ard tallied, Egquation
{13) provides a simple means of calculating the error rate

{rem the reject curve without actually identifying the errors,
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FIGURE CAFPTIQNS

Reject Regilona im the Pattern Space
Error-Reject Tradeoff Curve
Reject Curve

Example in Normal Distribution

Npaanal Distributions: (a) Reject and Error Curves
{b) Tradeoff Carve

Example in Uniform Distributions

Uniform Distributions: (a) Reject Curve (b} Error
Curve {c) Tradeoff Curve
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