MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PFROJECT MAC

Artificial Intelligence
Memo. Ho. 176 May 1969

Discovering Good Regions
for Teitelman's Character Recognition

Scheme

Peatrick Winston

INTRODUCTIOR

Teitelman's Scheme:

Warren Teitelman presented a novel scheme for real time charac-
ter recognition in his master's thesis submitted in June of 1963. A
rectangle, in which the character is te be drawn, is divided into two parts,
one shaded and the other unshaded. Using this division, a computer converte
characters into ternary vectors in the following way. If the pen enters the
shaded region, & 1 is added to the vector. When the unshaded region is enter-
ed, a 0 is appended. Finally, if the pen is lifted from the writing surface,
a w is generated. Figure 1 1llustrates the basic fidea he wsed. Thus, with
the shading shown, the character V ie cooverted to 1 0 w 1 D.* A Y drawn
without lifting the pen would yield a 1 0 1. AT gives 1 0 w 1, and so omn.

Hotice that each character may vield several wectors, depending omn
just how it is drawn. The wvectors to be stored, then, depeénd upon the style
of the user as well as the divislion of the rectangle inte shaded and un=
shaded regions.

In order to conserve storage space and reduce search time, the charac-
ter vectors of Teitelman's scheme are stored in a tree-like structure Like

that shown in figure 2. Hotice that the tree is essentially binary--only

LL.&

Vione stroke),U

Vitwo stroke),D

Pigure 2. A wvector storapge trae.

=
Since all figures are completed by lifting the pen, it shall be the
copvention Co drop the final w.

|E
| When the pen is first applied,
| it lands in the shaded regiom,
thus yielding an inicial 1.

The pen enters the unshaded
region, yielding a 0, and theén
leaves the writing surfsce, gen-
erating & wW.

1 0w

The second stroke begins in the
shaded region.

10wl

J And the pen enters the unshaded
| region, completing the charac-
ter V.

10wl0o

Figure 1. Teitelman's Scheme,

two branches can grow from a single node, This fellows since a w may

be followed only by & 1 or O; 0 only by 1 or w; and 1 only by 0 or w.
Since several characters often end up at the same position on the

tree, Teltelman elected to resclve ambiguity by combining the information

from several different region partitioninges and their associated trees.

The regions he used are shown in figure 3. His program takes a weighted

look at the characters suggeated by ecach tree. .

upper 1/3 upper 2/3 left 173 left 273

Figure 3. Teitelman's regions.

pment

Teitelman claims his scheme is superior to other character recognition
methods because the program uses the order in which parts of the character
are drawn., While this is mo doubt an important factor, I feel that some=
thing should also be said about the program's sensitivity to connectedness.
By this I mean that the program notes not only the presence of lines, but
also the peneral areas they connect. For example, Teitelman's program
would respond to figure 4-a by indicating "there ise line connecting the
upper left cornmer to the lower left corner,” whereas to figure &4=b the

regponse would be guite different. Recogniticon schemes based on template

Figure 4. A connected and an unconnected sample.

matching might equate the two figures indicating "there are vertical lines

in the upper left, middle left, and lower left corners."

Finding Good Partitions:
Suppose the input rectangle is divided into nine "atomic" areas as

in figure 5. If the part to be shaded is selected from combinations of

i) 3
g B q
t ke =

Figure 5. Atomiec areas.

these atomic regions, one must auffer with 29 ar 312 pnaaihili.ties.t The
best combinations will obviously depend upon the character set to be recog-
nized. But to construct and evaluate all possible partitions amd assoc-
jsted trees would be exceedingly tedious. Om the other hand, finding
any sort of analytic methed of optimum partitioning seems equally formida-
ble, if not impossible. Hence the problem of finding a partition that is
in some sense good seems best approached h-l.!l.n:J'.l:i.'.f.-l‘.'-illl*lg.nt:‘n_u.r one

Two simplifications were made here., First, I ﬂﬂﬂum%ﬂ?artitiﬁnihg
is available for the recognition process. And second, that only one version
of each character is to be learned and recegnized. The resulte are

sufficiently enlightening that these assumptions seem justified.

1'rIt' duzls formed by reversing shaded znd unshaded regions are eliminated,
there are still 256 possibilities,

THE PROGRAM

Input:

The characters were converted to number strings by hand. First the
character set to be recognized was printed into rectangles. Thew a
clear plastic template bearing the numbered atomic regions was placed on
each character in turn. The course of the pen through the atamic

regions can then be easily read off and put into the machine in the form
of & mumber list. See figure 6.

T converts to 2 9 6wl 2 3
Figure 6. Conversion of characters to numbeér sequencee.
Atomic Regions:

Esther than build the shaded regions from the atomic reglons of
figure 5 &g Teitelman did, I chose those of figure 7.

Figure 7. Atomic areas used.

G-
I thlnk thls zet 13 mimswh~t becter in pocomrdatin: letters
with dle el straokes such es I, 1, Wy T, V, &, £, pnd Y. Tne
advanteme 1=z thart mindr verisntes are nat gallt Loty Sifferent
sequences »f input numbers, Tois 12 desirgsble alnee Lt renders
the pssumntiin 2f 20)y n= versisn oer charscter simewast less
unresalistie. X, f7r exsmnle, yields the segquence 1 9 5w 3 9 7
with my scheme, even if 1tz s9sitln and =slant ere slizhtly al-
tered, But uslne Teltelnsn's laysut, the first s-raike =l3ne

rlelds four varlants as shywn in fizure 8., Couplef with faur

P & 3 [\\ L 3 [\L; 2 H“& Fl i

¥ v 7 Mi\ o ¥ %\\ U 3 ‘lhhhﬁ

3 = T e N+ S T T e }‘x
| K N

12945 18965 12355 18545

Pizure B, Varlents 2f first strake af ¥,
fr the second strake, I wiuld heve 15 noassible segquences.

Tree QCriterig:

Ag varliue pprtitismnings sre oraplrsed, there must be s>yme
meagura 3f how zZyad the trees they zenerste ars. pfter sime
thought, tw> quallties were selected as myst lmportsnt: first,
the number >f branches should be small; snd sgecand, instances
af more than ne character at a node should be rare, Subroutines
were written to examlne tree structures for these guelities snd
return with e palr 3f numbers. The first nuomber wss just the

numbsr 3f brenches. The gscond waes the prabability »f errar,

given that all characters are equally likely and that when several
characters are found at a node, ome is selected at random.

The branch number, B, and the probability-of-error number, P,
are combined into an oveérall badpess factor, W, by the following formula:
W= BE + c1P. This formula was arrived at by certain intuition-guided
considerations designed to provide a reasopable balance between proba=
bility of error and number of branches. Ideally there would be just as many
branches as there were characters and no characters would be confused.

B was sguared since the penalty for branches should be small until
there are somewhat more branches than characters, but then the penalty
should rapidly become severe. P was enteéred linearly since there seemed
to be no good reaspn for another form. The weighting constant, cl, WAR
selected sp that the contribution from each teéerm is the same when there are
twice as many branches as characters and when the probability of error is
1/10, both conditions seeming equally bad to me.

W=F {gzﬂjg is an attractive alternative formula I have not explored.

The Heuristics:

The program {tself was straightforward. A flowchart is given in
figure 9, Its goal wae to take an existing partitioning and improve it
by either adding or deleting a single atomic area. It was guided in this
by four simple heuristics -- two were specifically designed to reduce the
number of branches, and two to reduce the probability of errer. Which
palr was tried first depended on the particular weaknesses of the existing
tree. Hecall that the inspection Toutine returns not with just an overall
merit facktor, but rather with & branch number and a probability=of-error mum=
ber. If the contribution from the branches to the badness factor is greater
than that of the probability-of-error, then 12 = cP}D and the branch heuris=
tics are tried first. Otherwise the probability heuristics are tried first,
The first branch reduction heuristic is simply to remove from the
chaded region an atomic area that has oo common border with any other in
the shaded region except possibly the center., Intuitively this should re-
duce the length of many vectors as it deoes for the D vecter in figure 10.

-.' a3 w o7
Ti®d A, Ti®T
dwylw _ _ Jdaglied
AU SUBLD > o Fus@uwie L1y
1 FeROONE pesoans l
BesUpuud
pue fesdl 837 X
ﬁ“uhx; ‘faasdoaa meu I i
= UUNOUuUe
[4Ahwy i) . _ (1¥eq waF)
v e ldiield - " EATGE ey
qousdy sd3 | powuone pesoong _zpnamn-Lan £y
doje
ou o1
10 J 80
- eINTFVI i @I20]
sl \ gdodaa ok L 4-F=1s]
> ¢ ()

v
- 3=F ’ o
—

L edoad
JURLINY J0]

d % d PULJ

.00 &

wehart.

lo

nEram

9. Fr

Figurs

Figure 10, Branch heuristic 1.

The second branch reduction heuristic adds an atomic area that

shareg both ite non-center borders with areas zlready in the region.

Hote how this reduces the length of the L weetor in figure 11, for example.

Figure 1l. Eranch heuristic Z.

Since reducing the number of branches Increases the liklihood of
finding more than one character at a mode, ss one might expect, the
probability-of-error reducing heuristics complement the branch reducing
heuristics. The first probability heuristie invelves adding & separated
region; the second imwolwves dropping am interior region. See figures

12 and 13.

C: 10 c: 10
m: 10 B: 1010
Figure 12. Probability heuristic 1.

=1 0=

v

¥: 1wl
T: 1D 1lw0Ol

Figure 13. Probability heuristic 2.

Kote that if the first pair of heuristics tried fail, then
the program tries adding or deleting the center regilen. Then, in des-
peration, it enters the remaining pair of heuristics. If none of these
work; it reports that it has failed.

RESULTS

English Block Capitals:

The program was used on the 2b=]letter Englieh alphabet with en-
couraging results.

Starting with nothing in the shaded region, the
program evolved the 2-3-4-6-8 region of figure 14. Only 63 branches

Figure 14, Block capital region.

were used of which 12 were w branches that canmot bear letters. The L
is confused with Z, and W with V. The program looped § times and tried

17 of the possible 512 partitionimgs before finding the best it could
come up with. The region changes are indicated below,

first figure is B, number of branches
second figure is P, probability of error

Lo
1 = (0 25/26)

probability heuristic called + used

2 (19 16/26)

probability heuristic called + used

3 {3z 10/26)

~ prebability heuristic called + used

& (46 7/26)
probability heuristic called + used
T
5 ¥ (65 &4/26)
|
il
branch heuristic called + used
B (54 5/28)
probability heuristice called and not used
center change did no good
desperation branch heuristic used
7 (33 4/26)
probability heuristic called + used
& (64 2/28)

failed

Greek Lower Case:

Results were even better using the lower cage Greek letters in
the form seen in figure 13, The final tree had 52 branches with only
% and § sharing & node, Again, the program was called § times and again
the first heuristic tried was used in ¢ or the 7 successful attempts
at improvement. Only 12 configurations were tried before the winner was
found. The winning tree is showvm in figure 16.

/ /’?"1 '
/.-* }J
i
\ ‘ AN
Flours 15. Gresx slohabet.

Hlsurs

-

(451

Trasld Tresa,

[

)
({\ (0 23/24)

probability heuristic called + used

b

% (7 16/28
probability heuristic called 4 used
% (36 10720
probability heuristic called 4+ used
M o s
probability heuristic called 4+ used
% 8 s
branch heuristic ealled 4 used
% ws e
probability heuristics called + not used
center change did no good
desperation branch heuristic used
(42 3/24)
probabllity hewuristic called 4 used
(53 1/24)

failed

A second experiment with the Greek letters was performed teo see if
the program would home in on the Z-4-5-6-8 region from another starting
point. The 9-4-8 region was selected more or less at random &8 an alter-

nate starting point, and the program successfully reached the same énd
state, this time in & steps. See fipure 17,

- B - - -5 -

Figure 17. BSeguence of areas reported
in second Greek alphabet experiment.

A third ewpeérimént started from 1=9=5=7=2 but failed without
arriving at the former solutions. See figure 1H.

Figure 1B. BSequence of aressg reported
in third Greek alphabet experiment.

-1R=
CONCLUSION + EXTEHRSIONS

Gonc lusions:

The program &8 it stands seemed to work quite well. In general,
the first heuristic tried succeeded in improving the badness factor
by reducing the branch or probabllity facter it was designed for.
Experiments with the Greek alphabet indiecate that final results do not
depend stongly on the sfarting pattern -- in Ewp cases the same final pattern
eyolved, and in a third, the final pattern wes different, but the badness

factor was nearly the same,

Further Work:

It would be interesting to pump in more and more characters to see
at what point saturatlion canm be exhibited. That L&, about how
many charactere are reguired befere the program is incapable of reducing
the probability of error below some arbitrary fipure, say 1f5.

2
The badness factor, W=F <+ ¢, P, worked surprisingly well. The

L

powers used, the constant c and the general form were a bit arbitrary and

might be improved.

l.’

Generalizing the problem te the czse in which a character is asspec-
iated with several input sequences would certainly require 2 more general
function.

If more than one tree is allowed for recognitions the problem becomes
more difficult. W would have to apply to sets of trees, and heuristics
would have to be found to operate on sets of partitionings.

