-

e
-
==

ﬂ ;
S/

,f’h"“_
,h

MASBACHUSETTS INSTITUTE OF TECHNOLOGY

Artificial Intelligence November 1960
Memo Ho. 181

PROGRAMMAR :
A Lenguage for Writing Grammars

Terry Winograd
E

This Memc describes PROGRAMMAR, & parser for natural language.

It consists of a language for writing grammars in the form of
programe, end an interpreter which can use these grammars to
parse sentences. FPROGRAMMAR is one part of an integrated system
being written for the computer comprehension of netursl lengusge.
The system will carry on & discourse in English, accepting deta
gtatements, answering gquestions, and carrying out commands. I%
hag a vertically integrated structure, to perform parsing, semantic
analyeis, and deduction concurrently, and to use the results of
each to guide the course of the entire process. This interaction
is poeeible because all thres aspects are vritten in the form of
progreme. This will allow the system to make full use of its
"intelligence" (inéluding non-linguistic knowledge sbout the
subject being discussed) in interpreting the mesning of sentences,

Table of Contents

;M;J I A Systes for Understanding Hatural Language

e IT A Description of PROGRAMMAR
< IT1.1 Introduction
| I1.2 Grammar and Computers
I1.5 Context=free apni Contsxt-sensitive grammars
| II.4 Gystemic Grammar
11,5 Grammars as Programs
_ . [1.5 The Form of FROGRAMMAR Grammars
5 I[I.7 Context-sensitive Aspects
! II.8 Ambiguity and Understanding
II.8 Summary

| | III Detalls of the PROGHAMMAR Lanszuage

II1.1 Operation of the System

II1.2 Gpecial Words

III.2 The Dictionary

IIT.4 Rackup Facilities

III.5 Hessases

III.5 The Form of the Parsing Tree

IIT.7 Variables Maintained by the System
I1T.82 Pointers

II1.2 Feature Mapipulating

IV Examples of Septences Papsed

e "

FROGRAMMAR 1 pags 2

I. A SYSTEM FOR UHDERSTANDING HATURAL LANGUAZE

This paper desribes PROGEAMMAE, & language for the writine of grammars.
PRDGRAMMAR wae designed as an integral part of a systes for the computer
understanding of English., The system answers questions, executes comsands, apd
accepts information 1n normal English sentences. It use#s semantic informatiom -
and context to understand pronoun references in discourse apd to disasbiguate
sentences both grammatically and semantically. To do this it uses a special
trpe of representation for both the gremmar and the semantics. Fy representing
these in the form of programs, it is possible to make full use of semantic and
contextual information in developing an analysis of the sentence, It combines a
complete grammatical analysis of the sentence with a "heuristlc understandsr”
which usesz all of its information about the sentence, the discourse, and the
world in finding the meaning of & sentence.

The purpose of bulldipe this sysiem was oot to develop an applied system,
mt Lo explore the probleas of grammar, semantics, and logic Fhiﬂh mist he
solved for the effective understanding of languase.

The project consists of § interrelated parts, of which PROGRAMMAR iz the

first. Houshly they can be described as follows:

1] 4 system for the grammatical amalysis of input sentences. There have been
many different parsing systems developed by different lansguaze projects,

each tased on & particular theory of grammar. The {ype of grammar chosen
plays a decisive role in the type of semantic analysis which can be carried

out, and PROCHAMMAR was designed specifically to fit the type of analysis

nzed in this system. It differs from other granzars in that the granmar

PROGRAMMAR T pase 3

itself iz written in the form of a program, and the parsing syvstes is in

effect an interpreter for the language used in writing those programs.

2} a gramsar of English to be used by the system. I have written a fairly

3]

comprehensive grapmar of English as a first approximation, following the
lines of systemic gramsar (see Section II.4). There is on® basic criterion
for the completenszs of the grammar, A person with no knowledze of the
system or its grammar should be able to type any reasonable zentepce within

the limitations of the system”s vocabulary and expect it to be understood.

A semantic system for exctracting the mesning of the sentemce from its
grapmatical form This aszain is a combination of a systeam and a lanzuaee.
There are mechanisms for setting up simple types of sesantic networks and
using deductions from them as a first phase of semantic anaysis. More
important, the meaning of a word or construction iz also defined in the
form of & program to be interpreted in & semantic lansuage. It is this
aspect of semantics

which is missing in most other theories, which 1limit theaselves to =
particular type of network or relational structure. Part of this must
isclude & powsrful heuristic program for resolving asblguities apd
determining the meaning of referepces ip discourse., In almost every
senteénce, refersnce is made either explicitly (as with pronouns) or
implicitly (as with the word "too’) to objects and comcepts not explicitly
mentioned in that sentence. To interpret these, the program must have at
its disposal not only a detailed grammatical apalysis (to check for such
things as parallel constructions), but also a powerful deductive capacity,
and a therough knowledge of the subject it is discussine. It

! ..-

PROGRAMMAR | pase 4

4] A deductive system which can be used by the semantic system in carrying out

8]

8]

the deductions which are necesssary not only for such things as resolving
amblguities and answering questions, but also for the directing of the
parser. I plan to use PLANNER, a deductive system designed by Carl Hewitt
(4.1. Memo 185) which 1s based on a philosovhy very similar to the Zeneral
mood of this projeet, Deduction is not carried out by a gensral procedure
acting on & set of axloms or theorems expressed in a formal system of
logic, Instead, each theorem is in the form of a program, and the
deductlve process can be directed by intellisent theorems, PLANNER is
actually a language for the writing of those theorems,

A generative lansuage capacity to produce answers to questlons and to ask
questions when necessary to resolve aabiguities, Grammatically this is
much 1ess demandine than the 1ﬁtarpr¢tiv= capacity, since humans can be
expecled to understand a wide range of responses, and it is possible to
express almost anything in & grammatically simple way, However, it takes a
sophisticated semantic and deductive capability to phrase thinge in 2 way

which is meaninzful and natural in discourse,

4 base of semantlic knowledge., This must include not enly “dictionary
definitions”, but also an understanding of the subject beins discussed.
This will enable the system to make the deductions needed to uvderstand
what is belng said. This will include both statements in the “semantics”
language (equivalent to the traditional dictionary) ani detailed PLANHER
statements which include the practical knowledge of the world., I would
like to experiment with more than one field of discourse, but the emphasis
will be on depth of understanding rathar than breadth, It will not try to

PROGRAMMAR I page b

deal with the entire contents of a childreans’ encyclopedia, or to treat
objects as fermal items and accept statements on all subjects whatsoever,
The system will be able to answer deep questions on & particular subject.
For sxample, we misht considsr & robol with an e¥e, an arm, and the ability
to sanipulate simple objects. We would llke to be able to say, "Why d4ld
you pick up the sgresn block while you ware buildine the tower lp the
corner? , or How many blocks were behind the green one when it was the
bottom of a three block stack? (note the use of "one”, "it", ete,) and
to actually enter inte discourse with & sequence of questions, like "Is
there a sphere on the table?” “What color is 117" “When was it put
there? “Were there any towers then?”, ete. thi; will require giving the
systen a detalled model not only of the properties of blocks, hands,
tablez, ete,, but a model of its own mentality as well. It should b= able

to discuss its plans and thoughts, as well as uss them.

Listing these six aspects of lanzuagze understanding separately iz somewhat
misleading, as it is the interconnection and interplay betwsen them which makes
the systea possible, The parser do#s not parse a seéntence, then hapd it off to
an interpreter. As 1t finds each component it checks its semantic
intepretation, first fto see if it is plausible, then if possible to ses if it is
in accord with the system’s knowledge of the world, both specific and general.
This has been don® in & limited way by other systems, tuft I plan o use it as an
integral part of understanding at every level. The featurss of PROGRAMMAR are
important not only in its effectiveness as a parsar, but in the way they lend

thenselves to use a3 part of this complete languase Process.

PROGRAMMAR 1.1 page &

II. A Description of PROGRAMMAR

I1.1 Iatreduction

PROGHAMMAR differs from other computer systems for natural lansuazs in
three major ways,

First, it is based on & different type of grammar: systemlic grammsar,
developed by M.A.E. Halliday and others at the University of London (see
references 2-5), This is discussed further in Section I1.4. The importaat
thing about it is not its specific form or details, but the fact that its
ganeral bias is towards seelins lansopaze as a system for convaying m=aning, not
as strings of symbols. It of course doss manipulate the syabols of languaze,
ut in its analysis it makes heavy use of the very special ways in vwhich
language systemalically organizes and conveys meaning. This emphasis makes it
much more sultable for imcluslom in a total understaniing system than a more
strictly formal theory, such a transformational grammar or any of the
variations of context-free zrammars.

Second, PROGAAMMAR views a graamar as & program, and places great emphasis
on the process of understanding a sentence, rather than the form of the abstract
structures underlying it. This distinction does not zive an abstract
theoretical advantase since any type 0 grammar has the same power. What 1t does
allow is kthe organization of knowledge aboutl languase into & veéry conclse,
usable, and efficient form. Most current sgrammpatical theories are exprassed in
the fora of a process, usually a generation process which acts on a set aof
gyntax rules, each of which represents a simple process of replacement. BY
allowing the grammar to be expreased explicitly in the fora of a program, we can
express regularities apd facts about languase which would fake very complax 'Ti;

additiong to more role—oriented forms of grammar, It also makes it possible

PROGRAMMAR 11.1 page 7

to imtermix the zrammaticsl and semantic programs in a more intimate way,
alloving them to work together at e#ach polnt of the process of understandine,
0f course this process is not intended as a direct model of a process used
by humans any more than the generatlion rales of other theories are believed to
be actually carried out by a languaze user. The fact that a prosram can be the
bast way to structure and convey knowledze does not imply that the program bacs a
psychological reality. It does, however susg;st that this type of
repragentation may be highly useful and revealing in describing human behavior.
- Third, PROGRAMMAR sees langzuaze as a process of intepretation. A zrammar
iz & program for interpreting ssntences, rather than zensrating them. This
approach has has a pusber of lmportant conssquemces to the entire process of
linznistic understanding . This is discussed at leangth in another papar
{refarence €), and will not be déscribed in detail hera. We will note that it
makes the integration of the different levels of graasar, semantics anpd
deduction much simpler by giving us a coherent way to decide at which of these
levels sach type of lipguistic fact iz best handled. Hany of the problems in
curreat lipguistic theories result from trying to esxplaim semantic facts at the
syntactic level. By putting symtax into an integrated system, and by allowing
segantlcs to play a real part in sentence interpretation, many facts about

language become much more tractable,

PROGRAMMAR II.Z2 page 8

II.2 Graamar and Computers

In order to explain the features of PROGRAMMAR, we will summarize some of
the principles of grammar used in computer lansusze processing. The basic form
of most gramears 1% a list (ordered or unordered) of "replacement rules,” which
reprasant a processs of sentence generation. Each rule states that a certaln
string of symbols (its 1left side) can be replaced by & differeat set of symbols
{1tn.right glde). These s¥abols include both the actual syabols of the
languagze (ealled terminal symbols) and additional "non=terminal” symbols. One
non-terminal zymbol is designated as a starting syabel, and & string of
termioal syabols 1z a sentence if apd only If it can be derived from the

starting syabol throush successive aﬁplicahinu of the rules, For sxample we can

wrika Grammar 1:

5 -> NP VP

HP == DETEZMIHER HOUY

VP — VERB/IMTRANSITIVE

TP == VERB/TRANSITIVE AP
DETERMINER —= the

HOUN —= giraffe

HOOH == apple
VERB/INTRAHSITIVE —= dreaas
VERE/TRAHSITIVE =~ eats

- - -

[Y il el el el
L]
00 =30 Ohoe CApa -

L]

By starting with 5 and applying the list of rules {1.1 1.2 1.5 1.51.,4 1,2
1.7 1.5 1.3], w= zet the sentence The giraffe eats the apple,” Several thinss
are noteworthy hers. This is an unordered set of rules, Each rule can te
applied any mamber of times at any polant im the derivation where the syabol
appears. In addition, each rule is optional. We could just as well have
reversad the applications of 1.5 and 1,7 to zet "The apple eats the giraffe.”,

or have used 1,3 and 1.8 to zel "The giraffe dreams, This type of derivation

PROGRAMMAR II.Z2 page 9

can be represented zraphically as:

N\,
AN,

DETEIMINER HOUN VERB/TRANSITIVE NP

/N

DETERMINER Homy

the giraffe eats [apple

We will call this the parsing tree for the sentence, and use the usual
termlnology for trees (node, subtrese, daushter, parent, stc.). In addition we
will use the linguistic terms "phrase” and “constitusnt” interchanz=ably to

refer to a subtree. This tree represents the "1mmeﬂiate constitusnt” structure

of the senlence,

o

PROGRAMMAR I1.5 page 10

I1.3 Context-free and Context—sensitive Grammars

Grammar 1 is an example of what is called a context-free grammar. The laft
side of each rule consists of a single symbol, and the imdicated replacement can
occur whenever that symbol is encountered. Thqre are a greal mumber of
different fores of grassar which can be shown to be equivalsnt to this ome, in
that they can characterize the same langnages. [t has been pointed out that
they are not theorstically capable of expressine the rulez of Enslizh, to
produce such sentences as, John, Sidney, and Chan ordered an sggroll, a ham
sandwich, and & bagel respectively,” Much more important, even thousgh they could
theoretically handle the tulk of the Ensglish lansguaze, they cauunt_ do this at
all efficiently. Conslder the simple problem of subject-verb asreement. We
would like & grammar which zensrates ' The giraffe dreazs,” and "The giraffes
dream,”, but not "The eiraffe drean.” or "The siraffes dreams.”. In a

context-fres grammar, we can do this by introducing two starting symbols, 5/PL
and 5/50 for plural and singular respectively, then duplicatine each rule to

match. For example,we would have;

1.1 S5/PL —= HG/PL VB/PL
1,2 5/5& -= MG/S5G VP/5G
2,1 MNz/PL —= DETERMINER NOUN/PL
2.2 NGS5 -> DETERMIHER NOUN/SG

1.6.1 MWUN/PL — giraffes
L.5.2 WOUR/SG — giraffe

PROGRaMMAR IT1.5 page 11

If we then wish to handle the difference batween "I am”, "he 15", stc. we
must introduce an eatire new set of symbols for first-person. This sort of
duplication rropagates multiplieatively throush the grammar, and asrises in all
sorts of cases, For example, a question and the corresponding statement will
have much in common concernlng their subjects, ebjects verbs, etc., tul in a
context-fres grammar, they will in gensral be expanded through two entirely
different sets of symbols.

One way to avoid this problem is to use context-sensitve rules. In these,
the left side may incluode several symbols, and the replacement occurs when that

comblnation of symbols occurs in the stiring being generated.

PROGEAMMAR I1.4 page 12

IT.4 Systemic Grampmar

We can add power to our grammar with context—-sensitve rules which, for
exanple, in expanding the symbel VERB/INIRANSITIVE, loock to the preceding syabol
to decide whether it is singular or plural. By using such context-sensitive
rulss, we can characterize any language whose sentences can be listed by a
deterministic (possibly neverendine) process. (i.e. they have the power of a
turing machine). There is howsver & probles in implementing these rules. In
any tut the simplest caszes, the coptext will not be as obviouz as in the simple
exnmple given. The cholce of replacements will not depend on & single word, bat
may depénd in & complex wa¥ on the #ntire structurs of the sentence. Such
dependencies cannot be expressed i our sigple rule formst, and new types of
rules must be developed. Transforsational srammar solvés this by tresking the
generation process down into the context-free base sraomar which produces "deap
strocture” and a get of transformations which then operate on this structure to
produce the actual "surface structure of the greasatical sentence. We will not
g0 into the details of transformational grammar, but one basic idea is this
separation of the complex aspects of languasge into & separate transformational
phase of the geperation process,

Systeaic grammar introduces comtext in & more unified way into the
immediate—constituent zeneration rules. This is done W introducing "features”
associated with constituents at every level of the parsing tree.

& rule of the grammar may depend, for exzample, on whether a particular clause
is transitive or intrasnsitive, In the examples “Fred found a frog.”, A frog was
found ty fred.”, and “What did fred f£ind?", all are transitive, tut the outward
forms are quite different., A context—sensitive rule which checked for this
feature directly in the string beinz zenerated would have to b{ quite coaplex.

Instead, we can allow each syabol to have additional subscrivts, or features
(v

PROGHAMMAR II.4 page 13

which control its expansion. In a way, this is like the separation of the
symbol NP into WP/PL and NP/SC in our augemented context-free grammar, But it
is not necessary to develop whole new sets of symbols with a set of sxpansions
for each. A symbol such as CLAUSE may be associated with a whole set of
features (such as TRANSITIVE, INTERROGATIVE, SUBJURCTIVE, OBJECT-QUESTION, etc.)
ut there is a single set of rules for expanding CLAUSE. These rules may at
various points depend on the set of features present.

The power of systemlc sgrammar rests on the observation that the
context—dependency of natural language iz centered around clearly defined and
highly structured sets of features, so through their use a great deal of
complexity can bte handled very economically., More important for our purposes,
there is & high correlation between these features and the semantic
interpretation of the constituents which exhibit them. They are not directly
zemantic, tut are a tremendous ald to interpretation. A parsing of a sentepnce
in & systemic grammar sight look very much like a contexzi-free parsins tree,
except that to each node would be attached a number of features.

These featuresz are not random combinations of facts about the constituent,
it are a part of a carefully worked out analysis of a langua=e in terms of its
“systems”, The features are organized in a network, with clearly organized
dependencies. For example, the features IMPERATIVE (command) apd INTERROGATIVE
(questicn) are mutually exclusive in & clause, as are the features POLAR {:eainn
question like "Did he g0?”) and WH-QUESTION (1ike “Who went?). 1In addition, the
stcond choice can be made only if the choice INTERROGATIVE was made in the first
set. A set of mutwally exclusive features is called a “system”, and the set of
other featur=s which must be present for the cholce to be possible is called the

"antrr copdition” for that system. This is discussed in detail in refsrences 4

and 5. -
Lo

FROGRAMMAR II.4 pasge 14

Another basiec concept of systiemlc grammar is that of the rank of a
constituent, Rather than having a plethora of different non-terminal symbols,
each expanding a constituent in a slightly different way, thers are only a few
basic umits", each having the possibility of a number of different features,
chosen from the system network for that wnit. In an analysis of English,
three tasic units seem to explain the structure; the CLAUSE, the GROUP, and the
WORD. In zeneral, clauses are made up of groups, and groups made up of words.
However, throusgh "rankshift", clagzes or ETOUPS CAn S&rve as constitusmts of
other clauses or groups, Thus, in the sentence “Sarah saw the student sawine
logs.” "the student sawing logs” 1s a KOUN GROUP with the CLAUSE “"sawing logs™
as a constituent {2 modifier of "student”).

The comstituents "who , ' three days', "some of the men on the board of
directors,” and ~anyone who doesn’t understand me are all noun zroups,
exhiblting different features, This means that a PROGRAMMAR zrammar will have
only & fevw programs, one to desl with each of the bazic unlts. My current

grammar of English has programs for the units CLAUSE, WOUH GROUP, VERE GROUP,
PREPOSITIONAL GROUP, and ADJECTIVE GROUP.

PROGRAMMAR 11,5 page 15

I1.6 Grammars as Programs
Let us see how a grammar as outlined above could be written as a progras.

Frammar 1 could be dissrammed:

DEFIRE program SENTENCE

PARSE a WF+———#ail? — S HEETUHN failure
o
sucded?

PAHSE a VP — faitd

ANy words.
left? °
i

RETURN success

DEFIHE program HF

PARSE a DETERMIHER -+ »RETUEN failure

PARSE a HOUN —+
RETTRN £;¢¢$Bs

DEFINE ProOZram TP

PARSE a VERE -+ *RETURH fallure

iz 1t TLHSITI?E?F—*PEREE a NFy»— J
P &+

is it IﬁTH.MISITIFE?;

RETURN E‘F"""Hﬂt

7
L~
The basic function used i1z PARSE, a function which tries to add a
constltuent of the specified type to the parsing tree. If the type has hean
defined as a PROGRAMMAR program, PARSE activates the progzram for that unit,

giving it as input the part of the sentence yet to be parsed. If no definition

FROGRAMMAR I1.5 page 16

exists, PARSE interprets its arguments as a list of features which must be found
in the dictionary deinition of the next word in the sentence. If so, it
attaches a node for that word, and removes it from the remainder of the
sentence. If not, it falls., If a PROGRAMMAR program has been called and
succeeds, the new node is attached to the parsine tree. If it fails, the tree

is left unchanzed.

PROGRAMMAR II.S pase 17

II.5 The Form of PROGRAMMAR Grammars

Written in PROGRAMMAR, the programs would look like:

1 (PDEFIRE SENTENCE

2 ({(PARSE WP) WIL FAIL)

3 ((PARSE VP) FAIL FAIL RETURN)))
.4 (PDEFINE WF

65 (((PARSE DETERMINER) NIL FAIL)

6 ((PARSE WOUH) RETURR FAIL)))
2.7 (PDEFIHE VP

2.8 (((PARSE VERE) WIL FAIL)

2,9 ﬁ?lﬂq H TRANSITIVE) HIL INTRAHS)
2,10

2

a

PAHSE WP) RETURN NIL)
11 IHTRAKS

12 ({150 H INTRANSITIVE) RETURN FAIL)))
Fales 1.6 to 1.% would have the form:
2,13 (DEFPROP GIRAFFE (HOUH) WORD)

2.14 (DEFPROF DREAM (VEHRS INTRANSITIVE) wWOmD)
eltc.

This example illuatrates some of the basic features of PROGRAMMAR. First
it iz embedded in LISP, and mush of its syntax is LISP syntar. Units, such as
SENTENCE are defined as PROGRAMMAR programs of no arguments, Each tries to
parse the string of words left to be parsed in the sentence. The axact form of
this input string is deseribed in section III.6. The wvalue of (PARSE SENTENCE)
will be & list structure corresponding to the parsine tree for the coaplets
sentence.

Each time & call is made to the function PARSE, the system begins to bulld
g naw node on the tres, OSince PROGHAMMAR programs can call each other
recursively, it is necessary to keep A pushdown list of nodes which are not yat
cospleted (1.e. the entire rightmost branch of the trea). These are all called

"sctive” nodes, and the one formed by the most recent call to PARSE is called

7

T

PROGRAMMAR [I.6 paze 1B

the "currently active node’.

We can examine our sample program to see the basic operation of the
lanzuage. Whensver a PROGHAMMAR program is called directly by the user, a node
of the trees structure is set up, and & set of special wariables are bound (see
section II1.7). The lines of the program are then executed in sequence, as in &
LISP PROG, except when they have th= special form of a BHANCH statement, a list
whose first member (the COMDITION) is non-atemle, and which has either 2 or 3
other meabers, called DIRECTIONS, Linme 2,3 is a threse—-dirsction branch, and all
the other executable lines of the program are two-dlrection branches,

Wnen & branch statement is epcountered, the condition is evaluated, and
branchine depends on its value., In a two-direction hranﬁh, the first direction
is taken if it evaluates to non-nil, the second directlon 1f it is nil. Ina
three—direction branch, the first direction is taken only if the condition is
non=-nil, and there is more of the sentence to be parsed. If no more of the
gentence remains, the third direction is talken,

The directions can be of three types, First, there are three reserved
words, NIL, HEETURN, and FAIL. A direction of HIL sends evalumtionm to the naxt
statement ia the program. FAIL causes the program to return HIL after restorine
the seatence and the parsing trea to thelr state bafore that prozram was called.
RETURN causes the program to attach the currentily active node to the completed
parsing tree apnd return the subiree below that node as its value.

If the dlrectlon is any other atom, it acts as a G0 statemsat, transferring
evaluation to the statement immediately following the occurence of that atom as
a tag., For example, if a failure occurs in line 2.5, evaluation continues with

line 2.12. If the directioen is non-atomic, the result is the same as a FAIL,

- tat the direction is pat on & special failure messasge 1ist, so the calling

prograg can see the reason for fallure. {3?

PROGRAMMAR 11,6 page 19

Looking at the programs, we ses that SEATEHCE will succeed only if it first
finds & HP, then finds a VP which uses up the rest of the sentence. In the
program VP, we see that the first branch statesment checks to see whether the
next word is & verb. Af so, it removes it from the remalning sentence, and goes
on., If mot, VP fails. The second statement uses the PROGRAMMAR function ISQ,
one of the functions used for checking features. (IS0 & B) checks to gee
whether the node or word pointed to bty A has the feature B, H i3 one of a
mimber of special variables used to hold information associated with a node of
the parsing tree, (see section III.7) It polnts to the last word or
c¢onstituent parsed bWy that program. Thuz the condition (I5Q H TRANSITIVE)
succeeds only if the verb Jjust found by PARSE has the feature TRANSITIVE, If
so, the direction MIL sends it on to the next statemsnt to look for a NP, and 1f
it finds one it returns success, If esither no such WP is found or the verb is
not TRASSITIVE, control eo#s to the tag INTRAHWS, and if the verb is
INTRARSITIVE, the program VP succeeds. Hote that 2 verb can have both the
features INTRANSITIVE and TRAWSITIVE, and the parsing will then depend on
whether or not an object NP is found.

PROGRAMMAR ILI.7 pase 20

11,7 The Context-Sensitive Aspects

5o far, we have done little to zo0 beyvond a context—free El'f;ﬂllﬁ.r.. iimr, for
exaenle, can we hanile agreeseni? One way to do this would be for the VP
progra®m ko look back in the senience for the subject, and chesk iis agresment
with the verb before going on. We need a way to climb around om the parsing
tree, looking at its structure, In PROGEAMMAR, this is done with the pointer
PT and the moving fumction =,

Whenever the function # iz called, itz arguments form a list of
instructions for moving PT from its present positlon. The instructiom list
contains non-atomic COMDITIONS and atemic INSTRUCTIONS. The instructions are
takeén in order, and vwhen & comiition is encountered, the preceding instruction
is evalualed repsatedly until the condition is satisfied. If the condition is
of the form (ATOM), it is satisfied only if the node pointed to by PT has the
featurs ATOM. Any other conditlion is evaluated by LISP, and iz satisfisd if it
returns & oon-all value. Sectlon IIL.5 1lists the instructions for *,

For example, evaluatins (* C U) will set the polater to the parent of the
currently sctive mode. (The mnemonics are: Current, Up) The ecall (¥ C DLC PV
(HF}) will atart at the curreat node, move down to the rightmost completed node
(i.e. not currently active) then move left wntil it finds a node with the
feature HP. (Down=-Last=Completed, PreVious), If # suecesds, it reaturns the new
value of PT and leaves PT set to that value, If it faills at any point in the
list, because the existing tree structurs makes & command impossible, or because
a conditlon cannot be satisfied, PT is 1e&ft at its original position, and *
returns nil,

¥e can now add apother branch stateasnt to the TP program in section IL.B
tetween lines 2.8 and 2.9 as follows: _

2.8.1 ((OR(AWD({ISQ(* C PV DLC)SINGULAR)(ISY H SIGULAR))

FRDGAAMMAR II.Y pasge 21

2.8.2 (AMD({ 159 PT PLURAL}(IS3 H PLUBAL)))
2,8,3 HIL (AGREEMENT))

This iz an e#xzample of a branch statement with an eérror nessage, It moves
the pointer from the currantly active pode (the VP) to the previous node (the
NF) and down to 1ts last contituent (the noun). It then checks to see whether
this shares the feature SINGULAR with the last constituent parsed by TP (the
vert). If mot 1% checks to see whether they share the feature PLURAL, Wotlce
that once PT has baen set by *, it remains at that posltlon. If aszreemenl is
found, evaluation continues as before with lime 2,5, If not, the program VP
fails with the messaze (AGREE4ZHT). |

80 far we have pnot made much use of features, sxcept on words. As the
gramoar gets more complex, they become much mere lmportant. As a simple
exaople, we may wish to auzment our grampar io accept the noun Zroups

"thesa fish,”

“this fish,”
"the giraffes,”

and "the giraffe,”

But not “these giraffe,” or "this siraffes.” We can no longer check a sinsle
word for agreeaent, since "fish” gives no clue to number in the first two, while
“tha" gives mo eclue in the third and fourth. Humber is a feature of the entire
noun group, anl we must interpret Lt 1n some casas from the form of the noun,
and in others from the form of the determlnar,

We can rewWwrite onr programs to handle this complexity as shown in Grammar

3.1 (PDEFINE SENTEMCE
3.2 (((PARSE HP)NIL FAIL)
3.3 ((PARSE TP) FAIL FAIL RETURN)))

PROGRAMMAR II,7 page 22

3 (POEFINE P

3 (((ARD(PARSE DETERMINER)(FQ DETERMINED))NIL MIL FAIL)
3 ((PARSE ®OUNINIL FAIL)

3 ({CQ DETERAMINED)DET KIL)

3.8 ((TR¥ST H (QUOTE(SINGULAR PLURAL)))EETURN FAIL)

3.9 DET

3 ((TRRSF ¥ (MEET(FE(* H PV (DETERMINER)))
g (QUOTE(SINGULAR PLURAL))))
3

e

FAIL)))

.14 (PDEFINE VP
5.15 ([(PARSE VERB)RIL FAIL)

3,16 ((MEET(FE =) (FE(* C PV (NP)))(QUOTE(SINGULAR PLURAL)))
3.17 WIL

.18 (AGREEMEAT))

3.18 ({150 & TRANSITIVE)HIL INTRANS)

3.20 ((PARSE WP)RETURN WIL)

3,21 ((I3Q 5 INTRANSITIVE)RETUAW FAIL)))

We have used the PROGRAMMAR functions FQ and TANSF, which attach features
to constituents. The effect of evaluatine (FQ A) i3 to add the feature A to the
List of features for the currently active node of the parsing tree. TENSF is
used to transfer features from another node to the currently active node. Its
first argument 1s a polnter to the node from which information is to be
transferred. The second is a 1list of features to be looked for. For example,
line 3.8 looks for the features SIRGULAR and PLURAL in the last constituent
parsed (the HOUH), and adds whichever ones it finds to the currently active
node, The branch statement beginning with line 3,10 is more complex. The
function * finds the DETERMIHER of the HP being parsed. The function FE finds
the 1ist of features of this node, and the funciion MEET inktersects this with
the list of features (SINGULAR PLURAL). This intersectlon is then the sel of
allowable features to be transferred to the HF node from the NOUN., Therefore if
there 13 no agresement bewsen the HOUN and the DETESMINER, TRMSF falls to find
any features to transfer, and the resultine failure causes the rejection of such

phrasgs as "these .51red‘f"a,'I

In lina 3.7 we use the function CQ which checks for features on thes ourrant

i
Eo

o g™

PROGRAMMAR II,7 page 23

node. (CQ DETERMINED) will be non-nil only if the current node has the feature
DETERMINED. (i.e. it was put there in line 3,5) Thersfore, a noun group with a
determsiner is marked with the feature DETERMINED, and is also given fesatures
corrresponding to the intersection of the nuwber features assoclated with the
determiner 1f there is one, and the noun. Hotlce that this szrammar can accept
noun groups without determiners, as in Giraffes eat apples,” since line 3.5
falls only if a DETERMINER is found and there are no more words in the Eﬁutauca.

In conjunctlon with the change to the NP program, the VP progras must be
modified to check with the NP for ssreement.

The branch statement bteginning on Line 3.16 does this by makine sure there is

& pumber feature common to both the subject and the werh, .

This brief description explains some of the besic features of PROGEAMMAR,
In a slmple grammar, their importance is not obvious, mnd indeed thers seesm to
be easler ways to achleve the same effect. As grammars become more complex,
the special aspects of FROGRAMMAR become more and more important, asd I plan in
another paper to describe the PROGRAMMAR grasmar for Engish which iz used by

the understender system.

A mmber of the other features apnd details of PROGEAMMAR are described in
Section III.

PROGRAMMAR II.8 pase 24

IT.8 Ambiguity and Understanding

Readers familiar with parsing systems may by now have wondered about the
probles of ambiguity. As explained, a PROGRAMMAR prozram triss to find a
possible parsing for a sentence, and az soon as it succeeds, it returns its
answver, This is not a defect of the system, but an active part of the concept
of language for which it was designed. The lanzoage process is not sezmented
into the operation of a parser, followed by the operation of a semantic
interpreter. Rather, the process is upified, with the results of semantic
interpretation being used to guide the parsing. This is very difficult in other
forms of grammar, with their restricted types of context-dependence. But it is
sir&ightfurwird'tn implement in FROGRAMMAR. For exasple, the last statement in
& program for NP may be a call to a noun—phrase semanilc interpreter. If it is
impessible to lnterpret the phrase as 1t is found, the parsing 15 immediately
redirected.

The way of treating ambiguity is not through listine all 1,243 possitle
interpretations of a sentence, tut in being intellizent in lookine for the first
one, and being even more intelligent in Looking for the next ome if that fails.
There is no automatic backup mechanism in PROGHAMMAR, because blind automatic
ackup is tremendously inefficent. A zood PROGRAMMAR program will check itself
when a fallure occurs, and based on the structures it has seen and the reasons
for the fallure, it will decide specifically what should be tried next. This is
the reason for internal fallure-messsages, and there are facilities for
verforeing the specific backup steps nacessary. (See section II1.4)

As a concrete example, we mizht have the sentence "I rode down the street
in & car.” AL & certain polnt in the parsing, the ¥P progras may come up with
the constituent "the street in a car . Before eoing on, the semantic analyzer

will reject the phrase 'in a car as a possible modifier of "strest”, and the

PROGHAMMAR 11,8 page 25

program will attach it instead as & modifier of the action represented by the
sentence. Since the semantic system is a part of a complete deductive
understander, with a definite world-medel, the semantic evaluation which suides
parsing can include toth general knowledee {cars don’t contain streets) amd
specific knowledge (Melvin owns a red car, for exasple). Humans take advantage
of this sort of knowledge in their understanding of language, and it has hbeesn
polnted out by a number of lingulsts and computer scientists that good computer
handling of langoage will not be possible unless computers can do so as well.
Veary few sentences seem ambigzuous to humans wheén they first hear them.
They are zuided by an understanding of what is sald to plek & single parsing and
a very few differsnt meanings. By using this zame knowledge to guide its
parsing, a computer understanding system could take advantage of the same
tachvique to parse meaningful sentences quickly and efficiently. We must be
careful %o distinsuish between srampatlical and semantlec amblguity. Althoush we
want to choose a single parsing without considering the alternatives
simulteneously, we want to hapdle semantic ambizuity very differently. There
may be several interpretations of a sentence which are all more or less
peaningful, and the cholce between them will depend on & complex evaluation of
our knowledge of the world, of the knowledege the person spesaking has of the
world, and of what has been said recently. This is particularly truz in cases
of ambiguous pronoun reference. For example, if the system wers asked the
sequence of questlons: "5 a gre=en block omn & table? “What color is it?" we
would expect "it" to refer to the table. If asked I3 & block on a green table?
“What color is it?", we know that "it” must refer to the block. If the second
question were "What size is 1t?" it would be much more ambiguous, To resolye
this, we must know that zreen is & coler, and that & merson is not likely to ask

the aolor of an abject if he has just specified it. This iz the type of .

LT
!

PROGHAMMAR 11.8 pagze z£

aabizuity dealt with by the systes through its heuristic programs and deductive
system. [t however is not directly a part of the grammar.

This means that we must discuss only those things the computer knows aboul
and understands fully enough to manipulale the knowledse necessary for
interpreting a sentence. The forams of relationships it must be able to handle
2o teyond simple structures, such as assoclative networks of links between words
or arbitrary relational statments in the predicate calculus. Just how much is

necassary 1s a deep problem, and I plan to |discuss it more in reference to other

parts of the sysiem.

PROGEAMMAR 11,9 page 27

II.% Summary

In understanding the reason for developinz PROCRAMMAR, several factors are
important. The first is that only through the flexivility of expressing a
sra;uar as & prograg cen we introduce the type of intelligepnce necessary for
complete language understanding. PREOGRAMMAR is able to take into maccount the
fact that language is structured in order to convey meaning, and that our
parsing of sentences depends intimately om our understanding that meaninz.
PROGRAMMAR can take advantage of this to deal more efficiently with natural
language than & general rule-tased system, whether context-free or
Jdransformational. More fmportant, the analysis returaed by PROGRAMMAR is
designed to serve as a part of a total undeérstanding process, and to leni itself
directly to sepantic interpretation. This wasz one reaszon for selscting systemic
grapmar, and has guided much of the design of the system. The exact way in
which semantic interpretation can be done, and the reasons why a systeamic
anal¥sls is important will e discussed in later papers on the semantic aspects
of the system.

A reasopably comprehensive grammar of English has been written in
PROGHAMMAR, and it is able to parse quite complex sentences. It is beinz used
a3 a part of the system, which is currently beinz detogged.

Some examples of English sentences parsed by PROGRAMMAR are insluded in

Section IV,

PROGRAMMAR III.1 page 28
ITI Details of the FROGRAMMAR Laaguage

I11.1 Operation of the System

Since the grammar iz itself a program, there is not much overhead mechanism
needed for the basic operation of the parser. Instead, the system consliszts
mostly of special functions to b2 ussd by the szrammar. The system maintainz a
nusber of zlobal variables, and keeps track of the parsing tree as it is bullt
by the maiw function, PARSE. When the function FARSE is called for & UHIT which
has been defined as a PROGHAMMAR program, the syztem collects information about
the currently active node, and saves it on a pushdown list. It then sets up the
necessary variables to establish & new active node, and masses control to the
PROGRAMMAR program for the appropriate unit. If thls program succesds, thes
system altaches the new node to the tree, and returns control to the node on the
top of the PDL. If it fails, it restores the tree to its state before the
program was called, then reéturns control. A PROGRAMMAR program is actually
converted b a simple compiler to & LISP program and run in that form. The
varlabvles and functions available for writing PROGRAMMAR programs are described
in the rest of part [II. GSections III.1 to IIL.5 explain special features of
the language. Sectlons IIT.6 to III.9 are more in the style of a manual which
would allow the reader to understand PROGRAMMAR prozraas,

When the function PARSE 1s called with a first arzument which has not been
defined as a PADGRAMMAR program, it checks to see whether the pext word has all
of the features listed in the arguaents., If so, it forms a new node pointime to
that word, with a list of features which is the intersection of the list of
features for that word with the allowable featurss for the word class indicated
by the first argument of the call. For example, the word "blocks” will hawve the

PROGRAMMAR III.1 page 29

possibility of being either a plural noun or & third-person-singular
prasent—tens= verb. Therefore, before any parsing it will have the feaftures
(HOUM VERB N-PL VB-3PS TRANSITIVE FRESENT). If the expression (PARSE VERE
TRAMSITIVE) iz evaluated when "blocks” is the mexi word in the sentence to be
parsed, the feature 1ist of the resulting node will be the intersection of this
comblned 1ist with the list of allowable features for the word-class VERB. If
we have defined:

(DEFPROP VERE (VERB INTRANSITIVE TRANSITIVE PRESENT PAST VE-3PS VE-FL)
ELIM),

the new feature 1ist will be (VERE TRANSITIVE PRESENT VB-3P5). (ELIM is
simply & property indicater chosen to indiecate this list which ELIMinates
features), Thus, even though words mey have more than one part of speech, when

they appear in the parsing tres, they will exhiblt only those features relevant

to thelr actual use in the sentencs.

PROGRAMMAR IIL.2 pase 30

III.2 Special Words

some words mist be handled inm & very special way in the grqmmar. The most
prevalent are conjunctions, such as and and "tut . When one of these is
encountered, a program should be called to decide what steps should be taken im
the parsing, Thls iz done by Zivine these wordzs the grammatical features SPEC
or SPECL. Whenaver the function PARSE is evaluated, bpefore returning it checks
the next word in the sentence to see if it has the feature SPEC. If o, the
SFEC property on the property list of that word indicates a function to be
evaluated before persing continues. This program can In turn call PROGAAMMAR
progrags apl make ap arbitrary pumber of changes to the parsine tree befors
returning control to the normal parsing peocedure. SPECL has the same effect,
tut iz checked for when the fuanction PARSE is called, rather than before it
retarns. Various ofther special variables and functions allow these prograss to
control the course of the parsing process after they have been evaluated. By
using thesg special words, it is possible to write amazingly simple and
efficient programs for some of the aspects of grasmar which cause the greatest
difficulty, This is possible because the gzeneral form of the grammar i3 a
Program.

For example, "end’ can be defined as & program which iz diacrasmed:

PHOGRAMMAR TII.2 page 31

Farse a unlt of the same type
as the currently active pode =~ Return failure

Heplace the pode with & new node
combining the old one and the one
you have just found
Return success

For example, given the sentence The giraffe ate the apples and peaches.”
the program would first sncounter "and” after parsing the BUN apples, It would
then try to parse a second NOUN, and would Euuﬂaad,”rasulting in the structure:

SENTENCE

N,

\\ur
iy \\\"“mw

DETERMIMER NOUN VERR DETEHlilIHER '.'Il:lli ROUN
|
tLa giraffe ate the apples and peaches

If we had the sentence, 'The giraffe ate the peaches and drank the vodia,”
the parser would first try the same thing. However, “drank” is not 2 HOUH, so
the AHD prograa would fall and the WOUN “apples” would be returned unchaneed.
This would cause the HP "the apples to guccead, o the AWD orogram would be
called again. It would fail to find a 4P beginning with “drank”, so the WP
"the apples” would be returnsd, causing the VP to succesd. This time, AHD
would try to parse a VP apd would find “drank the vodka”, It would therefors

make up a combined VP and cause the entire SENTEHCE to be completed with the

PROGRAMMAR [I[.2 page 32

gtructars:

SENTENCE

‘--“h-‘-‘-—-_"“‘FP
vr**"“"ﬂﬂ.tﬂpﬂp- HHHHHHE““‘*??

RS N RN

DETERMINER WOUN VERE DETERMIMNER tl[ﬂ'.‘l VERB DETERMINER MOUN
Peac

the gziraffe ate the es and drank the vodka

The program to actually do thisz would take only 3 or 4 lines in a
PROGRAMNAR grammar. In the actual system, 1t is more complex as it haniles
1ists (like "&, B, and C") other conjunctions ({such as "but™) and special

constructions (such as "both A and B').

PROGRAMMAR III.3 page 33

II1.3 The Dictionary

Since PROGHAMMAR is embedded in LISP, the facilitiea of LISP for handling
atom namss are uged directly., To defipe a word, a lizt of grammatical features
s put on its property list under the indigator WORD, and & semantic definition
ander the indicater SMNTC. Two facllitles are included to avoid having to
repeat information for different lorms of the same word. First, there is an
alternate way of defiglng words, by using the property indicator WORD1. This
ipdicates that the word siven is ap inflected form, and its properties are a
modified form of the properties of its root. A WORDL definition has threes
glements, the root word, the list of features to be added, apnd the 1list of
features to be removed, For example, we might define the word "zo” hy: {DEFPRD%
GO (VERE IRTRANSITIVE MOTIOW INFIRITIVE) WORD) We could then define “went” as
* (DEFPROP WENT (GO {PAST)(INFIRITIVE)) WORD1) This indicates that the feature
INFINITIVE is to be replaced by the festure PAST, tat the rest (including the
gemantic definition) is to remsin the same as for "gn*.

The other facility is an automatic system which checks for simple
modifications, such as plurals, "-ing,” forms, "—er and "—est” forms and so
forth., If the word as typed in is mot defined, the program looks at the way it
is spelled, tries to remove its ending (taking into account rules such as
changing "running” to "rum”, but "buzzing" to "buzz"). It then tries to find a
definition for the reduced root word, and if it succeeds, it makes the
appropriate changes for the ending (such as changing the feature SINGULAR to
PLURAL). The program which does this is the one part of the PROGRAMMAR system
described here which is specifically built for Englizh. Evervthing slse
described is designed generally for the parsing of any languaze. In any !
particular language, this inpat funtion would have to be written according to

the special rules of morphographesic structure. The only requirement for such a

PROGRAMMAR III.3 pagze 34

program iz that itz oubtput must be a list, each member of which corresponds to &
word im the orizinal sentence, and is in the form descrived in section III.S.
This list is bound to the variable SENT, and is the way in which PROGEAMMAR sees

its input.

/

PROGRAMMAR III.4 page 30

I11.4 3Backup Facllities

As explained in section IL.B, there is no astomatic backup, tat there are a
pumber of special functions which can be used in writine grammars. The
simplest, (POPTO X) simply removes nodes from the tree. The argument is a list
of features, and the effect is to remove daughters of the currently active node,
teginning with the rightmost and worklneg leftword wntil one is reached with all
of those features. (POP X) is the same, except that it also removes the node
with the indicated features. If no such node exlsts, anelther functlon takes any
action. (POP) is the same as (POP HIL), and a non-nil value is returned by both
functions 1f any action has been taken.

& very ilmportant feature iz the CUT wvarlable. One way to do backup iz to
first try to find the longest possible constituent at any poinkt, then 1f for any
reason an impasse 1s reached, to return and try azain , limiting the consituent
from going &3 far along in the sentence. For example, 1in the sentence "Waz the
trpewriger sitting oo the cake?", the parser will first find the auxilllary verb
"Has", then try to parse the subject. I%t will find the noun group “the
trpewriter sitting on the cike", which in ancther context mighf well be the
subject {"the typewriter sitting on the cake is broken.”). It then tries to
find the werb, and discovers none of the sentence is left. To back up, it must
change the subject. A very clever program would look at the structure of the
noun group and would realize that the modifying clause "sitting on the cake
must be dropped. A more simple—minded but still effective approach would use
the followine instructlions:

(== W PW)
{ FOF)
{(COT PTW)SUBJECT (ERROR))

The first command sets the pointer PIW to the last word in the sonstltuant

PROGHAMMAE I11.4 page 38

(in this case, "cake). The next removes that conmstituent. The third sets a
special polnter, CUT to that location, then sends the program back to the point
where it was locklag for a subject., It would nmow try to find a subject asain,
tut would not be allowed to 20 as far as the word cake ., It wight now find
"the trparwriter sittiﬁg," an analog to "The man glttine iz my ancle.” If thers
were a Zood semantic program, it would reamlize that the werdb "sit" cannot e
used with an inanimate object without a location specified. This would prevent
the constituent "the typewriter sitting from ever beipe parsed. Even if this
does not happen, the program would fail to find a verb when it looked at the
remalning sentence, on the cake, 3By going throush the cutting loop again, 1t
would find the proper subject, ~the typewriter,” and would contimue throush the
sentence.

Once & CUT point has been set for any active node, no descendant of that
node can extend beyond that point until the CUT is moved. Whenever s PROGRAMMAR
program 1z called, the variable END is set to the current CUT point of the node
which called it., The CUT point for each constituent is initially set to its
ERD. When the function PARSE is called for a word, it first checks to ses if
the current CUT has been resched, and if so 1t falls, The third branch in a
three-direction branch statement is taken if the current CUT point has been

reached. The CUT pointer is set with the function CUT of one argument,.

PROGHAMMAR III.5 page 37

III.5 Messages

To write good parsing programs, we may at times want to know vhy 2
particular PROGRAMMAR prosram failed, or why & certain pointer command could not
be carried out. In order to facilitate this, Two message variables are kept at
the top level of the system, MES, and MESF. Messases can be put on MES inp two
ways, elther by using the special failure directions in the branch statements
(see section I1.6) or bty using the functions M and MG, which are exactly like F
and FQ, except they put the indicated feature onto the message list ME for that
unit. When a unit returns either failure or success, MES is bound to the
currént value of ME, so the calling progras can receéive an arbltrary list of

messages for whalever purpose it may want them. MESF always contains the lagt

fallure message recelved from *F gr ¥,

P

oy

S
e
e

e

PROGRAMMAR III.G page

FI'.I'I'ﬂ Tng form of-the Pu.rn.ﬁ.-::g e

Each node iz actually & list stracture with the following information:

FE the list of features associated with the nede

1) the place in the® senteénce whers the constituent begins

H the place immediately after the constituent

H the subtres below that node {actually a list of its daushters

in reverse order, so that H points fo the last
constituent parsed)

1) & space reserved for semantic information

These can be used in two ways. If evaluated as variables, they will
always return the designsted information for the currently sctive node. C 1is
always a pointer to that node. If used as fumctionms of one argument, they gl
the appropriate wvalues for the node pointed to by that argument; so (NB H)
zives the location in the sentence of the first word of the last constituent
parsed, while (FE(NE H))} would zive the feature list of that word.

Each word in the sentemce is acbually a list structure containing the 4

items:

FE as above

SMWORD the semantic definition of the word (see section II1.5)
WORD the word iteelf {(a pointer to an atom)

ROOT - the root of the word (e.z. "run" if the word is

“running”). [

PROGRAMMAR III.V page 39

III.7 Variables Mailntained by the Systea
There are two types of wariables, those tound at the top level, and those

which are rebound every time a PROGHAMMAR program 1s called.

Variatles bound at the top level

H Always points to next word in the sentence to be parsed
SENRT Always points to the entire sentence
PT PTW Tree and sentence pointers.

See Section III.8

MES MESP List of meéssages passed up from lowver levels,
See Section III1.3 '

Special wvariables bound at each level

L FE B EM H See section III.2

NN CUT EXD See section ITI.8., NN always equals (MOT(EQ CUT END))
THIT the name of the currently active PROGRAMMAR prosram
REST the 1ist of arguments for the call to PARSE

(These form the inital feature list for the node,
it as other features are added, REST continues
to hold only the orizinal ones.)
T1 T2 T3 Three temporary PROG varlables for use
by the PROGRAMMAR program in any way needad,
MYHB Eound only when & CLAUSE is parsed
uged as a pointer to the main verdb
' HE _ List of messazes to be passed up to next lewel ;
| See Section III.5 "

FROGRAMMAR III.8 page 41

I11.82 Pointers
The system always maintainzs two pointers, PT to & place on the parzing
tree, and FI¥W to & place in the sentence. These are moved by the functions *

and *# respectively, az explained in section I[I.¥. The instractions for PT are:

H set PT to the currently active node
H sat PT to the most recent (rightmost) daughter of C
0L {down=last) move PT to the rightmost daughter of its

current value

DLC {down-last coaplated) like DL, except 1t only moves to nodes which

are aot on the push-down list of active nodes.

OF L {down-first) 1like DL, except the leftmost

PV (previous) move PT to its left-adjacent szister

NX (next) mowe PT to its right-adjacent sister

u {up) move PT to the parent node of Lts current walue
H Move PT to the next word in the sentence to be parzed

The pointer PTW always points to & place in the sentence. It is moved by

the function ** which has the same syntax as *, and the commands:

H Set PIW to the next word in the sentence to be parsad

i (first=word) set PTW to the first word of the comsstitusnt
pointed to by PT

'] (last-word) 1ike FW §

AW (after—word) 1ike FW, but first word after the constituent

PROGEAMMAR III.3 page 42

MW {next-word) Set PTW to the next word after its current value
b} (previous—word) like HW

SEd (sentence—first—-word) set PIW to the first word in the sentence
LW (sentence-last—word) like SFW

oince the polinters are bound at the top level, a program which calls others
which move the pointers may want to preserve their location. PIW is & siaple
variabls, and can be saved with a SEIQ, btut PT operates by keeping track of the
wa¥ it bas been moved, in order to be able to retrace its steps. This is
necessary since LISP lists are threaded in only one direction (in this case,
fruﬁ the parent node to its daushiers, and from a right sister to its l;ff
sister), The return path i3 bound to the wvariable PTR, and the command [PTSV X)
saves the values of both PT and PTH under the variable X, while (PTES X)

restores both wvalues.

PROCRAMMAR I11.5 page 43

I11.9 TFeature Manipulating

As explained in section II.7, we must be able to attach features to nodes
in the tree., The functions F, FJ, and TRNSF are used for putting featura=s onto
the current node, while R and AQ remove them, (F 4) sets the featurs list FE to
the union of its curreat wvalue with the list of featares 4, (FQ A) adds the
single feature & (i.e. it quotes its argument). (TRNSF 4 B) was explained in
secltion II.7. R and HQ are inverses of F and FQ, The functions I5, I5Q, CQ,
and HQ are used to examine featurez., If A points to a node of the tres or word
of the sentence, ani B points to a feature, (IS5 A B) returns nom-nil if that
nodYhas that feature., (IS3 A B) is equivalent to (IS A (QUOTE B)), (CQ 3) is
the same as (I5Q C B) (where C always points to the currently active node), and
(N} B) iz the same az (I5Q N E)(H always polnts to the npext word in the sentence
left to be parsed).

PROGRAMMAR IV page 44

IT Examplez of Seantences Parzed

This section demonstrates the use of PROGRAMHAR on two English sentences.
They were parsed using the curreant Enslish grammar for the systea. In the
examples, a number of features are used, It is difficult to explain their
slgnlficance without & thorousgh explanation of the systems from which the
features were selected. This grammar will be fully explained in a forthcoming
Papar.

The form of input to PROGRAMMAR is the sentence in normal orthography and
panctuation. The actual console dlalosgue 1z reproduced, with the inputs
underlined, The function WALLF is one of a number of functions used to examipe
the parsing tres from the console. It vrints out & representation of the tree
in a readable form. In normal use, after finlshing the parsing, PROGRAMMAR

would contionue with semantic amalysis. For ugse withoukb semantics, it helis to

allow the user to examine the results,

LISTENING
(WALLP C}

PROCRAMMAR IV page 45

({(HOW MAMY EGGS WOULD YoU HAVE BEEN GOING TO USE IN THE
CAEE IF YOU HADN®T LEARNED TOUR MOTHER'S RECIPE WAS WROHG)
{CLAUSE MAJOR QUEST HGQUES POLRZ ACTV OBJ13 TRANS)

(((HOW MARY EGGS) (MG QUEST HOWMANY HDEF NPL DET)

{ (HOW (JDET))
(MAHY (QDET))
(B3G5 (2 HPL))))

(WOULD (VE AUX MODAL QAUX))
((YOU) (NG SUEJ DEF NS WPL) ((YOU (PROW WPL X5 SURJS OBJ))))
((HAVE BEEN COING TO USE) (VG MODAL NAGR (FUT PAST MODAL))

((WOULD (VE AUX MODAL QAUX))
(HAVE (HAVE VB AUX VO TRAMS))
(BEEN (AUX VB BE EN))

(GOING (VB ITRNS ING))

{(T0 {T0))

(USEP{VE VO TRANS MVE))))

((IN THE CAKE) (PREPG)

{{IH {PLACE PREP PLACE))
((THE CAEE)(®%: OBJ DET HS DEF)

({THE (DET ¥PL M5 DEF))
(CAKE (H HS))))))

({IF YOU HADK'T LEARKED YOUR MOTHER'S FECIPE WAS WROMNG)
{CLAUSEZ BOUND DECLAR ACTV TRANS)

{{IF (EIEDER))

{(T0U) (NG SUBJ DEF &5 NPL) ((YOU (PROW WPL N5 SUBJ 0BJ))))
((HADN'T LEAHHED) (V& VPL V3PS HE: (PAST PAST))

((HADN'T (HAVE VB AUL TRANS PAST VPL V3PS VFS HEG))
(LEARKED (VE TRANS REPOR PAST EN MVB))))

((TOUR MOTHER'S RECIPE WAS WRONG)
(CLAUSE RSHG REPORT OBJ OBJ1 DECLAR BE INT)

(((YOUR MOTHER'S RECIPE)
(WG SURJ 4S DEF DET POSES)

{{(YOUR MOTHER"3)
(4G 30BF WS OEF DET POSES POSS) '

-

{((TOUR) (43 SUBJ POSS)
((YOUR (PROM MPL M5 SUBJ OBJ P033))))
(MOTHER"S (H WS POSS)))) .

PROGRAMMAR IT page 456

{RECIPE (H H5))))

((wAS) (v3 V3PS ¥¥S (PAST))
({WAS (ATL VB BE V3PS VF5 PAST HT.'E::Il]'

})
((WrRONZ) (ADJG Q COMP) [(WROWG (EP)))))IMID)

READY/
5 IE HE
L BOL OF A SPAEAE WHICH 15 BIGGER THAN ANY BRICY ON THE TAELE.
#OE
LISTENING
(WALLP C)

([(PICK UP ANYTHING GREZN /, AT LEAST THREE OF THE ELOCKS /, AND EITHER

4 BOX OR A SPHERE WHICH IS BIGGER THAN ANWY BRICK ON THE TABLE)
{CLAUSE MAJOR IMPEZR ACTV TRARS)

{EEEI%EATEYG IMPER) (({PICK (VPRT VB VO TRANS MVB))T)

((ANYTHINZ GREEN /, AT LEAST THREZE OF THE BLOCKS /, AND EITHER
A FOX OR A SPHERE WHICH IS BIGGER THAY ANY BRICK ON THE TABLE)
(W3 0OBJ OBJ1 EITHER COMPOURD LIST d3)

{((ANYTHING CREZH) (MG OBJ OBJ1 TPROK)

((ANYTHIRG (N5 TPRON))
(GREEY (EP))))

((AT LEAST THREE OF THE BLOCKS)
(%G 0BJ OBJ1 COMPONMENT HUMD KUM HWPL JET OF)

((AT (AT))

(LEAST (NUMD HUMDAT))

{THREE (HOW))

{(OF THE BLOCKS)
{PREPZ OF)

({OF (PREP))
{{THZ ELOCKES)
(Hz OBJ DET KPL 7EF)

({THE (DET WPL HS DEF))
{BLOCES (H ®PLY)))ND))

{{A BOX OR A SPHERE WHICH 13 BIGGER THAN ANY BRICK ON THE TABLE)
(NG OBJ OEJ1 COMPOMENT OR COMPOUMD BOTH H3)

{ ({4 20X) :
(W3 OBJ OBJ1 COMPOWERT DET NS IMDGF)

PROGHAMMAR IV page 47

({4 (DET N5 INDET))
(BOX (A H5))))

{{A SPHERE WHICH IS5 BIGCER THAM ANY BRICK OX THE TAEE)
(MG OEJ OBJ1 COMPONENT DET M5 INDEF)

({A (DET HS INDEF)}

(SPHERE (H H3))

((WHICH IS5 BIGGER THAN ANY BRICK ON THE TAEBLE)
(CLAUSE R5Q SUBREL BE INT)

(((WHICH) (MG RELWD DET §PL) ((WHICE (HPL))))

((IS) (VG V3PS (PRES)) ((IS (AUX VB EE VT3PS PRES WVE))))
{{BIGGER THAN ANY BRICK ON THE TABLE)

{ADJG 3 COMP COMPAR THAN)

({BIGGEE (EP COMPAR))
(THAN (THAH))
{ (ANY BRICK OK THE TABLE)
(HC SURJ COMPAR DET 45 QNTFR)

((AHY (DET ®S WPL QHTFR))
(BRICE (H HS))

({0 THE TABLE)

{PREPG Q)

{(on (PREP FLACE))
{{THE TABLE)
(HG OBJ DET HS DEF)

((THE (DET NPL 5 DEF)) (TABLE (& WS))))1)))1M)yynnm

n
i

e L

o

e

Referances

-

1} Dani=) Bobrow, "Syntactic Theory in Lomputer Implementations™
in Borke, ed., AUTOMATED LAWGUAGE PROCESSING, Wiley 1oa7

2) M.AK, Malliday, "Catesoriesz of the Theory of Grammar W
WORD 17, 19e1

3) s "S0ME Hotes on “Deep” Grasmar,"
"JOURRAL OF LTNGUISTICS 2, 1066

4] » "Hotes on Transitivity apd Theme in
- Emglish, JOURNAL OF LINGUISTICS 3, 1oay

5) Terry Winograd, "Linguistics and the Computer Apalysis of
Tonal Harmony," JOURNAL OF MUSIC THEORY 12, 15es

&) + "An Inter
paper, 1963

it

—

rretive Theory of Language, unpublizshed tern

..

