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ABSTRACT

A description is given of how edges of prismatic cbjects appear
through a television camera serving as visual input to a computer.
Two types of edge-finding predicates are proposed and compared,
one linear in intensity, the other non-linear. A statistical
analysis of both is carried out, assuming input data distorted

by a Gaussian noise. Both predicates have been implemented as
adge-verifying procedures, i.e. procedures aiming at high sensi-
tivity and limited to locking for edges when approximate location
and direction are given. Both procedures have heen tried on
actual scenes. O0f the two procedures the non-linear one emerged
as a satisfactory solution to line-verification because it performs
well in spite of surface irregularities.
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INTRODUCTION

The task of computer vision is defined as follows:
A television camera, the vidissector, scans a visual
gcene consisting of thres-dimensional objects. The
camera is connected to a computer, and an array of numbers
representing the light intensity distribution is entered
into the memory of the machine. Our geal iz, using this
information, to separate and identify the cbjects in the

BCEmE.

That wisual perception can be accomplished by reducing the
criginally multidimengional information to the set of discontinuity
lineg, is amply confirmed by our ease at recognizing objects in
line-drawings. There are many soft-curved objects im our world; but
even then, the outline together with a few lines along the maximal
curvatures, constitute a good representation of the object, for

recognition purposes. It is thus natural that computer vision should

gtart with line detectlion.

The difficulty of boundary detection lies in part in the

nature of our detector, which provides with a set of set of

digitized, poisy light intensities at diggrete locations.



But the difficulety lies above all in discriminating surface structure
from actual edges. In addition we must proceed in & reasonable amount

of computing time.

The work in this thesis consists of three mein perts:
1) an investigation of the neture of the world &g seen through
our input devices.
2) the definition of a boundary detection procedure proficient in
the following situation: presence of a Gaussian detector noise and
surfaces of uniform texture except for the presence of rare defects
of small diameter.
1) Finally the detection method has been concretely worked out in a
"line verifying progrem'; i.e. we mssume that we know approximately
the location and direction of the edge and we aim at a wvery high
gengitivity, the price of which is reflected in a computing time
too large for general purpose use.This defines a partial problem
of line detection, justified by the overall conception of the wision
gyetem at Preject MAC; i.e. our program is to be wsed only locally,
in critical cases of "elusive" edges, under call of a higher level
procedure, which locks for evidence that im some area, a less sensitive

but faster procedure has missed a line.



HISTORY OF THE PROBLEM

In the beginnings of computer wision, the following local predi-
cate was used:

A point is likely to beleng to a boundary if the following

condition is fulfilled: any one or both of the differences

between the light intensity at it and at its horizontal and
verticel neighbors are greater than a given threshold.

{see  Roberts,l963; his predicate is a variant of the above.)
Howewer this simple idea soon proved itself unsufficient. It is
successful in the wery limited case of surfaces of excellent homo-
geneity and with a4 high contrast between the reglons limiting the
edge. Otherwise any choice of value for the threshold will either
give as boundary polnts any surface irregularity, or report as uni-

form areas where an edge lieas.

'"Coincidences Predicates' (T.Binford) constitute a fair improve-
ment. Instesd of a single large intensity difference one reguires the

oceurrence of 8 palr of them, in parsllel; i.e. if Ii y denctes the
]

light intensity at the lattice point (i,j), the differences

{ I

) and ( 1 }  must be both large

Lioi ™ lie,g L+ = Liwr, 14

and of the same asign ( or alternatively fli:j - 11,j+1} and

(Ii+l.j = 11+1,j+1} Y« The asctual predicate is & somewhat more

complex elaboration, and improvement of the same principle.



This criterien will clearly be harsher on rendom perturbations
than the preceding one. But true boundary points will pass through

because an actual line'extends along its own direction'.

With the additional noise filtration gained through the kind
of line-fitting method which attempts to find an accumulation
of boundary points along a line, this constitutes a reasonably good
technique for gemeral purpose use; it is economical im time and
discriminates somewhat against surface defects. But it iz limited
in genaitivity {it uses for its decision the evidence of a
emall set of points, thus preventing the statisticsal law of large
numbers to play very much in our favor by making us converge toward
the underlying noiseless distribution). At least on some small subparts

of the image, we need to do better.

In ' An operator which locates edges in digitized pictures '
(Hueckel. 1969), an 'edge operator' is proposed, which accepts all
brightness values within a small disc-shaped subarea of the picture;
it then applies to them a low=pass filter which singles cut & low=
order Fourier components [ wavelengths of order the diameter of the
disc); some of the white noise, whose spatial frequency is higher is
thus eliminated, but alsc some useful information. It will then attempt
to fit to the transformed distribution an ideal neoiseless brightness
gtep. An elegant mathematical solution yields the location and ampli-
tude of the best fitting step. If the amplitude is large emough, it

is inferred that an edge effectively passes over the disc.



The cperator appears to be reasonably fast and t£o have a fine
regolution; although the paper does not include any discussion of the
gensitivity, our evaluation of its lower limit showed that it was not
gensitive enough for our needs. It does not provide for edges wielding
a light intensity surface other than a step separating two horizontal

planes; we will see that often this is not sufficient.

Grifficth (P.H.D. thesis: in preparation) is working toward a
"Theory of the optimal use of intensity information in the detection
of lines in the wisual field". Optimality is defined wnder the follo=-
wing set of conditicns:

(i)} The 'scanning pattern’', namely the set of points at which
brightness measurements are taken is fixed; fi.e. no additional
information about the picture can be obtained in the course of the
procedure.

(ii) The noise is Gaussian. Surface defects are not taken in
account .

{111} The procedure is unifeorm with respect te pesition and

orlentation.

{iv} The a-priori probabilities of the presence of lines
are known.
We do a somewhat more realistic treatment but a theoretical approach

with these gimplifying assumptions Ls of great interest.
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FRELIMINARY STUDIES

WHAT THE WORLD LODKS LIKE THROUGH OUR INPUT DEVICES

1 The light intensity unitg

The interface betwaan vidia;ectnr and computer yields numbers which are
logarithme of the light intensity. Calibration of the measure apparatus
has given the following result:
Adding 9¢ to the logarithmic meagure corrvesponds te division by a
facter of 2 of the actual light Intensity.

We will in the rest of this thesis call these units widlog units or_w.u.

4 Ihe peise
a) Ite gources can be traced to & phenomena.

i) Ehoton noise

Meaguring the light intensity is done by measuring the time taken for a fixed
number N of photons to hit a photosensitive device. The light intensity, I, is
inversely proportional to that time. The number of photons arriving during
successive equal intervals of time t, show a Polsson distribution, which for
large numbers, can be approximated by a normal distribution of mean, say M,
and standard devietion EH = JN. With a good approximation, if for a given in-=

tensity W photons arrive in & time t on gversge, then if It is the deviation

on time: .IL lﬂ
Pt Nt w
As N is kept constant through all our measurements, It remains constant
t
whatever the intensity and so is 3L _ 4t . Thus, if L = Log I, JL iz a
I [

constant; i.e. expressed in logarithmic units, the photon noise remaing the

same for any intensity level.



ii)_Hoise ip the electropics
Very little is known about it. In any case it cannot be seps-

rated from the above source of nolge.

iii) Ripple of the lamp

The sun gun lamp which we used had a large amount of 120 cycle
noise, of which we became aware only recently, so that all the expe-
riments deseribed in the thesis were carried out without any protec=
tion against it. We now use photocathode reference for the measure-
menks i.e. normalize by the average photocathede illumination. Small
lamps are particularly nolsy because they have small filaments. We

are about to try D.C. supplies for the lamps.

iv) Iphomogeneity of the photocathode
The senaitivity of the messurements by the vidissector varies

from one point of its field to another.

b) A measurement of the effective standard deviation

We want a measure of the neise which accounts for all the above
factors. As we will see; our detection functions alwavs ifovelve a
comparison of nearby values of the intensity. Thus & first approxi-
mation to the thresholds to use for testing the presence of edges,
is based on a value of the standard deviation accounting for the

gpatial imhomogeneity of the sensitivity of the vidissector.

After having defocussed in order to have a surface with good

homogeneity, we scanned a sheet of white paper, first horizontally

11



and then wertically, and at each point we toock the following measu-
rement: the difference between the average of 15 brightness values

on 8 segment centered around the point and the value at the point.

The gum of the squares of these was averaged over the whole
screen and the sgquare root of the result iz the regquired standard
deviation. We found a walue

IL = 1.2 v.u.

As a guide for fixing thresholds, we worked according to the
approximation that the overall nolse was Gauesisn. &11 the errors
can be expected to be proportiomal to the intensity amd therefore

the logarithmic error ia constant.

3 Surface structure of the objects.

We have not dealt with texture but only with sparse surface
irregularities of small diameter i.e. covering arcund 1% of the
spurfaces. In fact we were successful with surfaces considerably
worse than we were expecting to use; several scenes (see figures
27328 and 29 . ) contain objects which were chosen to be very
bad; they showed a linear wood texture and a pebbly texture of end-

Erain.
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4 Light intensity distribution

Intensity profiles taken aslong straight lines on planes showed much
larger gradients than we expected. The phencmencn was lavestigated,

both theoretically and experimentally.

The intemsity wvaries essentially because the light source induces
g non=uniform intensity on the object. As Appendix I shows, with a loga=

rithmic measure of the intensity, the gradient of the reflected light

at the object and the gradient at the image are the same, to a gecond

order approximation. Thus we will now consider the

(i) Yariatiop of the light jotensitv on a plane in presence of a point
light source.

IN iz mormsl to the plane
which intergecte the plane of

flgure according to HMx. We want

to compute '3111 ; 11_1 being

o=
the light intensity at M. (It is

along the direction Kx that the

gradient is maximum}.

1 E, _tss 8 E_being the energy emitted the

whole 4n golid angle.

2 29r _ ke 28
Ea toz8 [‘ - 9 :i;j]
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The gradient shows a maximum for an angle of 45° between the light ravys

and the plane of the object.

The experimental curves currently show gradients &4 times as large as
the gradient computed accordimg to the above formula, for the same relati-—
ve position of the scurce and the object plane. Thus some other pheno=

mend must interfere.

The two main causes seem to be that the lampe we use are far from
being point light sources, and that the reflectivity of the surfaces

varies with the angle of incidence of the light raya.

(11) Experimentsl explorstion of the light intengity on 8 plsne surface

We used sheets of white and uniform paper and took intensity crose=
gections in various locations and directions. We found the following
results:

1) The most important facter

is ,the apngular dependance of the Lamp

lamp radiation. Instead of a conti=- L i:)i

nuous decreasge of the intensity from JEH:1M“EHE

H away along WM (figure 2 ), we get : Eh h*mh
a maximum at C where the axis of the ﬁ E 'g

lamp intersects the plane of the sheet. figure 2
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2) Extreme values of the gradient are at points where the cosB

2
effect is maximum and contribute to the gradient with the v

same sign as the angular dependance of the lamp. They are of the

order of:
10 vidlog=units [/ cm

~ Defocussing

Beceuse of defocussing the inten-

a) T
|
gity profiles acrosa a perfect edge i h
L
(fipure 2 &) will lock as im 3b.
b ie the ceavelutien of a step and b

!
a circle (see figure 5 toa). :h
We will evaluate the extent of ab 4 b
figure 3
for usual deviations from perfect
focus plane of
) object perfect focus
aperture g o e — = —
pogtore_________s_____ _eszzdT 3
#
| p
-El .
. T
i 1
i Ll
1 X
o

figure &

Let us suppose an edge normal to the sheet of paper in 0. Light rays
which enter the aperture amnd issue from points on the clrele of diametcer

0f (circle of confusion) converge toward the image of B (respectively

Oz and A).
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Light ravs apparently issued from any point P in the plane of
best focus, converge after crossing the optical system, to & point
image of Po If P is between & and By the light rays will come from
both sidea of the edge. If P is outside AB, its image will be the
point of coovergence of light rays coming from the same side of the

edge.

Thus the width of transition ig the width of the image of

AR = 5 through the system. We have:

_ d
:T- ms-d"ﬂ'?

a8 being the diameter of the aperture and ¥ the relative error in

position with respect to perfect focus.

If 8" is the distance aperture-image for a distance = aperture-
abject;

¥ =

1+1 1 f: focal distance
5 8 £

!
and the corresponding ratio image-sizefobject-size is g' . Thus Er

&
Image of E ig: ! ]
o= 2ap

5

As &8 1s relatively large, the image of J.ia practically in the
focal plane and £ a 8'. Thus:
S’ 4 an
5
)
We can evaluate an upper limit of J_ + The vidissector characteristics

are:
£ = 10"

a = from 2" down.

We will focus at worst to 27 at 3 feet. Thua:
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‘L(lo 2. 1 - B mm
: 3¢ 34)

The diameter of the photocathode is 3". The ratio of the maximal

width of a line to the photocathode diameter is:

f =5

I
The resolution of the photocathode being about 1004 pnin:a,ﬁd will

be at most 11 grid-points.

With B. Horn focussing program (B. Horm 1968), focus cam be dome

to lem at 3 feet. Thus ? becomes

L
?‘23

'
and B = 3 mm or 4 grid-points.
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5 Results, Characteristic aspects of edges.

We found mainly 3 different shapes of crogs-gections normal Eo

edges:
(i) Steps (figure ba). ——I—_
(ii) Boofs (figure Bb). On each side of the edge the profiles have

different constant slopes. Usually a small effect. ..--""‘.“H""--.,_

(iii) Edge-effects {(figure 7). On the edge is & small bump of the in-

tensity surface. FAY

These three characters may be combined as in figure E.
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EDGE- EFFECT
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figure 7

EDGE .

COMBINATION OF A F ANDY STEF EFFECT

figurie 8
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SOME GENEBAL CONSIDERATIONS ON DETECTION PROCEDURES

The number of possible schemes for boundsry detection is wery
large. However they all have in common that noise discrimination is
ohtained,in part, by integrating some function of the light inten=
sities over some subset of the plane, (a one~dimensicnal (segment)

or two-dimensional {rectangle or circle) neighborhood).

Around each point of the plene ia centered suwch a neighbor-
hncdﬂ&; the intensity st any peint P ufﬁﬁ:an be writtem as the sum
of a pure signsl 5(P) and & nocise H(F). If we then apply a trans-
form T to the intensity surface, noise discrimination will occur
under the assumption that:

j [I E(F) + EEP)] tends toward J& TE&I‘.?}]
when I:l'ffﬂreﬂ (or length) nftﬂﬁ’ tends to infinity; f.e. the integral
of the transform of the combined signal tends toward the integral

of the transferm of the pure signal.

This is true for the transformations we have considered under
the conditions that the noise at -every point is Gausslan, has mean
gero and a constant standard deviation; and provided that noise and

signal are uncorrelated.

The transform must be such that the integral reflects the pre=
sence of a discontinuity of the pure sipgnal within the domain of

integration Jﬁ% ; & digcontinuity characteristic of rectilinear edges.
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The transform can be linear or mon=limesr in Iintensity. In the
rest of the thesis we will examine two methods; one linear and one
strongly nen=-linear. We adopted the latter. It uses cutoffs on the
result of processing of the intensity surface by some differential
operator; consequently the original brightness surface is transformed
inte 8 3=level surface, a drastic reduction of the original informa=
tion. As a result, it camnot be optimally sensitive and linear
predicates behave better in this respect. But it has one important
advantage, namely:

Contribution of surface defects to the integral over a

a basic neighborhood is according to their gxtent not

their amplitude. This gives te the methed a good discri-

mination against structural noise.
In linear methods, surface defects bias the computation proportionally
to their extent and amplitude, which iz often very large. This is
particularly unfit for a line=verifier system where hipgh sensitivity
pust be obtained by integration over a relatively large neighborhood;
thus the number of points in the plane whose surrounding neighborhood
includes the defect is large and the error is propagated far away
from the defect itself. We have kept here the analysis of a linear
method, because it sheds light on the properties of real edges and

gives some idea of the theoretical sensitivity limits.

Up to now we have been speaking of the local part of the proce=
dure. Detection methods will thenm differ by:

(1) What the local stage returns for informatiom.



24

{ii) How this local information is put together to reach a

global answer to the detection question,; i.e. the global set of lines.

The local processing may return likely "edge-points". Then, st the
next stage; we will lock for an accumulation of edge-points slong some

direction.

Or it may return "edge-vectors", i.e. vectors tangent to the edges.

Then the vectors will string according to collimearity.

Or the information carried alomg to the global process may be
still more detailed; for example the edge-vectors may be accompanied
by informaticn about the type and amplitude of the discontinuity they
reveal. We will then string together only wectors of the same type

and amplitude.

We have listed these methods im an order corresponding to an
increased neise filtration by the local-to=global process. The amount
of noise which can then be allowed to pass through the first noise
filtering, (the local predicate) is correspondingly greater, i.e.
fainter edges can pass through and sensitivity improves. But the neces-

sary amount of work increases.

The method we have opted for in the line-verifier returns from
the local stage with an edge=vector accompanied by the type snd the
"gign" of the discontimuity, the sign being defined according to the

following:
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Poaitive Megative
Step ]
Roof hﬁ%ﬁ“‘ﬁmhhf,af”’adﬂﬂ ‘Hrﬂj,ﬂf*"""‘“=aﬁ_H‘H‘
Edge-effect A}

\

It did not seem meaningful here to introduce several levels of amplitude

because we are looking only for very small signals anyway.

With the following chapter we will start examining some Llinear
transforms; we will flrst see how they act on one dimension, f.e.
along a profile normal to the edge. Then we will briefly describe a
global method which we tried and how it failed. The last chapter

will be devoted to the non=linear method.
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LINEAR DETECTION PROCEDURES

1l One-dimengional lines )

1.l Function F1. Fipst differences integrated

The most usual intensity profile across an edge being roughly

a step, let us consider the following fumction, Fl:
At each point of the profile, we compute the difference
between the average intensity after and before the point;

both averages are taken over a given length 24 (24 points).

Let L{X) be :ha intensity profile; LX)
Fl{X)= _:L_ ‘E [L“l;l-'-:'— LLIA]] .
ll"

This amounts to taking the first

differences with an interval 24:

Dl (X)
a8

pL(X) = L{X+ &) - L{X-8] < s
and averaging them over 2 & ;

£ Prixei) s L I [Lixeari)-t(xa-i]

(LT (g

F1(X) & A
= F1 (X1 * ’
Figure 9 shows L, Dl and F1 for an h
ideal noiseless step.
figure 9

We will now discuss the sensitivity of detection on a single

intensity profile.
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(1) Sengitivity limit imposed by rapdom poise

Let us consider a flat intensity distribution with & random
Gaussian noise superimposed, of standard deviation AL.

Fl, linear function of 44 independant variables is normally distributed

with average 0 and standerd deviation;

F1. o rL
SF1= 13 fL= =

A step b which we can detect must be such that:

the value of Fl on an edge with step h}}s Fl, the noise.

Thiig ¢

(1) 3 iL
a

(ii) Sensitivity imposed bv svstematic effects

a) Constant slow gradient

In order to discriminate an edge from a conmstant slow slope,
the value of Fl1 on an edge muat be larger thanm its wvalue for the
maximel glow slopes encountered.

Let @ he the alope. Thent

Fi-2ae
Bl
& step h can be safely detected only if: 9 A i 3 A
(2) h> 24a figure 10

b) Conseguent optimal wvalue of &

The maximal values of @ encountered are of the order of 10 v.u./cm.
To improve the sensitivity 4 should be increased according to (1)
and decreaged aceording te (2). Thus the optimal wvalue occure for:

g AaAx = --I—I-_—'

Ja
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AYe. 5L

3o

At a distance of 3 feet, 1 cm is Imaped into 40 grid-points, and with

a noise EL = 1.2 v.u. ;

1a optimal = & points
With the normal distribution assumption, if we then put a cutoff on
F1 at 2.6 times EFI, i.e. if we predicate:
there is an edge ¢ F1 > 2.6 JF1
we will reduce the probability of grror in the sbgence of an edse
to 1%, Detection will be successful at 509, for an edge h yielding

a value of Fl equal to the cutoff, i.e.:

ho= 2.6 2L
a
h = 1.6 v.u.
c) Defocussing
L{X}
Let us approximate the smeared intensity h
prafile by atraight lines as shown in < 7 a
figure 11 . Letd be the width of the edge.
DL (X)
is we have geen ) may currently be of e
the order of & points. For 24= 4, -t : —a
F1{X) will have a peak value of h/2 N
FL(X
instead of h. If we use the same (%)
a hia
cutoff on Fl as above, Eﬂfﬂ detection
will oecur only for & step:
figure 11

h = 31-2 W lls
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The sensitivity is clearly unsatisfactory, and whatever the glebgl
decision procedure, it cannot be conspicucusly improved because of the

presence of constant gradients on planes.

One is therefore lead to think of criteria such as: there must be
a local maximum of large amplitude of the function Fl on the considered
profile. This amounts to considering differential operators of higher
order, using second and thied differences; these are the transforms

which we will now congider.

1.2 Function F3

L{X)

Let L{X) be an intensity profile and:

- -

D2(X} = =2L(X) # L{X+d) + L(X -4)

Fa'
FI(X) = ; im{:m} - E}E{}L—ij

1= is

b2 is the second differemces with

an interval 4. F3 iz the difference
between the mean of D2 (X} over M
points after X and over A points

before X.

Figure 12 shows DZ(X) and F3(X)

for an 1dealized step~type edge. figure 12
Dur reason for introducing F3 and not simply taking a function which
averages D2 over an intervel is that we prefer to deal with a signal

which is large rather than zerc on the edge.
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(i) and .

With random noise, D2 has mean zero and variance:
(i2)? = e + 1l s wl

iz = & JL

EFj- :E_ﬂ. ?EéL: 2\E‘EL

Fa

F3 on the edge equals Zh.

Therefore a reliably detectable step h must verify:

2h Fr EE TL

LS E L
(i) Systematic effects

a) F3 is obviously zero for constant gradients. F3 is zero too for
any intensity curve which may be approximated by a parabola. So that
the angular dependance of the light source which is approximately

parabolic, gives no contribution.

b) The effect of defocussing depends on the relative values of the
width E of the line and of 4, The limitation on A4 being much less tight
because we dont suffer from conatant gradients, we can agsume that

2A 8 and that defocuseing does not affect us.

(iii) Choice of A

The greater A the better the sensitivity. Our limitacion will then
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come from:
a) The physical size of the object
b} The light intensity distribution on a plane has to be

possibly approximated by a second degree polynomial.

Mow to compute gpng value of F3 at a poimnt X, we need 4A points, 24 on
each side of XK. Thus 44 must not exceed, say 1/5 of the side of a
current cube. The side of a current cube being about 1/5 of the scene
we muat have:

G < i%g—u = 40 points

optimal = 10 points

Then, if we put a cutoff on F3 corresponding to 2.63F3, we guarantee
an erroer = 1% on a flat distribution, and the corresponding step h,

for which detection will occur with a probability of quist

h*E.EJ%EL

h = 0.53 v.u.

1.3 Function F2

L{X)

When the edge dees not appear as a step,

but as an edge=effect or a roof, the function

D2 (X)

LN 3
F3 is not effective. We must instead use ""a.., | -

something like the integral of the second P2 (X)

differences, which expresses the radius of _-."""'---...li'.---"""_

curvature. Let: figure 13

D2 (X) = =2L{X) 4+ L{X+4) + L{x=a)
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wih
D2(x) _ L. 21:2{1:“}
B A irna

FZ ig the average of the gecond differences over 2 4. Figure shows

the resulting curve for & gymmetric roof sith slopes & and =-3.

Expectation of F2 for random noise

With pure random nolse, F2 has mean zero and standard deviation:

= A P D2 - _E_E;._d
32 = flzz—- ve Via
F2 = \IE_'EL

When dealing with an edge-effect, /A should be of the order of 3 points.

With a roof, something arcund 10 points is a reascnable walue for 4.

In the case of an edge-effect, the width of the bump is of the
order of 3 to 10 points, under current conditions; by a one-dimensicnal
processing of a cross-section, we will discriminate against irregula-
rities less than 3 points wide; therefore we will keep mogt structure
defects, which are not distinguishable from an edge-effect. Qur global
decision procedure must then rely essentially on the comparison of

piq;llltl cross-sections.
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2 4 gimple linea o

We tried these cne-dimensicnal linear transforms within a comple=

tely linear decision scheme.

Ta be concrete we will assume that we are dealing with an edge
of the step type, and that we apply to the intensity cross-sections

the function F3.

B2
2d%
¥e want to know whether an edge lies
—
between Pl ¥ dx and P2 ¥ dx. We consider
15 eguidistant profiles between Pl and P2 Fl
and sum the walues of F3 along a number figure 14

- e T
of lines joining a point of P1 ¥ dx to s point of P2 ¥ dx.
We look for the largest of those sums and decide in faver of an edge

when it s greater than gsome prefixed threshold.
An evaluation of the sensitivity limit:

The standard deviation on a sum § of 15 independant walues

af F3 is:
55 = {15 JF3 = 2.0 v.u.

A eutoff at 2.6 55 as we wsually do gives for the step detectable at

‘ -
50 7 1522 h = 2.648

h=0.15% v.u.




This was programmed and tried. It was wery good st finding wvery
faint edges but the rate of errors on faces was very large, due to

surface defects.

34
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A NON-LINEAR DETECTION PROCEDURE

As usual, we will describe the methed by distinguishing two stages

of processing, the local and the global.

1) Ihe lecal predicate

We make a local decision based not on a gingle profile, but on a
small number of parrallel adjacent profiles. In other words, we consider
a narrow ghrip perpendicular to the expected direction of the edge, and
the local decision process returns possible edge-segments which cross it
almost vertically {for brevity we will always say vertical for the expec=
ted direction of the edge although it canm be any direction along which

we choose to look).

We do this by computing a certain function
F of the intensities within a basic edge
neighborhood which is a small elon-
basic integragion

gated rectangle which we glide along W_&' atrip

the strip. Large local maxima of this neighborh

function F indicate possible locations
of almost vertical edge-sepments.

figure 15

For a step, the function F is

defined as follows:
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we compute the second differences along every horizontal profile in the
strip with an interval A. Figure 16 recalls the shape of the curves. Thus,

if we put a two-sided cutoff on the

profile
gecond differences (and assuming the
step high enough); the distribution
gecond
of cutoff points shows two A-points differences
_-—i.-..__.*;__ﬂ'..
wide adjacent rectangles, one with
all values below the negative cutoff,
& 4&+'ﬂ
and the other with all wvalueeg above == mm——
B add bbb add | ——==—pogedga
poggORgd +h bk | = m - LR -1 N
the pogitive cutoff (figure 16). R S e bt e 3
RN R L R E T N e - SR L)
FER LR L LR E TN R Bdod 8 s g
The function F t iz then coppu-
step Eigure 16

ted over & neighborheod 24, and equals the difference between:
B = (# '"positive' points - # 'negative’ points) in the right half of

the neighborhood and:

L= (#'positive' points - # 'negative' points) in the lgft half.

= om s =

This function showe a sharp

extremum on the edge(figure 17).

The function F has the
step

follow ing advan l,'..i.gg - H

{1} The use of a two-dimensional

basis neighberheod increases the
poseible number of points entering
in its computation, thus improving

the noise discrimination.

figure 17
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{11) It accounts for the directional property of the edge, i.e. the

repetition of some accident in the 'vertical' direction.

{iii) The weight of a surface defect is egual to the number of points
it covers, i.e. taxes us minimally.

Ope difficulty iz the "winga" shape of Fatap; the relevant extremum
is framed by two "parasite' extrema of amplitude half that at the edge.
Thus some precaution must be taken to eliminate the 'satellites'. Dur
first idea was to compute the function § which is the gug of the two

terms invelved in computing F , L.e. 8 is:

step

{ # positive pointe = # negative peints) in the whole basis

neighborhood.

SE=1L+FR (notation ag in the definitiom of Fstepn

§ is plotted below Fatep: as it is zero on the edge but large on the

satellites, it offers a peossibility of discrimination.

A5 we will see, in the case of the line=verifier; this proved an
unsatisfactory solution and had to be completed by some measure at the

global level.

Remarks: 1) The height of the strip should be big enough to allow
the 'directional property' of the edge to play its role: but small
enough, so that for the given angular uncertainty of the edge which we

allow, the horizontal coordinate of the edge varies negligibly while
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erogsing the strip (i.e. at most 1 grid=point).

2) In actuality, when computing Fa en' 7E geparate

tep
left and right half of the neighborheod by a narrow vertical corridor, 3 or

4 points wide, to allow for imperfect focus.

3) The second differences are in fact the folle-

wing function: i
D2 (X) = L{X) = L{¥X+a) - L{E+A+1) + L{EH2A+1)

{.e. instead of taking twice the center value sg Iin the usuval second
differences D?, we add the values at two nearby points. Then;

(§02)? = a(in)’?
TDEJ- 2L instead of JEEL for JD2.

i
D2 is less nolsy.

1)} Statistical properties of the local function Fatﬁn

We define the probability of lpcal detection as the probability that

the wvalue of Fa

]

gep °F 2 given edge be greater than some prefixed threshold

. . As we will see, the additional condition which we have introduced
atep

to eliminate the satellite extrema of Fit keeps the actual probability

ep
of local detection equal to the one in this definition.

We will compute “detection characteristic curves" which represent the
probability of local detection as a function of the signal, considering
Caugsian poise only. This approximationm will give us a starting point

for fixing the parameters.
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The parameters which bear on the probabilities of detection are as
follows: the size of the basic rectangular neighborhood, the cutoff
value for the second differemces, and the threshold for the fumction
Fatep* The computations constitute a simple combinaterial problem
(see Appendix II) whose results follow:

1} Figure 18 (next page) shows the detection characteristics for various
Bizea of the neighborhood, expressed as the number of grid-points it

contains.

To allow comparison, the same cutoff on the second differences
hag been used (i.e. zerc) for all the curves , and the thresheld on
Fstep has been fixed to a value giving a probability of error of 1%
in the absence of an edge (signal = 0). (When made possible by the
available parameters, this is the quantity we will keep constant through
all characteristic curves; as it is more relevant for performance compa=-

rizons). The signal is measured in number of light intensity standard

deviations.

The sensitivity of course improves with the number N of grid-points.
A measure of the sensitivity is the asignal for which detection is Sﬂjﬂ
successful. Figure 19 plots this quantity as a function of N; sensitivity

improves approximately as [H.

Geometric conglderactions limit the size of the neighborhood. For the
line=verifier, 70 grid-points, a rectangle of length 14 and height 5,

geemed an adequate choice.
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DETECTION CHARACTERISTIC CURVES FOE VARIOUS SIZES

probability _ OF THE BASIC NEIGHBORHOOD
[ 1.0

gignal in
number of &L
I

= 1
0.4 0.8 1.2 1.6 1.8 2.0

figure 1B



1.0 )
SENSITIVITY AS A FUNCTION OF THE
50% detection OH.
signal NUMBER OF CRID-POINTS IN THE HEIGHEORHOOD
0.4
0.8
&0 L1i] B0 70 T
figure 1%
013 1
81gnd SENSITIVITY AS A FUNCTION OF THE CUTOFF
corpesponding
to 50% ON THE SECOND DIFFERENCES
detection
0.7

_——

cutoff on the 3™

i differences in number of §L
HE 1.0 2.0

figure 20
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All numerical results,; in the remaining of the thesis, are baged

on & basic neighberheod containing 70 grid-points.

2} Hext, we wvary the cutoff on the second differences. The sensitivity,
defined in exactly the same manner as above, shows a flat extremum for
a cutoff around 1.2 standard deviation (figure 20 ). WithjL = 1.2 v.u.,
the best we can approach this cuteff, with the digitization of the inten=

gities, is by uging a thresghold of 1 v.u..

The resulting detection characteristic for the optimal choice of
parameters is plotted in figure + it has the usual lﬂierrar for a
gero-slgnal and iﬂx detection occcurs for a step:

h = 3.56 v.u.

This fixes the threshold on F to 8

gtep F La.

stap =

I1) Effects of the introduction of a condition on the functien B

The function 5 defined on page 37 can be used to discriminate the

center extremum of Fa 8 from its satellites.

te

Both at the edge and at the satellites, we computed the probabilities

be greater than © and 5 be gmaller than some threshold

that F
B

6g-

tep FEtEp

Figure 21 plots those probabilities as a function of the signal, for



- 1.1

H _____...-l-"-—--
L
Y (18
&
- 0.8 i
L
DETECTION CHARACTERISTICS
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L : i i 1 1
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figure Z1
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various values of 'BE' f EF hes been fitted in each case to get 1$L of

error for a zero-signal).

For B, = 10 , the decrease in sensitivity becomes too great for

B

a line-verifier. Down to QE = 14, this decrease is negligible. But then,
the probability of error by detection of the satellites has an upper bound

of 0.2, which is large.

Monetheless we used a condition on 5, as it takes mo time to compute
and it does perform discrimination for a whole range of signals, i.e.

thoge }2.5 V.ll. .

Remark: more thorough investigation of this condition on 5 were carried
out. It seemed to show that no detection system, even with different
gensitivity requirements, could use it alone. Reducing the error enocugh
involves reducing the probability of detection too much. Another alter-
native which we would consider, if we were to build a géneral purpose
detection system, is : look for the zero-crossings of the functiom S

where L and R are both greater than some threshold.
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[E%]
T
i
(1=
=
-
e

/idge

hd

Between the two points given as

posgible extremities of an edge, 25

intensity profiles are taken; grouped

by bands of 5 (figure 22). The functions

~J{ ]
-"""llh.....“..

FEtEp and § are computed on each band

and the cutoff points are stored with

=l

the gign of F recorded.

h“ﬁ
-

-l

The next step is to find a good vertical

/

F |
1
alignment of cutoff points with the game ;' F?

sign of Fatﬂp' Hote that the cutoff figure 22
points are extrema of Fatep along a band, so that we are left with very
few points at this stage - from 1 to & per band depending on the state

of the surface= ; "wertical linking" can then be very fast; usually

the number of possible lines is just one, and the localization is precise

(see figure 23 which shows a typical distribution of cutoff points).

The search for an approximate vertical alignment is done as follows:
we consider in turn various directions within the angular uncertaimty
of the edge. The cutoff pointe are projected along each direction, until
at least & of them, each on a different band, yield approximately the

game direction.
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Let us evaluate an upper bound of the probability that an edge
following the satellite extrema be detected. The probability for =
parasite extremal peint onm a band to appear is, a5 we saw, at most 0.2
(with .BE = l&). Assume that about 3 consecutive points on a band
have that same probability of passing the cutoffs, Then the global

probability of detection of the 'wrong' line is:

z.mxa .0.2% = 0,024

At the global stage, and with the surface imperfections, this is too
large. 50 we do the following; note that lines along parasite extrema
follow points where ratep has a sign opposite to the sign on the edge.

At the global stage, we process separately the points where F 8

i
step
positive and the points where it ia negative; when gach processing

yvields ws linmes, we compute, for each line, the sum of the walusa

of FttEp along it. For the real edge, this sum is largest (actually

&7

it is about twice the others). This is a wvery reliable statistic because

it is global. This sdditional work however is necessary enly when

discrimination by a condition on 5 has failed.

In order to evaluate the performance of the glebal procedure =
with Gaugsian noige only= we used simulation. We generated atepa of
various amplitude with a Gaussian noise superimpesed. For each given
amplitude, 1000 such edges were generated and processed by the line=

verifier equipped with the get of eoptimal parameters, and the number

of successes recorded. We thus obtained an appreximation te the global



=

probability
1.0

GLOBAL DETECTION
CHARACTERISTIC

K =70

EF=.1-&

95=. i5s

| - i A i
0 0.4 0.8 - 1.2 - 1.6 2.0
signal in number of light

intensity standard-deviations

figure 24

nd .
cutaff on 2 differences=1l w.u.
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detection characteriscic (figure2& ), and the following reault:

With a probability of error of I].El"..-:l on a £lat
digtribution, EDE‘; detection occuras for a step

amplitude of
1 w.u.

BRemark: to improve localization, whenever we find &4 points approximately
vertically aligned we do not stop, using them to define the line, but
we pick up all points near enough to this first approximation of the
edge, and try to £it a line to them; we then throw out every point

too remote fron this second definition of the line and check wether

we are left with enough points i.e. at least &4, all on different bands.

3) Boofs
profile
The overall procedure is the same
A e
except for a different function F. Indeed o s s e - - -
econd
figure 25 shows a profile and the corres- _\//’r,—
differences
ponding second differences. A cutcff om
the second differences will give, in an i :: “““““““““ oeo
------ —-_———— =G e
L - T e ——— o a o
area containing a roof, a single vertical P P
B Eemm === - = == = = -]
strip of all positive or all negactive points.

figure 25
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80 we replace F by F

step ¢ the difference between the number of posi-

roof
tive points and the number of negative polinte within a rectangular neigh-
borhood of properly chosen size. The local predicate will simply be based

on large extrema of F .
roof

If the second differences are computed with an interval 4 ; they
are non=-zero on &8 width 2 A, for an idealized roof. We chose a rectan=

gular neighborhood of height 5 and width 2(24) =4 a .
3 k)

The definition of a proper cutoff on Frﬂn[ can be done as follows:
a flat noisy intensity distribution is generated, with a given standard
deviation. Using the same cutoff of 1 v.u. on the gecond differences as
we did for a step, we applied the whole line=verification process for

roofe, with a given cutoff on Fra . The operation is repeated a great

of
number of times (~5000) and the number of wrong decisions (ves) recorded.
This is repeated for several cutoffs on thgf until one 1s found which

gives us at most 1 error in & 1000,

In fact,; this procedure has a limited range of efficiency. Indeed
the height of the peak of the second differences varies, for a Aof B
(which for geometrical reasons is about maximal) from average values
of 0.6 v.u. to maximals of 2 v.u. ; clearly thereis & whole range of
roofs which we would not see. In fact, detection for those small walues
of the cupvature is wery difficult, because there are some flat surfaces

on which the curvature of the intensity surface is as large as on an edge,
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(for example the translucent plastie cubes), so that there ig no way nf.
digtingulighing the two. Detection then should be made by another type

of analysis; i.e. the analysis of ghape from shading of B.Horn (Horn 1970}
will not now handle this but could reasonably be expected to extend to

this problem.

4) Edge-effects

The procedure is the same as for roofs, with a different size of
basic rectangular neighborhood. Figure 26 shows the distribution of the
gecond differences cutoff points for a typical edge-effect; the cutoffs
on the second differences are respectively 2, 3 and & v.u., for a,b,c.

This suggests a cutoff of 3 and & neighborhood of width 4.

Definition of a cutoff on F is determined as in the case of
effect

roofs: by global simulation, the criterion being to make low enocugh

the probability of error on a flat distribution.
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5) iments with =

To test the line-verifier , we started with cubes having relatively
good surfaces (scene l: figure 27 ), i.e. gquite uniform and with little

reflectivity.

First we looked for a proper value of the threshold on F by trying
the verifier on faces, starting with the value of EF computed with
Gaussian noige. A expected, we had to raise Eﬁ’ but only from L6 =~che '
computed value- to 18. Then, out of about 30 tries, no failure was recor-

ded.

We then tried the verifier on the edges, modifying the lighting in order
to get a wide range of different conditions. Failures occurred only by
carefully adjusting the intengity on both sides of the edge, using the
information returmed by the verifier as to which side was darker; we
ceuld net tell otherwise as typically edges were detected such that, on
their profiles as displayed on the scope, nothing was vieible by eye.
Actually the range of positions of a cube where failures occur is very
gmall (translation of 1 mm in 50 mm) end we could only find a pogition
where failures occurred only half of the time. The localization was good
and it was insensitive to displacements of the edge from its expected
poelition within the ranges which we expected; i.e.the extremities of the

edge can be within #* 10 points from the expected.

Very dim reflecticns of an edge against another surface were detected
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as edges.

Te test the limits of functioning of the verifier, we set up two
other scenes with very bad objects (scenes 2 and 3; figure 28 and 29).
When keeping the same constants as in scene 1; we made errors most
of the time on plane surfaces. Then, instead of raising BF, which
would have diminighed our sensitivity, we used 10 bands instead of 5,
and required at least B of them to carry & cutecff point. Then we could
record no f£allures on flat surfacea, although some of them practicsally
ghowed texture; end=grain and wood=lines (note that the procedure ignores
every line less than 3 peoints wide). The sensitivity on edges was quite

similar to that described for scene 1.

Bounded edges as in scene 2 were successfully detected. Trying the
verifier acrogs an actual edge does not cause errors;: i.e. the answer
iz no. Roofs and edge-effects are detected ss such (roofs sppear essen-

tially with the translucent plastic cubes).

We think that the line=verifier should sdapt its constants depen=
ding on data made available by the higher level procedures; like the
gpace probably awvailable for taking cross-sections without overlapping
other edges, corners etc...; one could possibly use trapezoidal neighbor-
hoods when one looks near corners. Data about the state of the surfaces
also could be used to £ix the best values of the parameters for each

particular verificatiom.

The computation time ie sbout 1/2 second, (the program is in MIDAS).
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CONCLUSTON

We have proposed a boundary detection method which proved
valuable for line verification. Its noise discrimination is the
result of three principles; i.e. it uses gummation of values of
a8 nop=linear function function of the intensities, and this function

accounts for the geometry of edges.

It can detect an intensity step of 1 v.u. = 0.7 with 50%
success. There are theoretically certain types of edges for which
it fails {certain roofs and mixed-type edges) but thelr occcurrence is

rare and we were not able to find one in our experiments.

The most interesting property of the verifier is its very good
filtering of surface irregularities, as shown by the success of
experiments with practically textured surfaces. The speed of the

verifier is satisfactory; most of the time is spent in scanning.

On defect is that it will have trouble distinguishing parallel
edges legs than 16 grid-peints apart {(twice the interval for the
second differences) which in usual conditions is 1.6J of the scene.
The trouble thus incurred is linked to the relatively low resclutiomn
aof the vidissector and the fact that one cannot escape a trade-off

between senaitivity and observed space.
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The method could certsinly be implemented as a general purpose
line-finder, trading excellent sensitivity for time economy by using
8 looser grid amd msking summation over smaller neighborhoods. It
would of course retain its ineseneitivity to surface defects which is

go essential for a practical edge=detector.



APPENDIX I

Gradient at image for constant intensity at object

3 objegt plane

plane "1 o
ubagﬁfﬂ

aperture

figure 30
The reflected intensity at the surface of the object is !, « Let

—
M be a point on the object and dﬁﬁ a surface element on the object
surrounding M; then :LFI;I ig the light reflected and 1f iii ig the

=
image of dA_
2
FE;]::(EL) ]dﬂﬂ| di: distance aperture~image
d
o

dnr diatance aperture-object

If ;; is the vector joining M to the center of the aperture, the light

—_
entering the aperture and issuing from the ocbject elemsnt d&n is:

SN ATY S Ef

solid angle defined by M and

-
the aperture Aa'

The image intensity is thus:
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Using the thin lens relation;

1o+ 1.1
di du £
we get:
di f
d d -f
o o
Thue ; .j d -f 2 i
R R - N— 48 __ &8
AR ') | S = 3
2]

—

Let dx be an infinitesimal vector on the object surface; to a second
crder approximation, we will compute the logarithmic intensity variation

at the image, ETL, for & digplacement dx of the object point.

i

—r el —p
EE - 2 §@ -f) +5{aﬂ cr) L 3ﬂ: ]
J d -f E .T ]?'[
A o & a &
We will calculate the separate terms:
— —r — — — —+
W& 7 D MR TR M T betng  vate-
== i — g — ——
A « T A r n . Tr
& L] a a 4 a

vector norsal to the aperture.

j_tll = E Jr o= {ra = dx) = ,JI{IE}
2 — 2.1/2 —~2 1/2
= '[ta - 2 T, d= 4+ d=") {Ia )
£ . odx ax |2
- . _=& -




Given the orientaticn of ﬁ; and i-: (Sae figure 1, we have:

al

d =-? . F- ﬂt'l.d,.
o | a
S - £)-54 =7, . dx
Thus; ﬂ,, 2 o ;'-."'“._; N ro.dx 4 id:]z
3, d, -{ T AT
Now: 1o 1 ('I. + :l_..,_}
d“_i dl E
and if ¥ is the distance from the optical axia to M;
;‘;!d-; :-;_-.E: - .F-:\.":i-"‘: .ﬁnd]s?ﬂ-;:l}
AP E T P R
IR - D
d, -
Thus :
—a - —i —_ i -.1
5'55:" 2w, dx 1.4.-5) + L 3('- {d,ﬂl.i-mjuih; + dx) i
¥ i 5 ICEEY
—_ = — i
:,.?n__..:j_-ﬁx.ﬂ 4_..3'_l"1
d.* 42 I 47
35'2 dx .(,E'E;;_l: +-j—dx)
A *
L (=]

il

The first order term inm 2= cancels. If we write;

3. 5,38
J; J 5
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To a first order approximation, i—;-= oo
Thus %L = _"S_:I:" and gradients at the image and at the object
o Jd

[
are the same.

We obtain a typical magnitude of the gradient at the image for a cons-

tant Intensity at the object, by taking:

laxl= 1" £ = 10"

50"

|%l= 3 d

Roughly;

S 1 25
J; 2500

!
o
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APPENDIX II
omputat etection characterigtic curw
1} Consider the signal of figure 31. d (X}

We sample K peints where the amplitude is T3 Iq_- l

at each such point X, d{X) is normslly

figure 31
distributed with mean T and variance 1.

We put a two-sided cutoff at ﬁd on those
F. values; let
n, be the number of points where d(X)> Ed
n_ the number of points where d(X)< -Ed
We will evaluate

'T!‘T{H= probability that(n, - n) =k

normal curve of error
The tebles of the normal distribu-

tion give us the probabilities p; (resp. p;}
that at & given point X where the mean is ¥,
d(X} be > @, (resp. < - 8 ). (figure 32). ol

Let figure 32
P:— = probability that -Hd__{; di”]‘{:’rad

-

= 1= (p, + P )

T

We will have (K - n

. = n_) points where

The probability Tnjk} will be a sum of trinomial terms.



KK K - " K =(n.n)
P B [0 B G TS B
T nzk M T n- T rT
with n_=n, " k
2) Now consider D2(X) for a step.
We sample K points right of C where
the signal is ¢, and K pointe left of C where it is =T.
D2 (X
Fo=lmy mn)gene ™ (™ fldiere
= k= kl b O
A c 1
and 8=k +k' 4l
figure 33
Then the prebability that
|1r|:u!r and s)« Bs at C is:
. ™ (k")
P-I:. - L.r T{k} "'t
kK
| k- k> B
Dkt k1< Bg

3) The computation of the similar probability at A (parasite extremum)
is given by the game formula except that in the right half the proba=

bilities are Tr‘ Instead of Trt'

PA = Z ™ (k) T'I‘r[k’J
'3
Ih= kI 386
lk+k'l< B

This was programmed with a little different organization in order to

keep the computation time from getting too large.
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