MASSACHUEETTS INSTTIUTE OF TECHMOLOGY
FROJECT MAC

Artificlal Intelllimence MAC-M=395
Meme, No, 180 March 1969

Parelrg Eey Word Grammars

William A. Martin

Eey word grammars are deflned f£o be the same as context free
grammars, except that a productlion may specify a string of arblitrary
gymools. These defipe lanpuages similar to those used in
the programs CARFS® and ELIZ4=. We show a method of implementing
the LR(k)} parsing alporithm for context free grammars which can be
modified sliphtly in order to parse key word grammars. Wien this is
done the algporithm can use mary of the techriques used in the ELIZA
parese. Therefore, the alporithm helps to show the relation between

the elassiecal parsers and key word pareers.



1. The LR(k) Parsing Scheme

We indicate the basic idea of the LR(k) parsing scheme by giving an

‘example. A formal description and digcussion of the method can be found in

E'.'nutha_

Consider the following context free grammar:
1 5§ -3¢

2 E—~E+ E

3 E~F*F
& E—~F
3 F—x
6 F~y

Fig. 1
The atring ®x # v 4+ x¥% lies in the language generated by this grammar.
We can parse this string with the LR(k) algorithm. This algorithm makes
one pass through the string from left to right. The parameter k refercs
v Che number of charvacters which the algorithm "looks shead™ at each
step. We will take k = 1. The complete parse of the string is shown in

Fig. 2.



depth of stack, u, =

(measured in
aymbol pairs)

This figure shows the successive stages of the push-dowmn-

3

-2-

1 2

o By -

[ 8%, ¢] ®| [x, ¥]

(& + E, #) [, +]

[CF*F, +]

[F.+l|F Lm *

[, +] ‘ [F * F, 41!
[y #]

M=, *] S

[Cys *] BM+

|s?'1['é?.T1| .

F!.E.- z.

parsing the string x * y + x#

9 4

S1 5

[F* F, +] Iy, +]]

| %, +] B

[y, +] -[F*F,+_]_|
o S 5a

[E ¥ E, #] [x, *]
|[CF * F, #1}  [[x, #]
-[-'Hl #*] 5‘5 _1
Cy, *] [F* F, #]
[F, #] [F, #]
[-xt #] sln _
v, #] [E + E, #]

=

gtack uged in

the parse. Each rectangle is named by the symbol 8 at its top left; the

guccessive stages of the stack are:

5o

Eﬂ ® sl
88y

8455, * 53



SHFEE* 53?5&

7
EEIFE;:: 535'55
EDH&

SDEE& + s?

® 8

ﬂﬂEEE + 3?

E{IEE-E + E?FEQ

2+
SpBSg * 5,E8,,

S[1"5511

5055111' 512

8

Let us see how the information inm the  successive rectangles, Ei’ and
corresponding stages of the Etﬂlﬂ:! are generated. Each Ei is a set of states
hprizontal
of the form [right side of a production, terminal character] with aAbar placed
fust before one character on the right side of the production. The terminal
character is the character which sust be the next input character if a re-
duction of the stack correaponding to the production whose right side is
given in the state is to be made. To form ED, we ssk what productions
could possibly lead to the first character of any input string. Since all
derivations of an acceptable input string must start with production 1,
5 = S# we start 5, With the state [S#, €], indicating that we are looking for
the astring S# followed by ne input character and indicating with the placement
¢f the - before the 5 that we have not yet found any of the characters of this
strimg. Now from the grammar we see that in order to f£ind the firast character
of this strung, 5, which is to be followed by a # we must find the string
E+ E followed by a # 80 we add the state [_E + E, #] to ED' Similarly, to find

an E followed by a + wa muat find either F * F (corresponding to productiom 3)



followed by & + or the string F {corresponding to production 4} Followed by
a +. This process of adding to EU all the states which we should ba looking
for as a consequence of the states already in 8, is called "computing the
closure of SD"' The complete clogure of SD is ghown im Fig. 2.

Mow that we have 5. we place it on the stack. We examine each state

a
in &, to see if we have found all of the specified characters in any of them.

0

We have not, so we add the first input character, x, to the stack. We then
compute 31 by placing in 51 every state in ED which has the ~ immediately to
the left of the characteryxywhich was just placed on the stack. We place the
" over the x to indicate that the x has been "found". By thus has two states
ﬁf,'*] and ﬁ;,-+]. Hext we compute the elosure of 51. 1t ig already closed.
We then place 51 on the stack. HNow we proceed as we did when we placed SU 0
the stack. We look to sea Iif anv states in Bl have all of the characters
found, and both of them do. Since the next input character is * wa ignore
the second state, [;; 4], and make the rveduction, ® — F, correspondimg to
the first. x is sald to be the current "handle". To make this reducticn
we remove x and 5, from the stack and replace them with F. Then we form Sy
as the closure of those states in El which have an F preceded by T, e
continue as above until the parse is completed with the generatiom of 512-

Hote that there are only & finite number of possible states and so
there are only a finite number of distinct 51- It is possible to compute

once and for all each S, which will occur in parsing any string which is

i
generated by a given grammar which can be parsed by this algorithm. Thus
one could set up an array which would give the action which the parser

should take for each combination of an 51 and with an input symbol.



The pargse iz then reduced to table look up and the mechanism iz very similar
to a précadence algorithm parse. However, if there are as many as 200 pro-
ducticens. This arrar could be wvery large {even if simplificatiors to remowve

redundant cases are made).

2. An Implementation of the LR(l) Parsing Scheme

We pow introduce anm alternative approach. The acrray approach summarizes
each state ﬂi in a8 single number. Howewver, 1f the next stace s wvery "similar"
to the last state then an acceptable altermative is to try to represent the
state by many numbers, only 2 few of which will change with each change of
gtate. The push-down-list is then used to save only those numbers which change
In implementing this approach we asgume that the depth of the stack can always
be specified as an entry of the array which defines the state. As we will see,
the state can then be defined by alloting entries in this array for each
combination of handle and character which can follow it in some parse. &
number of entries equal to the number of charactera im the handle would be
alloted for each such combination. However, in an attempt to simplify the
procedure without destroying its usefulness we will not keep this much informa=
tion., We will only keep a list of the characters which cannot follow the
right side of a given production im eny sentential form, then each right side
need only appear once in the array defining the state, instead of once for
each character which can follow it in some sentential form. Then we can
specify the array defining the state as containing one symbol for each symbol

in each production of the grammar to be parsed. For the grammar above the

array will have 17 entries.



Array entry 12 3 & 5 6 7 & 9% 10 11 12 13 G 15 1a 17
corresponding 5 # (5) E + E (8) F % F (E) F {E}{*} X (F) ¥ (F)
gymba 1

Fig. 3
Entries 1 and 2 corredpond te aymbols | and 2 on the right side of production
1. Entry 3 corresponds to the symbol on the left side of production 1. The
remaining entries correspond to the remaining productions in the same way.
The entries corresponding to the left side of & production are filled with a
pointer to a function which reduces the stack if that production is flound as
a "hamdle” (in the sense explained in section L) not followed by any of the
epecified characters. For example, entry 13 above says that the reduction
F—~ E should only be made if the next input character is not *. We call the
above array the state array. We alao set up & second array whose function is
to describe the entries in the atate array. This second array is called the
property array and its entries are in one-to-one correspondence with the
entrieas of the state arrav. If an entry in the state array corresponds to a
terminal, the corresponding entry in the property array is zero. If an entry
in the state array corresponds to a non~terminal on the right side of a pro-
ducgtion, the entry in the property array isg a negative number whose absolute
value is a poimter to & list of every entry in the state array which corres-
ponds to the first character on the right side of a production whose left side
iz this non-terminal. (This list is used to form closures efficiently.) If
an entry in the state array corresponds tqaﬂwpterminal which iz the left side
of a production, the corresponding entry in the property array is & pointer
to a list of those entries in the state array which correspond to an appear-

anceé of this non-terminal on the right side of some production. These entries



-7-

in the property array and the entries in the state array corresponding to the
left gide of a production are made once and for all and do not change during
a parae. The current state of the parse is kept in the entries of the atate
arrav corresponding to the symbols on the right sides of productlons and omn
the push-down=-stack. ‘

Initially the push-doswm-stack is empty and these state array entries are
all zero. We then change the state array to represent the state Eu ag follows.
Referring to Fig. 2 wa see that the stack has depth 1 {u = 1) after Eﬂ is
placed om it. During the parse the stack grows deeper and is then reduced,
but whenever 5 1s on the top of the stack, the stack has depth 1. Therefore,
ﬂﬂ can be interpreted as speclfying that we ars looking for the character S
in production 1, E in production 2, F ln productions 3 and &4, x in production
5 apd v in production &, when the stack is of depth 1. We thus set the state
array to indicate this by placing a 1 in the entries corresponding to these
characters. The array then has the form ﬁﬂ show in line 3 of Fig. &.

The stack is empty.

We now describe the procedure for going from state hu Lo state El. whiich
corresponds to the procedure for going from 8y o 5 in Fig. 2. Each input
character has associated with it a list of the entries In the state array
which eorrespond to that character. The current input character here, =, thus
has entry 14 associated with it. We them go to entry 14 and see if it con-
tains a 1, indicating that % 1s wanted at the current push-dowm-stack level,
which i 1. It is and so we advance to the next entry, 15, Checking the
corresponding entry in the property array we see that we should make the

reduction x = F. B&ince the handle is only one character long the push-down-stack



1 2 3 & 5 a8 7 & 9 10 1L 12 13 % 15 16 17
- (%)
S # (8) E + E (8) F * F (E)YF (E) x () v (F) depth, u

Tﬁﬂ: 1 0 1 0 0 1 0 0 1 1 1 1
= atack: ()
[gentertial form: = % y 4+ ¥
anput: M
I 0 1L o 0 1 2 0 1 1 L 2

stach: 00 0%
‘sentential form: F * y + x¥

Linput; e
,J:ij; 10 1 o 0 1 2 3 1 3 3 3
~stack: ¢| (o 93] (o 10}(1 M}{l 163 )
gentential form: F
input: ¥
’Is.ﬁ: 1 0 1 2 0 1 0 0 1 1 1 2
stacks: (| (o 5}[
sentential form: E 4 x#
nput: +
(ﬁ? 1 0 1 2 32 30 0 3 3 k! 3
stack: CLEo 53 €0 6dCl BY¢1 1231 1&)3(1 18
.Iéﬂntantial hb:n: lE =+ R@ ) ]11
input: =
Hll iz 1 0o 0 1 0 0 1 1 1 2

stack: i.'] (0 23}
sentential form: 5#
lnput: #
Fig. &4
Entries in the state array at the steps during the parase when a

new input character is examined,



deprh remaing L. The property list entrcy tells us that entries #, 10, and 12
corcesnondl to P CGhecking sntry 12 we see that it is | so we advance to entry
13. Here wo see that a reduction should be made if the next input character is
ot &, but ol i W,tﬁr we abandon this and check entry 10. Entry 10 is 0

&
indicatbing that LhagﬁF is nob needed. Finally we check entry 8. Entry 8 is
L g we advance to encry 9. We see from the property lisc that entrv 9 cor=
roaponds toe % terminals®, o we place a 2 in entry 9 lndicacing that we
need a % at depth 2. We save the old value of entry 9 on the push-down-stack,
te bhe restored when the atack {8 reduced back to depth 1. This brings us to
state A,

i

i a % which sends us to entry 9, entry % contaima a 2 and so we advance to

itm Fig. 4, which corresponds to SE in Fig. 2. The next input character

entry Ldo The corresponding entry in the property arvay tells us chat entry
L gorvesponds o a non-Cerminal, so we place a 3 in entry 10, saving the
provious contents on the push down list, we then obtain the lisc of entries
neaded to compure the ¢logure., These are 14 and 16; we go to 14 and 16 and
place & 2 in them, again saving the old contents. Since 14 and L& correspond
to terminals the c¢losure 1 complete. This brings us to state Aj ln Fig. &.

Proceeding in the way we parse the input string as shown in Fig. &.

3. key Word Crammars

We define a key word grammar to be the same as a4 context free grammar
except that the set of terminal characters is left unspecified and productions
may contain arbitrary strings of the unspecified terminal characters. Since
we can't list all of the terminal characters we let @ stand for any string of
gero or more terminal characters. A key word grammar is a set of productions

of the form AP - ll ee B where sach J'Li {s either an intermediate, a
B



=10=

terminal, or the swmbol o, and ﬁp ig an intermediate. The stringa genersated
by the grammar are thus patterns containing the syvmbol oo A string lies in
the language generated by the grammar 1f it can be made to match one of the

patterns generated by the grammar.

b Parsing Key Word Grammars

Obviously, key word grammars are as general as context free grammars and
a0 there will be keyword grammars which cannot be parsed with an algorithm
less powerful (in some sense) than a nop-deterministic push-dowvm automaton.
At the other end of the scale, since the strings, O, may contain any terminsl
characters the precedence relation = holds between every pair of strings of
terminal characters and so & precedence slgorithm may not be sufficient to
parge keyword Eramars .

We give here a variation of the LRE(l) algorithm which seems to have
enough power to parse interesting keyword grammara. IE the algorithm is too
glow in practice one might investigate a precedence algorithm. If it is not
powerful encugh we could expand it te LR(k).

The algorithm will not parse all keyword grammara. We therefore should
define a test which a grammar must pass which will guarantee that the grammar
can be parsed by the algorithm. One of the restrictions we make is that
ne production can have two adjacent 0's or an @ as the rightmost character of

the right side of a rule.

Ba A Key Word Grammar Farsing Algorithm

Qur algorithn is 8 modification of the procedure given in Section Z.

There, we loocked for the characters of a production ome by one. How consider



-11-

the productlion A — a @ b, The & means that after we Cimd the "a" we should
begin looking for a "b" and there can be anvy mmber of intervening characters.
Thua, in the notation in Section 2, Lf we start locking for "b" at depth 2
we want to find "b" at depth 2 or any greater depth. We will indicate this
by placing a - 2 instead of a 2 in the state array entry. HNow consider the

Erammr

This prammar is ambiguouws becauss the atring &8 b ¢ has the two parsings:
/,.ﬁ- t'l-x_‘\
aé u&\\ B a/ i'r:u j:ﬁ
+] In c
Yet wa do not want to throw this grasmar out. We can use it to express the useful
idea that any string starting with "a" and ending with "b" should be matched
with production 1 unless it has the specific form abe, in which case produc-
tion 2 should be used. Let us see what thisz implies for the modification of
the procedure in Sectiom 2. If we try to parse the string "abe" we will find
the "a" at depth 1, 8o we begin looking for a "¢" at any depth = 2 and a "b"
at depth 2. We find a "b" at depth 2 and so we logk for the "¢ at depth 3.
But we are already looking for the "¢ at any depth = 2. Thaerefore, we let
the specific depth 3 dominate the "= 2" specification. We place the latter on
& temporary list to be restored if we go on to depth &, since we don't want

to reject 8 string like abdc. Finally, in a conflict between "= 2" and

"z 4", wa would allow "= 4" to dominate, pushing "= 2" onto the main stack.



This iz the idea of our modification to Section 2. In order to
implement it we indicate in the property array whether or not each character
en the right side of some production is preceded by &, but we de not put any
entries in the state array for the x's. Then, during parsing, we enter a
negative number imstead of a positive number im the state array if the entry
.curreapnmia to a character pra!:aded by o or if we are computing the closure
of such sn entry. Heote that on making reductions handles corresponding to
the same production can be of different lengths depending on the length of
the strings matched by the #'s. Therefore we mist use the entries in the

state aregy Eo find the left end of & handle.

b, An Example

Consider the grammar:
1 5 - s¢
2 S—=0f +E

3 E =+ F*F

L1 E—~F
A F = x
L] F—=y

Given the string ¥X + ¥# the algorithm finds the parsing

N
A

E .

L
F

.
X

F

X

e



=]17=

Major steps in the parse are shown in Fig. 5. Hote that Lf the reduction of the
initial X to E prevented a correct reduction the string would be rejected.
There are no grammars for which the algorithm will accept incorrect strings,
sut there are some for which it will reject correct ones.
1 2 3 & 5 & 7 & % 1o L 12 13 1% 15 l& 17
_ (*)
s # (S)E + E (8) F * F (E) F (E) X (7 ¥ (F1 level
‘[hl}: 1 0 =1 o 0 -1 o 0 =1 =1 -1 1
tetack: ()
\sentential form: XX + X¥
{AL: L 0 =1 2 0 =1 0 0 - =1 -1 2
'ﬂsta:k: iliﬂ s
\sentential form: EX + X#
ﬁz: 1 0 =1 2 0 =1 a0 0 -1 -1 -1 2
stack: (| (0 33])
genzential form: EE =+ X$
Jaﬂz 1L o -1 2 3 -1 0 o -1 -1 =1 3
gtack: ARG
‘sentential form: EE + Xf
fﬁ: 1 2 -1 00 -1 00 -1 -1 -1 2
stack: tl o 23]

)
Lsentencial Form: &
Fi\El 5

Parsing the string XX 4+ X with the new algorithm.

7. Cone lusion

Exploring this idea further would make an interesting project for somecne

interested in persing. For exzample, we could use all the ideas Weizenbaum



-14-

uses such as precedence among productions when one calls for a stack
reduction and the other doesn't. Also, we can parse any key word grammar

by modifying E.m:].g.r’:;:lfr procedure glong similar lines.

a. Rafarances

1. E. Charniak, "CARPS, a Program Which Solves Caleulus Word Problems',
MAC-TR-5L, MIT, L9GA.

2. J. Weizenbaum, "ELIZA"--A Computer Program for the Study of Hatural
Language Communication Between Man and Machine', CACM, Vol. 9, Ho. [,

Jan. 1966,

3. T.%. Enuth, "0n the Translation of Languages from Lefe to Hight",
Information and Contrel &, L9&5%.

&, J. Barly, "An Hznﬂ;mngﬂiaer for Context Free Grammars', Dept. of
Computer Science Report, Carnegie-Mellon Uniwv., Fittaburgh,
Penngylvania, Sept. 1967.



