MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence February 1970
Memo No. 189

CONSTRUCTION OF DECISION TREES

Edwin Roger Banks

The construction of optimal decisjon trees for the problem stated
within can be accomplished oy an exhaustive enumeration. This paper
discusses two approaches. The section on heuristic methods gives
mostly negative results (e.g. there is no merit factor that will
always yield the optimal test, etc.), but most of these methods do
give good results. The section entitled "Exhaustive Enumeration
Revisited" indicates some powerful shortcuts that can be applied to
an exhaustive enumeration, extending the range of this method.




CORSTRUCTION OF DECISION TREES

Edwin Roger Banks

INTRODUCT ION
A, The Problem

This paper considers the optimal procedure for determining
whether & network of switches is open or closed. Each switch 1

has an a priori probability Py of being closed and an assoclated
cost Ci to determine the condition of the switch., The problem can

a#lso be expressed in Folish notation as, for exsmple:
(AXD (OR (AND T; T,) Ty) (OR T, T.) }

where the Ti are tests with true or false outcomes and assoclated
Pi (of being true) and ﬂi. A third formulation of the problem will
be used in this paper: The problem tree for the above Polish form

is shown with the network reprelenul::lnrn
T ' T ?\‘l‘ 3 4 5
1 2

5
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a. m form. b. short form
PROBLEM TREE
Bridge networks will be disallowed.
Qur goal is to obtain the decision tree of minimum expected cost.
A typical decision tree for the above problem tree is shown:
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The expected cost of this decigion tree is:
Cy +
p3 {64 + qﬂ Ej} +
1y (€) + 7y (G +py (G +9,C50 ) )
where q = 1 - p is the a priori probability of being open. The above

3 is the first test;
it is made unconditiomally. If the test results in switch 3 being

formula was obtained from the tree as follows. C

closed, then the parenthesized part of the second line will becoms
the expected cost of determining the remaining part of the circuit.
And switeh 3 i3 closed with probability Pj'

Copgideration of this problem probably - originated (see Barlukampl}
in an attempt to optimize telephone switching circuits.® Another area
igs problem solving where the solutionm to 8 problem can invelve solving
sub-problems. Imn our problem tree, the AND represents a divisiom
of the problem into sub-problems which jointly must be solved, and the
0OF, thoge for which the gsolutiom of any sub-problem solves the problem.

*In this problem the cost is time.



Let n be the number of switches, and In the number of possible
decision trees. To be considered inm Kﬂ we require only that the tree
has no repeated tests. [Otherwise Hn = @) Then Eh becomes ;

s+ and x o= 1

En = n {Kn‘ 1

1

or
L. 1, 8, 243, 238144, 200000000000, ... form =1, 2, 3, &, 5, ...

This formula can be critized because it counts Incomplete decision
trees, but if Iﬂ is to rule cut these trees, then it becomes a functiom
of how the n switches are interconnected. In any event, a procedure
which attempts to find optimal trees by exhasustive enumeration and
comparizon will be practically limited to n=4 or less.

Interestingly, out of the 233000 trees for the 4S-switch network,
for example, there are exactly aight which qualify as a possibly
i* the py
or how connected! Results of this sort are reported in the section
titled "EXHAUSTIVE ERUMERATION BEVISITED".

optimal decision tree, regardless of the values of the C

The above results were discovered after anm initial effort to
apply heuristics to the problem. BSeveral interesting theorems, in=
cluding the failure theorem which shows that counter-examples exist
for a broad class of heuristics,; are reported in the next secticn.

The last section considers the technique of test-at-a-time; L. e.
instead of constructing a good decision tree which is simply read in
order to choose a test, how can a good test be chosen without the
tree? The merit of this technique is that the decision tree is
typically very large requiring storage space. (If a bushy problem
tree is assumed, the average path length of the decision tree will

be n/2 giving a total size of about Enfz‘}



HEURISTIC TECHNIQUES

The first class of heuristics involves the marit-factor approach.
& merit factor Is calculated for each switch and the largest (or
smallest) merit factor determines the test. For each possible out-
come of the test (open or closed) the circuit. diagram is simplified
and new merit factors are computed. The merit factor may be a function
of the costs or probabilities of any or all of the switches and of
the structure of the network itself, and other factors. We will
degign a few merit factors and analyze them.

A ugeful gquantity to Include In & merit-factor is the a priori
probability that the entire circult i{s closed. Let P designate this
quantity which i{s easily evaluated from the Py and the problem tree,

We will also use § = 1 - P as the total probability of an open circuit.
Two other useful quantities are AP, and Ihni, jLPi will represent
the increase which results in P if switch 1 is closed. Similarly,
ikqi will represent the increase in Q for switch { open.
As tests are made, a plot of F against cost can be made:

1.
P L_{:fé_ The goal i{s the top or bottom
0, line.

P as A Function of Tests Drawn for a Particular Decision Tree.

This diagram suggested moat of the following merit factors.
1. Heuristic: make that test which gives the greatest expected
change in P per unit cost. Thus we define

i
2, Heuristic: make that test which gives the greatest percent
change in P per unit cost:
F.E = {'—Eﬁ + Jqﬂ_} J,r o

3. Heuristic; weight the factors of Fl by P and Q. Thus we
miltiply the expected increase by P which is the probability
that an increase is desired,

Fy = (pP AP + qQ AQ) / C



4, Heuristic: make the test which yields the largest expected

percent reduction in distance remaining teo the goal:
B AP a_AQ
Fﬁ = 2 + P 3/ cC
THEOREM I. The above heuristics are equivalent {within constants)

to sach other and to the simple merit factor F5 :

F. = pAr/cC

To prove THEOEEM I we need LEMMA I:
LEMMA I. P is individually linear in p,. That is, for functions G
and H:

P L G":plipzI-'-Fi_rllpi_'_lp--qpn} +H{P11IIIP1-1JPi+lj-I-II:' Pi

Inductive proof of LEMMA T,
Any network (including bridge type networks) cam be built
by starting with one switch and two nodes and adding switches and
nodes by use of two methods.
I. By connecting two existing nodes by a switch.
II. By adding a switch and a node between a switch and a node.

%—-{}-—Q yo< = )o—oX

I, CONNECTING TWO HODES BY II, INSERTING A SWITCH AND MODE
A SWITCH EETWEEN A SWITCH AND NODE
The lemma 1= obviously true for a circuit with only one switch and
two nodes. Consider case I. first., Let us add switch 1. P" is
the new probability and P is individually linear by the induction
hypothesis.
B' = p, B" 4+ (L-p)F
P" is & network with one less node and is therefore satisfactory.
ﬂbvi.:-ruuly P' ig individually linear. Considering case II as we add
gwitch 1+
P' = pil? + {1-91}13"
again still individually linear in Pys 0:E:D.



Fow we can prove THEOREM I. First we show the interesting
equivalence
Py ﬁ.Pi = 4 ﬁQi for all i.

Since P is individually linear in py we can write
P = G 4+ H Py

where G and H are the functions of the probabilities of the other
gwitches, jLPi iz the increase in P Aif Py = 1 or

AP, = (G+H1) - (G+Hp ) = H(l-p ) =Hq,
And since

G + Hpi = G + H{l-ql} - {G+H}-Hqi
and Q=1-P={1+G+H3+Hq1
we can show in & gimilar manner as above fnr.ﬂl'i that

A':i':l!' =Hpi

Therefore

Py APy = q; AQy = Hp; 9y

Let us use X as a shorthand for p AP to pro we the equivalence of
our merit factors. '

F, = (pPAP +qAQ) /C = (X+X)/C = 2X /C

F2 = (X/P + XQ)/C = (L/PQYX /SC since P4+ Q =1

and P and ) are iaitially the same for all tests.

F = (PX + Q@X)/cCc =X/¢C

Fp = (X0 + Xp)y/cCc = (1/EQYX/C

Also any monotonfically increasing functional combination of Fl I 5‘5

will be eguivalent to F. in the sense that it will yield the same

5
test and hence the same decision tree.



One might expect that the time to find the largest pAF / C
would be at least proportional to the number of switches, Thus to
construct & decision tree would require a time proportional to n
times the number of tests in the entire decision tree. Actually
g tims proportional to log n is all that 1s nesded after the first
test is chosen, if all the previous results 1s saved in tree form,

We have used 21‘1.1"2 a8 the expected size of the decision tres,
(Total size of a binary tree is twice the number of end points.)
The following intuitively obvious THEDREM suggests why the decision
tree should be so lacge.

THEOREM II, There is at least one path of length n in every (complete)
decigion tree, i, &. it is alwaye possible that when using the
decision tree, the state of every switch would have to be determined
to determine the state of the circuit (open or closed).
Inductive Froof of THEOREM II.

The theorem is obvicusly true for one switch., There are two
cases--either .a- switch is connected in parallel or in series, If
in parallel and if open,; then there results a network with one
fewer switch and THEODREM II applies to this. A parallel argument
({pardon the pun) applies to the series comnection, Thus an average
depth of about nfZ resulta, It should be noted that for any
technigue yielding optimal trees, the time required is probably at least
proportional to the size of the tree it is building giving Enﬁ'
g 8 lower bound, ( It is realized that perhaps the tres contains
many duplicate sub-structures in which case a time less than the above
may axist.)



FAILURE THEOREM

THEOREM III. There doass not exist a merit factor Fi guch that the
optimal decision tree is always found by picking that switch with
maximm (or minimum) F. F can be a function of Pys Gi.

tres structure, the other pj {(§ # 1), indeed of anything except the

the problam

other switches' costa. Fi is restricted only to be Independent of
Cj for § # 1.
Proof.

Consider the following network:

gwiteches 1, 2, 3
all Py = 1f2

Also consider the following assignments of costs to the switches
with optimal decision trees shown below.

cl. = 4, G]. = &.
':z = ], ':2 = 1.
ﬂa = 1,099 G-E = 2,01

/N
3
/\

In the first casa FE:? Fl while in the second case Fl]p E&. But

the only change was in Ej. and Pl and F2 were not allowed to depend

1/3\ 2‘/,1,~~~
/\ l/J \
T

o E3+



Berlekamp gave the following interesting example whose optimal
decision tree is shown. Again the numbers are costs; all Py = 1/2.

1 1
1000 100

10 10, O ! \lﬂ i 11:HQ/ \I}JU

However, the following two trees must be egquivalent where W, X, Y, and

& are substructures.
AN\, AN
H/ \! 1'/. \Z 'h‘f\‘.f I/ \Z

EQUIVALENT TREES

The interesting fact is that the costs 1 and 1' in the example
can be varied independently over & small range while both forms of
the decision tree remain eguivalent.

Hinutun2 has devised some heuristics for building trees that
add tests and then do local improvements which can move the new tests
to a position of lesser depth in the tree. His decision trees are for
a more general problem in which the tests are not simple true or falsae,
but divide a set of objects inte two classes.

Reinwald and So l:nri3 present an algorithm for finding the optimal
tree, but Winston claims that it is only slightly better than exhaustive

enumération.



BERLEEAMP'S RESULTS

Berlekampl daefined & couple of merit factors but used them in
a different way from our usage. He defined a parallel merit factor
PMF = pifﬂi and a series merit factor SMF = qifﬂi and showed that for
a pure parallel or pure series network, then PHF and SHF (when evalu-
ated and ordered for all switches) would determine the optimal tree.
In fact, extending this to a parallel-series (i.e. a parallel
connection of pure series circuits) or series-parallel (beads on a
atring) network, he found the following algorithm would give the
optimal tree. We illustrate here only the series-parallel case.

maling Bl v
DU B SO

Exaémple of Series-Parallel network.

I. Replace each bead by a single switch whose cost is the expected
cost of the bead and whose probability is the probability of the
entire bead.

II. Calculate SMF to pick the bead for the first test.

ITI. Within the bead, calculate FMF to determine the switch. This
gwitch is the firat test.

IV, Simplify the network (for both cases--open and closed switch) and
start owver.

Although the method always yields the optimal tree for problems
whose problem tree has a depth of two, unfortunately attempts to
generalize to higher depths fail. Berlekamp gave the following counter-
example (depth of 3 ) where the numberi are the costs of the tests.

100 b - all p, = 1/2 / \\\.
1 1000 d/ / y
1

| / Moo N
/N

COUNTER-EXAMFLE OPTIMAL DECISION TREE




Although the optimal tree above has an expected cost of 20B.5, the
application of Berlekamp's method yields a tree with expected cost
of 230.25. In fact Berlekamp found a formula for how much the mathod
costs.

EERLEKAMP'S THEOREM IV. Let T¢ be the cost of the best strategy in
which parallel branches a and b are looked at consecutively and T-n-

pt
the cost of the optimal strategy. Then

T:: '5-:. Tr_'n|:|l: * "‘Fafta - betb} r'a ':I:a * 1a tb}

(assuming pl.fl::a b2 thl:b}l. The first factor is the difference im

the merit factors; the second is the cost of the first bramch, and

the third is the cost of the eguivalent combination of the two branches.
COROLIARY. If the merit factors are equal, the branches may be com-
bined with no loss in expectad cost.

However, Berlekamp did show the following usaful theorem.

BERLEFAMP'S THEOREM ITI. If the optimal strategy starts in a particular
bead By it will start at that branch of B, which has the highest
parallel merit factor.

L

Attempts to generalize this theorem alsc failed, as showm in the
next theorem.
BERLEKAMP'S FALSE CONJECTURE IV. If the optimal strategy starts in
& gubstructure N, it will start at the same place that it would hawve
started in N alone. (Not Crue.)



An attempt to get the effect of the entire structure into the
problem invelved substituting electrical resistors for the switches.
This type of cperation has been known to work for some other problems.
We would like to have the resistance be a function of the probability
such that the best switch is found by taking that switch which has
i) maxieum current, ii.) maximum voltage drop or 1ii) maxisum power
dissipation per unit cost assuming a one volt applied voltage.

If such a method is to work for our problem, it should satisfy the
following requirements:

I. Forp=0,B=m and forp=1, R =10

II. Besistors should combine intc equivalent resistors by the
parallel and series combination laws.

UTnfortunately the combination laws specify the form of the egquation
and I. specifies the initial conditions giving two different equations
depending on whether R is in series or parallel.

J

E = =1 la
" ! log q

Resistdance, R
The fact that the two curves are so similar suggests that some
combination of R, and RP should give good results.



EXHAUSTIVE ENIRMERATION REVISITED

In the set of all possible decislon trees for a large number of
switches, n, only & very small fraction of these are possible as op-
timal treea. GBSome of these have identical costs.

The following results assume that the problem tree is slightly
modified to contain the switches ordered by their (Berlekamp) merit
factors at any particular level, as shown in the example.

b
—
d ] £ _-
- _ n d e f &
b ]
PMF, ) PHFE
(depth = 3)
EHFd 2, sr:re _‘_;, EHF[ PROBLEM TREE

Berlekamp's algorithm can be used on any problem whose depth is two
or less. To help eliminate non-optimal trees, THEOREM IV can be used.

THEOREM IV. At any node in a decision tree, the maximum numbar of
remaining tests assuming the outeome is a closed switch and the maxi-
mum number for an outcome of cpen switch are different numbers.
Proof.

In the procf of THEOREM II it was noted that one ocutcome gave
a4 subproblem of exactly one less switch. But the other case must have
cuf off part of the ecircuit giving a still smaller pmetwork. For instance
if the switch was connected in series and was open, them at least btwo
fewer switches result in the subproblem.

This theorem immediately eliminates all trees that end in either

of the following structures.

\
AN 2N
/\ /\



THEOREM V. WNo structure of the following form can exist as an optimal
decision tree.

rast of
tree

N, v

a

This theorem states that any two switches a and b cannot appear at
the same level ag a parallel compnectionm In one case and series in
another.
Argument .

In the problem tree, & and b have & voungest common ancestor
which is at the parallel or series level, but whichever, it cannot
change. (This theorem doas not apply to bridge-type networks.)

THEOREM VI. In the 3 switch network composed of switch & in series
with parallel b and ¢, L{f the 5MF for & is greater than the maximum

EMF for b and ¢, then the tests will be applied in order of SMF.
Similar results hold for the dual case.

” The simplest network for which Berlekamp's method fails (L. e.
depth greater than two) has four switches. This is the only & switch
network for depth of threa.

] : N 2 2
3 & 4
PROBLEM TREE NETWORK DUAL NETWORK PROBLEM TREE

Since the dual network is solved exactly the same as the original
network giving identical decision trees, only one of each dual pair
is to be considered.



The formula for X a {the number of decision trees) gives about

230,000 trees for the & switch problem. However, mo more than the

following eight trees need be considered. All the rest must be non-

optimal.
L 1 2 2
¥ ¢
::25 \3 "'Ji \\} 377 N
N £ M R N
4 L] Fa
& 2 Hl \"‘a
Py I iy £y,

3 3
N /3\
SO N S N S AN

2 4 1
Fh r\‘ PR -f."f\ R A ,r\..r"\
2
i ;"-.

How did these eight arise? Firat BERLEKAMP'S THEOREM III plus the

fact that the switches are ocrdered by their merit factors before we
Mow conaider

start eliminates switch & from consideration immediately.
Ha

proving, for example, that the following tree is non-optimal.
will generate a sequence of equivalent trees the last of which is

more costly than one of the above eight.

3 1
1!.-"" Hﬁ"l f ‘R ! \3
’ = “ more costly than
’ 1"2 \11 J:f 1; IH \‘ﬁ-.'
o / 2 Y
i

i
(Y Iy

The above eight trees can be lusped into three classes where
within each cirele the depth is two or less and Berlekamp's method

can be used te find the optimal Eree.

jolsiele



Only these three cases now need be considered. (We are now sssuming
that if the depth of the preblem tree is less than three, Berleksmp's
method is applied; but Lf the depth is three, then these three trees
are considered.)

Going to filve switches there are four meaningful problem trees
of depth three and one of depth four.

1 1 1
2 1 2 3 2 3
7 4 5 i 4 5 5 5

FIVE SWITCH DEPTH = 3 TEREES

&
FIVE SWITCH DEPTH = &4 TREE

Depending on which of the above problem trees is being considered,
there are only ?_, 5, 3, 3, or 8 trial to be made, respectively
(see Appendix I). Forn =5, X =X, =2 X 10" approximately.
Optimal trees were found for each of the listed & switch trees,
but perhaps some of the 3 switch trees can be eliminated by
further astudy.

Considering aix switchea, there are at most five wavs to pilck
the firat one since at least one way violates the theorem of Berlekamp.
By THEOBEM V ome of the sub-problems (after the first ome is made)
has five switches and the other has four or less. Thus the greatest

time required is proportional to 5 (8+3)=55.



To further speed these operations, some other techniques could
have been used. For example, we have seen that some decision trees
give identical costs and only one member of each family should be
considered. Another area for improvement ceoncerns avoiding duplication
of affort on those sub=structures which sppear many times within a
larger tree. Furthermore the techniques of this chapter have completely
abandoned consideration of the values of the Py and ﬂi of the switches.
Some function of these wvalues could probably divide the exhaustive
enumeration into binary halves, greatly speeding the calculations.

It is very probable that these and other pruning techmigques could be
developed to the point that fairly large networks (say 20 switches)
could be handled in &8 reasonable samount of time. But if we remember
that the size of a8 typical decision tree iteelf grows as 1“” we
might find that about 20 te 30 would represent an upper bound om all
techniques.



TEST AT A TIME METHOD

Since for large values of n the size of the decision tree becomes
unreascnably large, it becomes desirable to have a procedure which
determines the switches as the problem develops. Since the pAPR/C
method could be used (timeg to find the maximum value of this merit
factor was proportiomal to log n) im a look-ahead scheme as a static
evaluation function, teats could be determined wery rapidly.
Infortunatly for the methods of the preceeding section, it appears that
the entire tree would have to be determined to find the first teat.



APPEXDIX I
The five-switch problems depth23, Chugfs et cousidared
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