MASSACHUSETTS IMSTITUTE OF TECHROLOGY

PROJECT MAC

Artificial Intelligence
Memo Mo, 190 March 1970

An Interim LISP User's Guide

John L. White



AN APOLOGY

The substance of this memc is to initiate the na¥ve LISP user
into the intricacies of the system at the Froject MAC A.I. Lab. It
is composed, at this time, of a Progress Heport on the development of
the LISP systeém and a few appendices but as such should be nearly
adequate to start out a person who understands the basic ideas of LISP,
and has understood a minimal part of the LISP 1.5 Programmers manual
or 4 maximel part of Clark Weissman's LISP 1.5 Primer. At some un-
determined time in the future a comprehensive document will be issued,
consisting of an elepentary introduction to LISP, a self=primer, the
core 0f this document, and numerous reference appendicea. The com=
prehensive guide will then replace A.I. memos numbers 1164, 152, 157,
the LISP Progress Report, this meémo and all informal notes and communica-
tions.

In the meantime, in order te inure the current user to the
shock of an information blackout, and in order to give him a glimmer
of what it 1s that he doesn't know about, the following list of Appendix
titles if cffered:

At The True Mesning of Top-level Global Variables in MACLISP

B: How to Speak to the LISF Allocator, When Inditially
Mlocating the Size of Storage Areas

C: Byntax for Use with STATUS and SSTATUS

D: All About TRACE and BEEAK

E: The EDIT Feature in LISP

F: Using GEIND and INDEX

G: Setting up Displave on the CRT 340

H: Preparations fer Compiling

I: Coding in LAP

J: Moby I/0 Devices usable in LISP; The Vidissector, the Clock,
the Calcomp Plotter, A/D and DfA Converters

E: The PIC-PAC Package for Storing and Using Vidizsector Pletures

L: An Annotated Index of Functions, Facilitiez and Terms

Preliminary versions of some of these appendices are attached to the
back of this memo, along with a very temporary Appendix ¥ which attempts
to update those changes which are missing or at variance with the main
bady of this memo or with memo 116A. Except for such variances, memo
1164 is still recommended as an annotated index of functions and terma.



LISP P.R. 3/25/7¢ i

CONITENTs

Table of contents i
Notation ii
Introouction W
Hefinemants and Eestrictions

of the LISP Interpreter 1

Extended Interpretation of

Faml liar Functicns 5
Hew Functions Added and Limitations

on Familiar rFacilities 13
I/0 Channelst HEAL and FRINT 23

The Ccmpiller, LAF, and
Auxilliary Alas 34
Future Plans 39



HOTATION

Ine following items of notation are cbservea in the writing o
Lhis reports )
ITEK The double-quote character (%) is used as5 the standard
meta=linguistic word .ﬂr string quoting device. Alas, in several
instances 1t 1is used"in the more wvulgar sense of indicating a
non=standara or Ansecure meaning imputed to a wora or phrass,
Unfortunately, the double-quote character is itself part of the ASCII
alphabet that makes up the LISP input character set (in category (1)
of the KEAD syntax, see page 25}, and in order to avoid ambiguity, the
examples of s-expressions on the succeeoing pages will not utilize it.
ITEM ®LISP1.5PM" {5 an abbreviation for the LISP 1.5 Programmer<s
Manual, published by the M.I.T. PTEEE;
ITEM "MACLISF" refers to the POP/¢ implementation of the programming
language LISP in use at the Artificial Intelligence Group of Project
MAL »
ITEM Capital letters of the English alphabet are used as aton
constituents in sample s-expressions, and small letters are used as
meta=-linguistic variables whose range must be deduced from context.
Thus "IEVAL s5)" could stand for “(EVAL ABCI", or
WOEVAL (CONS X (LIST ¥))I" ana 50 one. Sometimes it is cleaf that the
ranga of the wvariable is restricted to atoms, or to iists, bt
occasionally the variable may be a list fragment: e.g., "({LIST fragi»

could be "(LIST A", or “(LIST A 21)", or "(LIST X ¥ (CAR Z)",



ITEM Wany sample programs and functions are givun in the d=-language as
used in LISP1.5PM, ana in some instances suggestive names are used for
variables assumea to be permenantly set to some character object.
IThis is for emphasis, since no reference to an input AciD syntax, or
to a wniversal evaluator 1is necessary for interpretation of the
meaning of the program. S=expressions glven as examples can only have
functional meaning, or computational meaning, when the me2ans of
application 15 specifiedsy that is, they induce functions when pairec
with a universal evaluator such as Eval. Slnce wvarious
implementations diifer in the action of EvAL, the one descriocea in
LISP1.5PM will be considerea the common denominatori the one employed
by MACLISF, however, will be the arbiter for interpretation in this
reaport. Some examples are best given as s-aexpressions because of The
extendeg role tn}tLF*Erpn functions (F5UBR, FEXPH) play for EVAL, a&and
because of the unity of function type within the M=language.

ITEM HNormal {input mode for MACLISP is base eight, and hence all
numbers appearing in this report are to be understood as represented
in base eight. Exceptionst® the following constructions inaicate Dase
ten = page number references, English-described numbers {as opposea to
mrla?al-dascrih&d}, numpbers followed by a decimal=point, numbers
having non-octal digits, and the phrase "3js-pit" when referring to
machine cell capacity.

ITEM Thare are two print sets accepted for the ASCII alphabet,
variously callea Yola ASCIIY and "new ASCII". Generally this report
atteapts to wuse or simulate the Yold" alphabet of the Model 35

teletype, rather than the "new" alphabet of the Model 37. There are



only a few characters that are really dlffareﬁt, & notable exanple
peing character number 136 wh;ch prints an an wp=arrocw in the "olo”
and as & carat in the "newh.

[TEM Included in the ASCII character set are non-printing characters
obtainea by gepressing a printing character while holaing down the

control keys if this is done with “HY, for example, the character is
called control-H &na is denoted by “TlH".



INTRODUCTION

maCLISP is & descendent of the first operational program ever
written for the Uigital Equipment Corporation PUP/S computar, It was
an interpreter and minimal LISPF system, written ano aeouoged in the
spring of 1%64 by the staff at UEC ana members of the Tech wsodel
wdilroad Club - an organization which along with the ».I1.1. student
radio station wWlIBS has suppliea a continuing stream of prospective
programmers to the Artificial Intelligence Group. Ihis unlikely feat
wds accomplisheo with the aiag of @ well-equippeu FLP/4 for editing,
assembling and punching the program on paper tape. AL about that tinme
a working PLUP/5 was dellivered to Project MAC, ana the LISP program was
an aid in testing the new machine.

Iogas from several other implementations influenced the
initial design, notably the CIS3 version on the [pM Tu%4, and the very
minimal version for the POPA/l: hHowever, the decision to dispense with
the a=list in the implementation, a major factor in the space econonmy
and running speed of MACLISP, came some time later. An fmproved
compiler was written as an adjunct to the system = compilation is done
"off-line", and the resulting LAP code loaded into the system when
desired. Although the compilerss output is both space-gfficient and
time-saving, it is the central focus of attention today for Improved
schemes such as "fast arithmetic", in the hope that many reasonable
computations programmed in LISF may ru# in times comparable to their
FOHTHAN counterparts.

[ndeed, because of the prominence of LISPF in Artificial



Intelligence applications, there is no other .higher-le?el languaga
uséﬂ in the A.l. Group, altﬁnugh ‘an impressive array of utility
systems contribute to the ease of wusing both LISPF ano machine
languages:s TECO, a text editor witn woisplay scope, for cresbing and
servicing paper tape, magnetic tape, and magnetic disc riles ino
punched=carc equipment 1s awvailablel; MIDAS, & wamachine language
assemopler with superb macro=-generating featuress LDUT, & monitor=like
system wvery helpful in debuoging {and extendea in tne time=sharing
version to provice other snrvicé functions, such a5 binary dunping snd
loadingls ana ITS, the Incompatible Time-sharing System. The original
stvle of MACLISP was console oriented - 1.2., on-line ana interactive
= with® READ input and control commands accepted Ifrom an on—line
taletype. Kith little modification, the same structure adapted i[tself
wall to the time-sharing framework, namely & job under the LTS systes
controlling one of the many teletype-=like consoles available as remole
terminals of the PLP/6 {currently there are four Medel 35 teletypes

Tour Genearal Electric remote Keyboards with cnaracter—-scope displavs,
one ARLS conscle, &ano three telephone data-sets for automatic
connection to other Model 35 ana Model 37 teletypesl. lnitially. when
the job 1is started, MACLISF requaests and accepts cnﬁmanﬁs for
allocating its memory usage = how much core 1s to be usaed Iin total,
how mucn of it  is to be used for full-word space, how much for the
system push cown stack, and so0 On. From that time on, cnly a fow
control characters have an ilmmediate :;mmand effecty the main running

of the job is controllec by a "top-level® function {see page 14},



Fefinements and Restrictions of the LISF Interpreter

Thare is no explicit a-list for EvaL. All varisble binaings
uﬂtur. as SHPeCIAL values, and cvAL goes not search an a=list for
variable bindings, but searches the p-list I[property listl] o the
variaole to be EVALeo, in order to find the aodress of its sPzCIAL
value cell. On the whole, this implementaticon is consideraoly faster
running since atom evaluation is guick and not cepencent on tne length
of the a=-list {which increases, of course, with increasing depth of
function callingl. MACLISP, however, cannot aispense with the binding
and unbinding of variables, &and a8 special stack is used to nola the
information for unbinding after lamboa conversion izalso, for unbinding
after PROG evaluastion). Thus those variacles whose values are changed
by lambda or prog binding must be restored after the evaluation is
completea. The stack of restoration information is called The Special
FOL {PDL for push down list) and is5 a weak equivalent of the a-list in
other systems. By means indicated below, a program may obtain a
pointer into the stack area which will serve as an a=list to give as
an argument to subsequent explicitly q?lled functions, but which will
ne longer have meaning if returneg as a value of the Tunction which
creatad it. In shert, such an a=list will be useful at deeper levels
in the computation, but not at higher levels. I'he problem is, gquite
simply, that this weak ea-list is only & linear stack and does not hava
the tree-like structure necessary in general. Heealess to say, there
is no need for COMMON variables, since the interpreter has access to

the SPECIAL cells, and there are no APvALE, nor functions CSET or



CSETAQ. In order to :nnﬁer?a space, & VALUE property peointing to the
atom*s SPECIAL cell 1is not placed on its p=list until it is TIirst
bound, either through lambda or prog binding or through use of ZET.
The interpreter admits three conventions for passing arguients
to machine language functions (some systéms have many meors = the bolt,
Beranek & MNewman LISP has five or eight depending on now one countsh.
The name of each defined function carries on [ts p=list an indicator
of which convention is used, pairea with the address of the subroutine
code. The three types are called SUBK, FSUBR, and L3Uth.  The first
two should be familiar enough to persons acqualnted with LISF 1.5§ the
third may be [looselyl viewed as indicating a function generalized
along the lines of the functien LIST - there are & variazble numbar of
argumants and EVAL, when working en a form FF whose car is an LZUBR,
abtains the arguments by successive eveluation of cearlFF], caddriFFl,
. s . « The arguments are placed on & stack, called the Regular
PDL, anc the number of arquﬁants is itself also passed along to the
subroutine. One may [again looselyl view FSUBRfs as indicating
functions generalized along the lines of the function QUOTE = there 1s
exactly one argument, and when EVAL is working eon & form FF whose car
is an FSUBK, it simply passes aleong cdrlFF] as argument. EXiPR‘s and
FEXPR’s may be viewec simply as SUBR’s and FSUBRYs written in LISF
code rather than machine code. As in other implementations, if tha
LAMBOA expression paired with a FEXPR has two lambda variasbles instead
of the expected cne, theneypon eniry ta- the function the second
variable is bouno te & representation of the current a=1list, which may

subsejuently oe given as an argument to EVAL or APPLY. Indeed, a-list



manipulations are rare among the users of MACLISF anug eval ang APPLY
glways permit the omission of arguments or lamboa variables pertalning
te a=lists. Thus one generally writes
(EVAL EXPRESSION)
rather than
(EVAL EXPRESSION CURRcHT-A-LIST)
ana similarly one usually aefines FEXFH’S
(LAMBDA (L) (PRIWT (CAR Li»

In fact, another important application of LaUkkfs is for SUGSH
type routines which have, say, thres arguments, the thirao of which is
almost always given some standard values thus tpa Subrouting way be
called with two arguments only, the thirc being supplied by defaults
Y&l Lhe TLhird may be suppliec explicitly in the calling program when
soma non=-standard value (s desired. To obtain the L=type argument
convention for an EXFE, no new indicator is wused (such as ocne might
expect LEXPR), but instead the lambca list is replaced by a non-iIL
aton which upon entry is bound to the number of argumentss and in the
code, the form

(ARG N)
is usea to cobtain the n'th argument.

The MACLISP interpreter has been slightly extended in the
direction of computed functions. The indicator MACRO is recognized by
EVAL as follows: when EVAL/ing FF with car(FF] being atomic and having
a MACRU property, the function corresponding to the property is
applieud to FF yielding FF4, ana the whole EVAL cycle begins anew on

rEe. runctional arguments and computed function descriptions are



discovered by EVAL in the following circumstance:
(1} carlFr)] is not a lambda, label, nor funarg expression,
{z}) carlFFl is not an atom with some appropriate functicn
inalcator on its p-list.

In such & case, FF is replacec by FF’ = conslavallcsrlFF1);
cdrirrl)l &nd again the eval cycle begins anew on Fr’. Appenulx o of
LISPl.5FG shows an implementation which woulu allow only Eifi’s,
3UBK* s, and lambds, iabel and funarg expressions to ococur in such
circumstances. In fact, most systeams have not generalizec apply to
accept an F-type function as argument. A 5nmeﬁhat arocitrary choice
has peen made for this generalization in MACLISF - the second argument
to APPLY is passed ﬂlnng.diractly as the single argument to the r=form

function = and although it has some applications, it has not been used

extensively ano is still considered open to change.



Extenved Interpretation of Familiar runctions

Conoitional expression structure is one of the first LISP
concepts that one wants to generalize. Kather then try to emulate
ALGOL patterns such as “IF®w, "THEW", and "“ELSc", the following were
additions maoe to the interpretation of COHDs1

1) All COMD’s will proguce a values 1f the COkL clauses are

gxhausted with none being selectea, then NIL is the value to
be returnea

{2) COND "pairs" are extended te COND n-tuples: if the Tirst

member of an p-tuple evaluates te non-WIL, then the

remainder are evaluated in order and fthe valus of the last

one is the return value. One-tuples are permissible, in

which case the one value, iI non-WIL, is returnza.

30 and RETURN may be composed to any depth In the scope of a
PROG: evaluation of either one {s wvery much like the appearance of &an
error ouring &n error-set computation. However, it shoula oe
considerea a mistake to execute & GO or RETURN which 1s nu£ explicitly
within the scope of & PROG, for such usage cannot be properly
compiled. Similarly, it is not possble to "go" to a tag outside the
immediately dominating PROG. Computed GU’s are permitteds ir the
argument in a GO is not explicitly an atom, then it is evaluated and
an attempt is maoce to "go" to the result. For example, if ¥ 15 bound
to A, than
(GO X)
will go to tag X, whereas
(GO (EVAL (QUOTE X))

will g0 to tag A.

Using the LSUBK convention, many familiar functions of two



drguments have been extended te operate un.a variable number of
arguments, generally by repeatag aplication of thé function from lart
to righti APPEND, MCONC, LESSP, GREATEARP, MAX, HIN, PLUS, TIdcs,
WUOTI=NT, DIFFERENCE, MAPLIST, MAP, MAPCON, MAPCAK, MAPC, MAPCAN,
dO0LE {see page 16 for explanation of BOOLE). The order of arguments
Lo the wAF series of functionals is in conflict with that of LISP 1.5
~ the first arg is a function GG of n arguments (n»¢) anc the
remaining n arguments are lists which will pe simultanecusly mapped
into the arguments of GG. The lists neea not be of equal lengthi the
process stops when the shortest is exhausted. WAPC, MAPCAR, and
MAPCAN are just like MAP, MAPLIST, and MAPCUN respectively except that
GAR of each successive sublist is taken as argument to the supplied
function, rather than the sublist directly.

PROGZ Is lmplemented as an LSUBK with two or more arguments,
and whose value 1s the second argumenti evaluation , of course, still
follows the regular order. Every lambda expression is also implicitly
what in some other systems is called PHOGN. Applying

(LAMBDA list el 82 . . . en)
will cause the evaluation of €l to en, in order, returning the wvalue

of en as result.

LAST and MEMEER have been extendea to provide slightly more

useful valuess



lastil) = [ nullll) v nullfcdrill] =1
T #+ lastlcdr(ll]]

memberlxs 1] = [ nullll) + NIL

equallxi cari(ll]l = 1

T + member [x% corl(ll)]]
The new interpretation of LAST provides a fast way to finoc tne ena of
a list rather than the last eleﬁant of the list. Similarly, 1if Scedbed
is to returm a non=-NIL value, it will Be that tail of the original
list whereat the member was founa. A function KEwD is Implemented
which is meraly MEMBER using an EQ test rather than an clUal test as
alsplayed above. Similafly. AS50Q is AS50C with an BU test (ASS50C uses
an EQUAL test). '

PRIN! will print out one full S=-expression t(not necessarily
atomicl, ang when ﬁrlnting a literal atom whose FNAME contains
characters which are not syntactically legal for hkeAD*ing back in,
PRINI will print a slash before such 1illegal characters. Tnus the
atom with PNAME "A.B" will print out as the four characters "A“, Ww/n,
, u s "B%. READ, in turn, recognizes slash as a special character
that in arré:t causas the next character to be treated syntactically
as an alphabetic character. For example, the string "A/(B//C " woula
be read in as the literal atom with PNAME "A(BAC"; PRINC 1s a new
function which will print out one S-expression, without inserting any
slasnes before HEAD-illegal characters. PREINI is important when one
wishes to write S-expressions out on auxilliary memory and read them
back in at a later times PRINC is important when one wants to generate

his own output format, or print a message which 1ls stored as the PNAME

of some aLom.



Toe function PRINT is defined as
w[{x1s proglils terprills prinilxli princlispaceli returnix]]]

The function TRACE is not built into EVAL, tut 15 encodeas in
EAPR form. Wo part of it is normally resident in tne system, ocubt 1t
must be read-in from an auxilliary file {in the Time snaring
environment, many such extra packages are stored on 2 disc pack called
the COMMON devicel. A traced function has the function properiy on
its p-list temporarily replaced by & standard form EAPR or FEXPR which
handles the traceing work before actually applying the original
function. The facllity has been extenued to work with every function
{yes, even PHINT, COKD, SETG, etc.! except possibly U0 and HETURH. A
program switch exists to lnhibit‘ direct linking from compiled
functions, so that even calls from compilea code may be traced ({(see
page 21, STATUS). Provision has also beesn wmade for conditional
tracing (at each call of the traced function, a8 preaicate will be
evaluated to determine whether or not to trace thet calll, and for
conditional break-upon-entry {a BREAK «calls a resc—eval-print loop
similar to the normal top level, but some input, usually 5P, is
reaservea to signal the return from the BREAK and the contimuation of
computationt.

The garbage collector, sometimes called tCThe r&clﬁimer, of
MACLISP performs a few more functions than that of more standard
implementations. Un the simpler sice, an internal switch (set by
typing TD on the job console or by calling SS5TATUS with an appropriate
argument - see page 21} can cause the garbage collector to print out,

on aach collection, statistics telling why the collection was



~initistead and how much space s available in each storage area.
Arrays and coampliled programs share the binary prograi space alloted by
the HACLISP allecator, ana uhil& one seldom axpects tCo exhaust nis
memory facilities with "dead" binary programs, some applicatlons
create and destroy arrays with &larming rapliaity. The garbage
collector aynamically handles the assignment anu reclamation of space
for arrays {calling the time sharing core allocator, when all else
fails, to try to extend the job’s memory allotment,. Cccasionally,
the living arrays will be relocsted and compactified towarc the top
end of BPORG space, but as yet no facility 1is svailable for dynamic
relocation of compiled prngraﬁs {see chapter en future plans, page
. 3%}. Occasionally, also, the gabage cﬁlle¢t¢r will decide tnat far
too much BPUORG space 1s sitting idle, and it will attempt to return
some core -memory to the time sharing system, although this feature may
pe -disenablea with SSTATUS.

Although atomic objects read in n} READ are placed in the
OBLIST to protect them from lnadvertent collectlon {nd. to 1insure
jgentification of future tokens of the same atom, 5cme applications in
natural language occasionally get bogged down with a bloatea oblist in
which not all atoms are of continuing utility, and the LISP preograms
themselves are not able to decide which atoms should be REMOBYea. The
concept of a Truly horthless Atom is defineas a ThA i5 an atom with a
trivial p=-list {only a PNAME property) and which is part of no living
list structure except the OBLIST. A feature of the garbage collector
will reclaim any ThA, but such feature may be turned off or on uncer

program controli because most applications ao not need it,; it is not



normally on tsee page 21 on S5TATUS). Compiled code cirectly accessas
the sPeclal cells of free {or SPECIAL) variables, an. no provision has
peen made for relocating such addresses when usea in clnaery program
spaces thus this reature, chosen Tor speed considerations, 1Is Lne
ma jor wrawoack to implemeﬁtatiun of & coapactifying (or [ree storage
relocatingl) garbage collector, &ano is the sole redson that an atom
which- has a VALUE indicator on its p=list cannot be reclaimsd &s a
-TédAh, even though the atem is no lenger bounc to any value isee page 2
for more on the VALUE indicator’.

AACLISP 15 essentlally & mechine language lmplsnencation of
the universal function EVAL along with some initial a-list ifor
"anvironment® since MACLISP has no brue a=listy ang with many other
subroutines useful for reading, manipulating, &nd writing out
S=expreassions. lhe system comes to life through 1ts "top level®
functiens that is, "top level"™ may be wvlewea as the continuous
re—application in the top-level environment of some function el no
'arQUﬂants. ror systems using EYALJUUTE, the top-level function 1s
very much like

All)s printlapplylreaci(l)s reaall]ll
where HEAD reads in one S=-expression from the current Input channel.
The normal top=level for LMACLISP is equivalent to

AlL)s errsetiprogelterprill)s printlevallreacl 1111s TI1I

In the wvernacular of programmers, one could say tThat EVAL 1is the

top=level for MACLISF, rather than cvALLGUOTE.



Ihe programuer in 4AACLISP, however, hnas tne capaocility to chdndge toe
form given to chrokEl for asvaluation. For exanple, li order Lo change
to Evaluuulc, one coulo replace the pHdlOGe on the prececaling page witio,
say,
progglterprills printlapplylread(])s rzaucilll

isee discussion of the functicns olAlUS and ZoTAlul on pugs 21i.
Inrea global variaples, il.e. those with UDloglous ot tne top level,
have special relevance to the top-level Tunctiond

(1) If tna value of BARGAG is not wlL, then & cacktrace is
printea out for any error which propogates all tne way up to
the top level function {errors which nave oeen bdaSeT o not
pop back beyond tne EAASEL ia wnlen they cceourl. The
packtrace, essentially an inspection of the system Ful, will
print out "funl =EVALARGSY" to lnuicate that e¥AkL nas at tnat
point commenceu the evaluation of arguments for the function
funl, and "funl=chTen™ to ilnuicatuy tnat JTunction funl nss
oeen entereg but not yel exited. Uvcasionally, EAKGAU will
print out "funl=fung® to inuicate that Iund has oeen entered
oy a call Ifron funl.

(2) If the wvalue of xR3ET is not NIL, then tne phase oI
EERSET which restores the pinuing of special variaoles Ls
oypassea {anc inceed all wvariables in #ACLIsP are specials.
This applies only to the top=level “"ERAS5EL™, bDut in many
cases allows Che user to inspect the environment &t the Lime
af tne error. .

(3) cRRLIST, normally set to wIL, is a list eor forms to De
evALfau upon recovering from an error propogating teo top
lavel; tinls ellows the wser to supply @ little of his own
re=initializetion Tfor speciel purposes.

doth *HSET ana BARGAG are also function names such tnat EvALfing
(*®5S:T T) is  fully equivalent to evalfing (SETQ  *R3IET T), &na
similarly for BAKGAG. Typing [C on the job console (or EVALZing (ICC
w)} nas special relevance for the top-level ExrsEl = an error (Is
createa whicn no other EnWsEl can catch, all I/0 channel switches are
returnec Lo thelr initial state {see page J2), the tog=level function

is restorec to tne normal one for MACLISP, and the message "WUllIY s



Llor Fede 3729708 e

print2qa on tne console, Thus & 15 an unconwiticaal guit  signal,
similar to the A4 gquit signal gescribaac on page lo.

e functlion MACLKY provices a aeans of mwlbing couputbetion
ang returning contrel of the conscle to e @onbtorlng proursi.
usually the monitor is the extemnoea version of wel*s ol whico is

15

loauad wnen tne usz2r logs in at & console, but cccaslonally it is 115
alrectly. I[n the Tormer case, storage areas not active ot boe Cloe of
MACLWrPing are zerceo 50 that & pinary oump to euxilliory wewory will
taxe less spacej in the latter case, it is assumeud thet Che Uuscr has

relinjuisnec the job, and It is logged cut.



dew Functions Acded ana Limitatlions on Famlliar racilities

All property list [p=list]) usage must be In palres form =
rLAGS are not allmﬁau. ATIRIB is not implemented (indeed, ~LUUNC could
be Used to the same purposelt, but the function PUTFolLY is proviaed as
a mzans of placing & wvalue anc corresponding indicator on an atom”s
p=list.

putproplatomi valuejd indicatorl

will insert "indicator® followed by "value" at the oeginaing of the
p=-list of "atom", wunless there is already an inolcator ol tha sSame
name on the p=list, in which case the ocla value will be RPLACA‘C out
with the new. It is likely that the Implementatinn. of atomic
structures will change, but the functions PUTPROF ano GET will always
be kept “"up to ogate® {(see chapter on future plansi. The indicator
WaALUs, whose paired value points to the atom”s SPcClAL value cell, ana
the indi:afnr ARRAY, are treatea specially Dby the p=list hanaling
routines, and there may soon bea a different, and  faster,
implementation Tor tThe threes basic and 1mportant proparties:
pname ,value, anag function. Although GET serves as the standard p-list
retrieval function, ancther function GETL 1is provicded to solve the
following proolemst®

(1) to distinguish between the non=occurrence of an

inoicator, and the retrieval of a NIL value,

(2) to fino which indicator from among a list of indicators

is the one which occurrs first (if any from the list occecurr

at alll.
Letting "plist(al" stand for the p-list of an atom "“a", the

implementation of GETL is5 very much like



getllas 1] = [notlatomiall]l + errorlls
T # labellgetll;
lambdallxs 113
[rulllx] = LILs
manglcarixls 11 = 13
T + getlifcdurlixls 1111]
[plistials 111
DeFPROP 1s essentially the FSUBR form of FUTPRIOFP, anc is
generally used at top level to place EXPR, FEAPR, anc MACRO proparties
on atomss it has bDeen the usual method of aefining functions in
MACLISP, but DEFUN has been implemented to provice & more clear
indication that such a definition is being performed, ana to allow
smoother experimentation in the structure of p-list anc function
representation. Some example definitionss
(DEFPROP DOUELE

(LAMBDA (N) (PLUS N HJ))
EXPH)

An optional type indicator to DEFUN {from among FEXFk, EXPE, or MACRO)
is placed just after "DEFUN", the default option kelng "EXPR".
(DEFUN FEXPR
FRUTPROF (X)
(PUTPROP (CAR X) (CADR-X) (CACDR X))
(CAR X))

is equivalent to
{DEFFROP FPUTFRDﬁ
(LAMBDA (X) (PUTPROP (CAR X) (CADR X) (CALDR X)) (CAR £1))
FEXPR)

The pseugo=-function ARRAY serves to make array declarations,
turning the name of the array into a finifte function. An array may
have from one to five dimensions [indicesl, and may De aeclared to
hola list structure or, simply, airect data - the matter of importance
is whether or not the garbage collector is to treat the array antries

as pointing to living s=—-expressions. ARRAY is implemented 4&s an



ravdin, and the oraer of arguments 1s sligntly wiitorent frow tost  in
Llzod la2e wunple form for cvAls

{ AvHAY aname T=cr=nil nl ng « « =« 0l

where b<k<é, ang t-or-nil is the garpcage collector switch. 1he pans
for the &rray is tagken directly ang not evaldetzu = Lha othar
argunents are evaeluaeteda. The array setting functicn, an rodor, wWorks

throcugh a8 siae=-efrfect in the accessing function. cwvalsing
(5TOLe (aname 11 i . o « 1k} ec)

will store tne value of ek in anamelils 1<% « o« o« 1kle T1The WAGLISP
user hpas the ability to stretch or shrink tne size of an array, &ven
after it nés been In use for some time. lhere are a few applications
whnerein the proper size of the array 1is not known until after is nas
ceen partially filleo. It woulu be too wasteful tou nave to daclare a
new array and transfer the entries oy means of LISF cose, or to
geclare initially the array (o be of monstrous size. The functlon
ac*ARRAY i5 cellec just like ARHEAY, &nc perforns @ strectching or
shrinking in the size ua:luratiﬂﬁ {this wsually involves a call to
AREAY and & fast, memory block transfer!. In ordar to achnisve
soma2tning like lambda Dinding of arrays, anu  thea Consaguant

reclamation of thelr space upon unbinoing, one often conputas

nofill
(2val (Cuk:
(QUDTE ARHAaT)
(LIST
(SETQ A (GeExaTMI)
t=ocr=-nil
rl

nkd )l



in order to use A like a functiconal argument, eitner with AFFLY
O (APPLY A (LIST i1 i2 . « . 1k}
ory if A has no functien lndicaters on its p-list, <irectly witn EVAL
(A i1 12 « + « 1K}

{se2 page 4 on ﬁnmputan functions for EwALs any array space which
becomes cut—off from living list structure, esither throuon repeated
application of ARRAY to the same ﬁamﬂ, or through USe Of REXARRAY
{which may re-specify size zero to remove an arraylt, or through lamoda
unbinding, will eventually be reclaimea by the systain.

Some functions have not been implemented because Lheir purpose
has been fulfilled by other features. For example, SOULE is very much
like a functional = its first argument selects one of the sixteen
possible boolean functions of two variasocles, which is then applied to
the remaining arguments as & 36-bit logical bitwise operation = and
thus thare is no nead for LOGOR, LOGAND, or LOGAOH. Similarly the
excellent deougging features of the monitor-like system LDI, ana Lhe
other features of ITS make the funﬂtiﬁn of DUWF unnscessary. In place
of TEWPUS=FUGIT, the MACLISF user may readg a real time internal clock
{accurate to ahnﬁt 5 microseconds), ang may read a run—-time clock to
measure C.P.U. running time usea by the job which read it {(accuracy
gepends on changing condltions within ]IS, but at best is about 02U
microseconcst. oUPY ana CP1 oo not exist = one may cbtain a copy of
an s—expression 5, down to atomic level, b?

substINILs NILs s]
and a copy of the top level of a list 1 by

appenal ls HILI



sUBLIS nas been impleméented very much as shown ler caade Llsfd on page
Yo of LISPl.5F4, so that no unnecessary CUns”ing 15 gones howsver 1
uses an cd test and requires that all the dotled pairs ol the Tirst
argument e of the form (U . V) where U is &n atoam itihls last
restriction allows & clever and speedy laplementaticnl. S5ince there
is no 5L1155+ and consaguently only SPcCIAL values, there 15 no nesad
for APVALS, nor functions C5ET ur. CacTu. The functilon FUWCTICW is
functicnally eguivalent te QUOTE, put 1T the HACLISF user needs a
FURARG binalng with &an a=list of the limiteo form cescribed on page |,
he will cobtain it using the function *FUNCTION. Other functions nave
not been implemented at all, and &s vyet there has been only one
incident in which & user desirea any of them: CCONC, SEARCH, UOHEF,
PAIAR, RECIP, EXPT, LITER, SELECTW, SPEAK, COUNT, UNCOUWT. Hone of the
functions of the compiler or of LAP are normally resident in the
system - ses page 34 about their usage.

ERRSET is the WACLISP equivalent of ERRORSET, and since there
is no a-list'nor any means to trap ﬁut on excessive consing, there are
no arguments passed along for these two Tfacilities. ERRSET is
implemented ﬂs.an FSUBR and EVALZing

(ERRSET EE 1)
will return listleval(EE]] if mo errors ars encountered during the
avaiuatian of EEj otherwise at the occcurance of an error, computation
will be interrupted, the state of the system restored to that just
before beginning the evaluation of the ERRSET, and an appropriate
message printec cut if evallil is non=NIL. For all errors generated

oy the system, EHRSET returns the value WIL, but if the function ERH



is callec woauring the evaluation of EE, then a narmless srror is
createc (wilth no corresponuing nessage) and the croument to cik is
returned as the wvalue of tha LERRSET. Typing & ocn the console
generates an error with tne message “LUITY, wenerally, one aoes not
Wwlsh Lo Suppress error messages, 50 an alternate short form - is
provideds
(ERRSET EE)
evaluates jJjust like
(ERKSET ec T)

In view of the lamplementation of Input/0uput for MACLIZF {see
pages 23,24}, it is hardly necessary to mention that none of the
functions in Appenalx F of the LISP 1.3 Progromoner’s Manuasl are
neededi ana furthermore there is no initial set of character objects,
since there is no cifficulty in reading in objects with bizarre names
using the slash-sign convention for “quoting" characters in the input
string {see page 27). Although the $5 convention for reading strings
a5 atoms 1s not girectly implementea, it may be simulated through the
device ol a HEADMACRU character {see Example 4, page 3@}. ror really
oddball atems, the string-guoting cnnvéntinn saves the effeort of
naving to “guote" every non—-alphabetic character in the name. The
functions EXPLOLE ana EXPLOUEC provice - the means of breaking up an
akom dinto a list of the characters of 1ts PHAME, using respectively
the conventions of PRIkl ana PRINC {(see page 7)s FLATSIZE ana FLAIC
are squivalent te “l{xlilengthlexploaelx]1]] and to
slxlslengthlexploaeclx1]] respectively. AEAULIST is the means to

apply <Al to a list of cnaracters rather than to the string of the



current input channel. RAKNAM also takes a5 arguaent a 115t ox
Characiers, and creates an atomic object whose rFodub 15 COmpOS2a  IFOT
tnosa ¢naractarsy this new object is not lalcHW 4.

velele, a new function, is providea as & wey to s5plice out an
glepent [rom a list tin effect uwusing nelacuts the surglcally  tricase
list is5 returnea, which will be EU to toe originel list unliss the
glenent removes was at tne Tirst ol the list. Uelkile is  lwolaseanted
a5 an L5Ubr so that it may e appliea witn twe arguaenis, or witn
thrae arouments = the optionzl thiro &rgument oeing @n upper liwlb on
the number of celations to be made. The cefault hkciun Tor The Chird
argument is “delete &ll occurrences". WeLETE uWses an cJUAL test on
aacih element of the list - LELw s providea to operate Jjust lLike
bekzaTe exceplt that an gd test is used. Oroinarily, one writes (Lol
| FO0 (DELY X FOG)D.

In conjunction with the PiUL Teature, a frast, macnine languaos
Ud is preovideu, whose action is mest &ccurately described oy the
nacro=-producad expression used by the compller in place of the LDO
axpressions

(LU0 incex initval stepfun doneép . . ./

gxpands into

(Paly (Index)

(5T« index initval)

tag (CONL (gonep (HETURK 1ndex)))

(3cTe ingex stepfun)
(G0 tagl)

ine compllation of @ LU actually results in the compllation of its

corresponaing fnbGi using &40 witn the interpreter nowaver, recuces Lhe



overheaa of ingex manipulations and is much more mnamonic. Hote that
the fragment inaicatec above by ". . o 1 may incluce prog tags,
wi*s, KelUkin’s, etc. Examplert.

(D0 1 & (ADDI I) (GREATERF I i)

{CORD ((NOT (NUMEERP (ARR I)J)) (RETURN (QUOTE rCOYI D)
(SETW SUM (PLUS SUM C(ARR I11)))

There are specializea I/0 functicons to access and utilize the
various peripheral dgevices attachea to The PUPG/1kE a DEC 344 display
sScopa with character generating features, a light pen input from the
display scope, a4 CalComp plotter with an interpretive subroutine
package {(which accepts a wide variety of commands including the
plﬁtting of a display from the DEC 348}, analog-to digital and
digital-to-analog converters for use.with robotics cevices and with a
few other random gevices, a vlageo signal processor attachable to
either a modified IIl image dissector or an I[IT image dissector {(an
image dissector, or ®"vidissector®, 1s like a TV camera except that the
scan 1s random—access addressable rather than continuous and
sychronized. !} Thare are no card reading or punching facilities, but
all the external memory devices available through ITS are available: a
paper tape reader ana punch, four DEC magnetic "micro® tapes, thres
I8W model 231] magnetic disc units, and a Data Prooucts line printer.
I'nere is also provided a software simulatea vidissector, which can
read storea images from auxilliary memory, so0 that pattern recognition

programs may be tasted regardless of the physical condition of the two

real vidissectors.



Lhe function STATIUS nhas been instzallea &5 c centralizec means
of gueryling the status of many systen variables and concitionss given
an appropriate argument, 1t proviaes: the liuits allocatea ior the

various storage aresas in wmemory, the amount oI core occupled ov il

wu

Joo, the amount of storage still frec in @ givan ares sourraznbly
implementea only for "iree storage, “Iull worys Szpace", ana  "oinary
prograi space"), the activity of tie various I/0 chennels, toe currant
input channel Tor KEAL, the syntactlic category of the 2.0 Aolll
characters usea for input to ngAl, sSwitcnes JTor wvarlocus garbaeoe
collector featuras, Switch to allow reading ol  NULCETS with
non=gecimal digits {hexaaecimal, for example), the switch te Lohibit
decimal-point print when printeut is in ass ten, thg switch to
inhioit direct linking from compilea coga, the switch Lo innlbit
duduress checsing on arrey accessing, and tThe foram of the togx lewvsal
[unction. The function S5TATUS provices a @eans of setting all these
variables or switches, except for the allocatec limits of sterags
AredsSa. A nunoer of system wvariables, including some of Lhosa
mentionea sbove, are ilhplementeg a5 the special value cell of an atom,
anc are tnus referrec to as a “global" wvariabls. There will Le an
appanaix  {APeibwli Clwhnich will explain more of the webtails of using
3TATUS and S5TATUS.

izl 15 & wo=nothing function, rSUck type, which aerely
returns "COLAciHT™. vcwLAAEt, &lso an F3ULE, 15 similar, 2xcept that
Lhe cowpller takes notice of UeECLAAE'Ss,. DrEAR operates as described
on page J and is called like “(bohEAw rOQ s)" = ir the value of 5 is

non=gIL, then "FUO" is printed out anoc the oresikloon entzrec.



170 Channelsts HEAD and PHLI0T

The major input function for any LISP systen 1s EeAl, walch
inputs characters, one at & time, from the current Input channel,
interprets Lhe characters as being the linear-parenthesized
representation of an s-expression f{or \list}, anc constructs the
s-expression in the free stcorage area of the system. ahen a
sub=section of the input string is parsea as an atom token A{for
example, a string of alphabetic characters followea by a spacel, the
functlion IWTERN 1s called to see whether or not an obiject of the sane
PHAME 1s already in the 0BLISTs if so, no new structure is constructed
by AdeAL, but instesa the atom toxen 1is identifiec witn the atomic
object already there. Otherwise, & new object hss to be created, with
PHAKE composed of the inputted characters of the atom token, ana the
raesultant placed im the OLLIST. nather than the caru=oriented
functions STARTREAD and AUVANCE, MACLISP has the new fucntion KEAUCH
which inputs exactly one character from the current input channel &nd
returns the atom .whuse PHAME is just that One character {calleg in
LISF1.5FM & "character object")s as with READ, the runction INTzhi is
invokad. 1he new function T¥l also inputs exactly cne charactesr, but
raturns the numerical atom whose value (s the ASCII valus of the
inputteg character.

There is & unigque input channel for KEAD, HeADCh, anc TYI
whose normal, or cefault, source is the job console. By Lyping il on

the console, or by calling S5TAIUS with an approprisate argument, the



input channel scurce will be switched to an auxilliary memeory file
previously selected by the function UREAD (it is, of courss, an error
to try to chenge sources when no file has been selecteal. The
argument to UrEAD, an FSUEBER, specifys the aevice anu two Ille names,
put if no argument is suppliea, certain convenient cefault outions
will be exarcised. A5 socon as the command is given, HEAD tor H®EACCH
or TIY1} begins inputting characters from the selectec Iile, ratner
than the job consoles the job console 15 re-selected as source
whanever [5 is typed on 1it, or GSSTAIUS is callaeac with appropriate
argument, or when the end-of-file character is5 encountzrea in Lne
selectec file.

Frobaoly, the most important use of the auxilliary aemory as
an input source 1s to augment, massively ana repidly, the store of
named LISF functions. Instead of typing many UErUh*s or UEFPROPYs at
the console, the wuser simply stores a sequence of such forms on a
file, selects the file with UREAD, and gives the 0 command. The top
lavel function is still rumning, s¢ wunder normal circumstances, tLhe
forms are reaw in, cVAL‘ea, and printed out dunless all cutput
channels have been alisenablecl. nhen all 1s dong, Ll.e. tha
gnd=of=file character is Encuunteréqi the job console 15 re-selected.
The E-0-F charater is not actually used by READ or KEADCH or TYl, but

merely serves as & signal to restore the console a5 input source.



Of course, & selected file may serve as a uata source for a
program which uses KEAD. The following sample program reads in &
sequence of numbers, terminated by a WIL, and returns tneir sunm.

{LAMBDA NIL
(PROG (SUM X)
(SETQ SUM &)
(UREAD LOTSA NUMBERS)
(SSTATUS I0C @)
A (COND ((NULL (SETQ X (READIN
(55TATUS I0C 5)
{RETURH ZUM&})
({NUT (NUMBERF X))
(EAR (QWUOTE (NON=KUMERIC IW FILE))I))
(SETQ SUM (PLUS SUM 3))
(GO AJ))
To illustrace some other features, the example is re-written noting
(1} the switch for input channel source is actually the value of the
global variable ¢Q, so in this particular case, the I0C {for I/0
control) commands may be replaced by a SEIQ or lambda bindingi more
importantly, the status may be pushed and poppea by lambda or prog
cinaings (2) if HEAD, implemented as an LSUBR, is called with one
argument, the E-0-F character not only causes the consocle to be
re=selected as noted above, but also causes READ te return its cne
aroument as a values if the E-0-F is not encountered while reading the
current s—-expression from the file, then READ operates normallys thus
& read mode is available which will actually resao an E=0=F and return
some glven guantityi (3) The name of the file is made an argument for
the sample function and APPLY 15 wused with UREAD (insteaa of
constructing an appropriate form to give to EvAL, a necessary task if
APPLY is not capable of applying an F-type functionl. The revised
exoample does not require a NIL to terminate the numbers on the file,

slnce the c=0=r causes read to return an unlikely guantity.



(LAmooa (FIL)
(PrbG (ol & fu)
(ol SUs &)
taPrlY (UUCTE UkkAL) rIL)
(oeTa ta 1)
A (C0HLD ({ed (5cTW A (fchAl (WUOTE rlCei=c=L=F)3ii
LLUOTE rl02Y=C=0=F1)
(ReTURKH aUal))
(CHOT (HUKEBEaF K1)
(chR (QUOTE sOW=iUsgHIC L. Floeid)d)
(STl SUd (PLUS sUL K1)
(GD A0}

The syntax wsed by READ to parse the input strean of

chardcters inlo an s=expressicon is alacst luentical Lo trnat agescericasd

)

on  pages 4 and 24 of LISF 1.5FMi & few axtensions, one of thewm very
powerful, are noted below. except Ior strings representing nucerical
oo jects {on of the more complicateu tasks for AEAL}, the syntax is
very charecter orilented anc context-inuepenuent. Trius the characters
mzaningful to HEAL Tall into nine categories:

(1) alpnabpetic, f.e. WA®, 9Wp", ebtg., &nd extenced
alphﬂbgtiﬂ. &'g' Illll‘ H*"‘I "5"1 H..‘.II. H.......Ilr Etc-
(£) gecimal cigits, i.&. WinW, w2 wzn ., . Wy Ny
{3) context=-dependent number modiifers, i.e.
(3a) "4 for fixed point scale JaclLor indicater,
(3&) “g" for fleasting point exponent ingicator,
(3c) "e¥ for a left=-shift in base £ notaction,
(3ul) “+¥ gna "= for algebraic sign,
(3el) """ for ceclimal point;
(4) open parens, l.e. ("
tj} 'n-l'DL'-' I-I-Ei H-I-"
(6) cluse parens, l.e. "}@
(7) rubout (ASCII value 177}
(g) the literal-character-guoting chéracter, f.z. /0
(%) macro characiers, specifliable under program control.

CXCEpt when preceeced by & slash, all other charscters encounterea oy
MeAL  are  siwply lgnorea and Jdiscarded. wot  surprisingly, toe
context—dependent cnaracters of categery (3) are alsc includeas 1in

oLner categories &5 well,



I'he slash is the standara literal=character-juoting cnaracter,
which means It is usea to incorporate non-alphabetic cnaracters into
the print=namas of literal astoms, ano any ASCII charsecter axcapt
rubout which follows slash in the incoming charucter streaan will oe at
that point treated as if it were of category (1) {(see bottom nelt of
page 7 for examples and more aetails). Attually, any maximal string
of composed of cnaracters from categories (1) and (&) will normally be
parsed as a literal atom token unless it consists only of aigits, in
which case, of course, it is parsec as a number atos token. Thus,
MlA®™ 1is a perfectly gooa literal atom token Ior JACLISF, and
incidentally, so is "/1&" since the flrst cheracter will De inputted
as category (1). There Is no limit of 3¢ characters for atom PHALES,
as suggesteo in LISP1.5PM. A feature is provideo in which any string
composec of letters &na aligits ano preceeded by & Y+ or "= is taken
a5 & numoer token, using WAwW, uWEw  WCH_ i % a5 supra=-decimal
aigits. The feature is not normslly turned on, ana may be switched
with SSTATUS. |

nhen inputting from an auxilliary memory file, the rubout
character Is 1§naram. but when Inputting from the job console, the
rubout character causes the preceeding character to be "ruboed-out®,
l.es it i5 removeoc from the buffered input string, and imnediately
printed back again on the console to announce its removal. [Ho special
cnaracter, or sequence of character is necessary to signal the sng of
an s—expression since it is determined wholly by syntax. Needless to
5dy, wneén one sS=expression’s worth of characters are fuly Iinputtea,

typing & ruoout will have no effect on them, for the READ ing will



Auve oeen acconplisncas

[ne syntactic catefory of any chearacter nay oo inspeactas  with
SiATUS, and way actuelly oe alterec with 351ATUS (see puga 214, liwis
e eoule re-specify "[" €0 e in category (4), or "Iv Lo be Lo (o),
instaau ol in fIJ; {The unfcrtunate user coulo even senc nloas=li up
the AcAl stream without a parens by soutting ofI Lhe category (4)
meaning for "(v}. oyntax information is stor=eo In & 2id=worg taole,
along with & PLANME trenslations the latter Tfestures finos 1tz uze
primarily in converting "a™ into "AR  MWo#d into “p", ztc. so Lhat one
neau not continually hola down the sShift key wnen using a wocel 37
teletypea. (Medel 35 teletypes ang GE consoles nave only 14l
characters on their keybooard - lodgdel 37 teletypes have sll 2
cnaracters of the new ASCII alphabst). dowever, "s/a* will still be
Inputteu as "a®, {hote that all syntactic ana translatlon properties
attriouted to cheracters only apply Lo the opsractions ol REAU. HcADUH
anc IYI, explained on page 23, cirectly input ons cheracter.:

The AEADMACRKD charecter loea (5 a means of wusing LlIor
functlons to generate S—expressicns at AeEAd tloey guite slaply,
Wherever a macro charcter appears in an input strean, lt 15 replacec
by tne result of calling an associated functlon. A macro character is
declares and its corresponaing function specified with 55TATUS, and
adach such macro 1s further classifiea into one of four types {probaply
best unuerstood from the exauples belowls (1) elemental, iamealates
(el elemental, velayedy (3) splicing, imaneciates and (4) splicling,
dalayag. Ina first dimension ingicates whether tie result ol the

aszs0ciated ITunctbion i1s to be treatdc as a single element, oF wnhnelbner



it should b2 a list which is appendea, or splicec, ilnto & foruwinc list
tie.e. it is a list fragment’. The secona diwension loncicetes Une
Utima®  at whicn the associeted functlion should e cellesc = since hiead
may oDe called (recursivelyl by tne asscclatew funcbion, it Qs
important Lo specify whether the recursively-calles scAc C[akess 1us
input as those uharac£9r5 immediately following the occurrance oi Lhe
macre charecter, or whetner it waits @nu uses Lioose chaeractsrs coming
in after the first=-initiateg HeiAl nas inputitea LTS sShare. runctions
assoclatea with imnediate macros have no arguaents, Looss with aelayed
macros have one argument, which is opound to the current prouuct of
REAU «
cxample 1. In orger to wuse "s5" in Lne inp;t stream insteaa of
M{QUJIeE s)iw, the character single=guote is5 weclared as eleamental,
immediate macro with function

A((15 list [GUOTE: reaal 1] |
Thus when ReADfing "{(COWNS I “{(rQ0 O YOUMI", &s scon as Lhe
single-guote is encountered, HEAL 15 calleda recursively to ootain (rO0
Ol (10U whicn is then combineg in the call te list, ano the Cinal
result is the same as 1If

(COWS 1 (LUOTE AFOU On YOU2))
were the expression to pe read in. This racility with single-quote
nas oeen aeemea 50 meritorious that WAULISP contains the definition as
part oi its initial structure = one would have Lo remove */" frow the
macro character category, again wsing 55TATUS, If he 4id not oesire
its use.

cxample 2. Using the same function a5 in example 1, let "L be a



splicing, immediate macro. then "{rFrevAL | Y{r0d Qi TQUYIY (2 reau in
as

(FEVAL | WUOTE (FOU dd YOU) ).
Example 3. L2t "<" be & splicing, aelayed macro with function

WLLLI1S
labell foos
hMilxls [eqlxi rightanglebracket] -+ HILj
T+ conslxs foolreacl(l]]l]
Jreacl 1]

The following english gescription of the action of tnls lunction 1s
offereq to the the reader who has not already adducsd its & maximal
sequance of s=eXpressions terminetea by & "»® (5 reed ana & list of
them, in the order in which they were read, is returned. hith mem so
embellished, the D0 example on page 24 coula be rewrittan

(DO I @ (ADU1 I) (GREATERP I N) <)

(CORD ((ROT(RUMBERP (ARR 1))} (RETURN (QUOCTE ~0O0J3313)
(SETQ SUm (PLUS SUM (ARR I)))

>

cxample 4, Although an elemental, ilmmediate type example has alresaay
been given, this one is produced to show how the literal atom string
feature described at the top of page o4 of LISP 1.2FM can be simulated .

in MACLISF. Let “s® pe 3 macro with function

r A
pragllenachi x3 1ls
reaachl ]j
endch 3= readchlli
A X = readchll;
[eqlxi enachl] =+ returnlreadlist{l]Ils
1l *= appendlls listislashi xJ]li
golAlll



The syntax for number teokens is similar to that descrived in
LISF1.2PM, but
(1) the iInput base for integers is not necessarily teni it is foung as
the valus of the global wvariable [EASE, which is initially ssbt  ta
2ight .

(2) "d% does not sarve as an ectal indicators rather #,.» SrVas @5 &
geclmnal indicatori e.g., the string “ew. *, illsgal in Llod 1.., is
taken as an integer base ten regarcless of the value of liASc.

(3} "¢ anc e gact  like operators on two intecer tokans: "afow
results in nuaber & multiplied by IBASE b timess “aeo® results in
number a multiplied by 2 b times. Assuming IbAoe LIs eight, then,
"4u¥0. My, Vhel2, M, "jge3n, and "a4. #2Y all denote the same nunerical
value. |

(4) [t is permissible to begin a floating=point rnumber token with a
decimal pointi however one must remember tne " advice to place spaces
around  a dot which is intended &85 a separator for & dotted palr, but
which eocecurrs adjacent to a daigit.

Internally, numerical objects are 36-bit guantities with one
9f ftwo possible indicators - FIXNUM or FLOWUK. 1hus all record is
lost of the form of the token in the input stream which gave rise to
the numoery, anc it is possible that a printout of the object will not

yield the same string that causec its generation.



ror Pdlil, PRlisl, PRIKC, ana TYO mitput there cre four

indepencently enaoled channelsy each with its own switch In Lhe fors
of & glonel varisbles

(1) the joo consolei non=WlL value Tor #w mecns discnakled

(2) Lhe Jata Froducts line printeri unon=iil for #o  Gedns

enadlad

(3) the JzU 34¢ oispley scope, buffered Tor chndruCier ouiLpus

oy ITas neon=iIL for #i means enablec

(4) an auxilliary memory auaevicae ar remote console,

previcusly salected by the functien Ualilici oon=olL velue

for #+ m2ans enacled.
gince all four switches are varibale walues, their state nay oo pushed
and poppeay along with that of the state of the current input channel
{see pages 23, 25}, by lamboe or prog kinding. Ine variable”s canes
ueriva from tine early implementation of I[/0 control: typing M, T,
L, T, or Th respectively set t., #u, 4L, tx , end #i to non=4IL, andg
typing T, Iv, TE, Ty, or IT sets the raspective switch to KIL.
Althougit these five switches may be changseu with oeld, the function
IuC {and S5TATUS) is provided to perform, by evaluation, the same
action that occurs when & c¢ontrol character 1s tTypea on the jJoo
console. An  output channel selected oy UnwRITz, anc possioly written
on after encblesment, 15 then closeo ana filed with the functlion Urll:z
- the ille structure of I7TS does not permit any other access to tne
output file until it has bean properly closed ana Triled. dptional
arguaents to JrILE are file names, with certain uelfault options, which
will secome tine two names igentifying the Iile on an auxilliary ceaory
gevice,.

aiiegn  Palisl or PRIAC is outpuititing Lthe characters 1Ior a

nunerical object, the base representation 15 not necessarily ten, bBut

the vwvalue of tie glopal variable oA3E, ana if the base is ten, then



guth Anteyer-output=-sting is followea by a aeclial pFint, icr proper
reao=—in under the convention (2) descrioec on page Ju. uwever, Lnds
decinal=point=printout can ba inhicitec oy setting inz globul varlzcle
Falredinl to non=ill. He other Torsatiing leeiurcs et wxest  in
sACLIGF. It is possiole to output in oase represenicetions largesr than
ten d{ana less then thirty-sevenli bul tners Qs still sope wawlouity

apout this feature.



The Compiler, LAF, and Auxilliary Alus
.

any functiens, because of thelr infrayuency 01 dse, are Lot
part of the basic WACLISP system, but may be lowsue. Ln anu Ussu whan
50 casireas Tne LISPF compller anu Lar assencler are two such willizy
rautines. coth are written in LIISP code, as CaFun’s anu readi”s, but
the compiler i5 so large that the initial PLEAS conliguracion nau just
goout encugh core to hold & system wikhh @ compliler loasec in ana lesve
sone ifree storage for Saooth running. As a result, compiling 1s
usually wone only in an augmentec LISP systen eswallishes witit a
compilea version of the compiler. The compilec ciPAifs ana rLada’s
occupy aooul 11,800 147<.t cells and run about tzﬂ times fastaer than
thelr LISP counterparts (for example, with similsar amounts of working
space, compiling the compiler tekes 3l. mindtes uwsing interprated
code,, but only 3.1 winutes using compllea codel. In adaition,
compilec coue requires on the average only about half as many cells as
goes the LISP code giving rise to it, &nd does not reguire The
time=consuming marking phese ouring garbage collection wnich is
necessary to protect the cells holaing LISP code. Although the
compiler Dnay be appliea to functions wafinega or reag into the
embellished system, it is generally useda as a file transaucer - i.e.,
s—expressions ere read In, one at & time to prevent free storage
straing Irow a selected auxilliary memory file, ana LChose which
reprasent function cefinitions, such as (LDEFUN » o+ ) or (LEFPROFP .
. el s dara cokplleg into corresponding LAP code on an owbputbt file.

ror gach sunctionm complleg, the generatec LAF output is & sequence of



segxpressions, ong for each machnine instruction or lavel, terainal oo

Wy @ olla Ihis format is used, rathner than a single=1ish ioruae o3
gescribec In Appencix U of LISFl.3Pe, 50 tnat LAF ooy  lowu
asseably worus one at a time ane thwus avold wicue sbrain 20 iros
storage,. rorms in the input iilé
(UECLARE « o« <)

wnich nave no effect when EVAL eu, signal certein conuibtions to Ghe
compller, such as special ueclarations, etci other foras whlco ore not
function cefinitleons or UECLARE#s dre merely passed froa inaut Lo
output file. This schnemne has worked gquitec well - most aeuoging 1s
done with interpretec code A{which is guite fast anywayl, anoc woen o
file o1 functicns appears secure, it 1s compiled for subsequent use.
althwugh one expects & speec—up In general of acout a factor ol ten,
gdany  Iunctions seam to e limlted oy tne speec oI macnine langusse
oubh?s, SUuch as kEAD or ASSCC, ang some show spesu=ups of less tien o
factor of two.

The first implementations af LAF for MACLISF were entirely in
chiPli=reiPA form, but very shortly an "inner loop" was cooced oy hanc in
Lad and appendec to the file of E{PR’5 in orcer to be bootstrappsa in.
In Tact, %o critical is this "inner loop" that when tne remainaosr of
LAe 15 complles, the ooserveo speeg=dp 15 opnly about & factor of Lwo,
“Lrrantly, tne greater part of this critical leocop, cooprising  zooul
—ww Cells, 15 resiuent in the system, a8 a compromise betwesn Lo
undeshirecle effects of having all 146d instructions in the syston and
s uncesireoly long tine requires Lo bootstrap in tne eritical

portions.



As a language, LAF very closely resembles thet or olohs, tThe
machine=language assembler ceveleoped at the Arcificial Intellicence
laporatory following the style of UeC’s MACKHD asssuolers che  pajor
AQrawodcks are occasionea by (1) the Jdependence on kead for Lapul, ana
(2) the oifficulty of emulating more than a swall supssc of LlLdcs
extensive macro facllities. Tne similarities end tosre, nowever, 10T
LaF 15 &n ln=core assemoler and loaosr, whereas ~ILhs 15 a Cwo=2ass5,
off-line, assesble=-only Systen. Ie incorporate WwILAS assesblea
subroutines into WACLISP, a Tairly sophisticetec relocating ano
linking loacer is requirecs and occceslonelly the extra effort 1is
warrantec over tThe other alternativess (]) merely using LAF,
especially if the subroutines total less than a [lew Ehou s8nd
instructionss (£) cirectly assembling tne subroutines along witn the
entire LISP system. Needless to say, for each slternative, thare are
reasonacle applications for which that alternative seems best suitec.
The assemtble and loau processing of LAFP takes about 14, seconds per
2dudg=wora block of instructions ias measured on an average task = the
LAP code for the compilerl, whereas the action of LIUAS may often be
Ggulcier, On the other hand, LAF neeas only aoout 4ukw cells total for
snooth operation, whereas WIUAS, with & large hnash-coded taole,
generaly occuples In excess ol 4w,wue cells.

& sSupple compilations

{UerU POFSYR (&)
(1EsTHF (CAR L) FOUVARS)
(PUTPaOF (CAR &) (CUR X) {(QUOTE SYald)
{(CAR X1)
would give rise to the rfollowing LAP coue {commentary In sguare

prackets is for illustration only, and is not producea oDy the



compilarts:

(LAF POPSYM SUBRH)

(FUSH F 1) [save X on FLLI]
(HOVE 2 (SPECIAL FOOVARS)) [get value of special
free variasble FOUvAHS]

(HLRZ & 1 1) [get {(CAR &)1

" (CALL 2 (FUNCTIOwn TESTF)) [exacute function TeES[FI
(MOVEL 3 (QUOTE 3YM)) [®5YMY is Jrd argl
(HRAZ & 2 & F) [get (CLR &), Zna argl
(HLRZ & 1 & F) [get (CAk £)1]
(CALL 3 (FUNCTION PUTPROFY) [perfornn PUTPROFP]
(ALHZ & 1 & P) {return (CAr x)]
(SUB P LEBBT1 1)) [rastore PULI
;TEPJ Fl ' [exit]

"CALL" is not. a POP/¢ instruction, out causes & trap to a special
interpretive routine which either (1) acts as an interface petween
compliled code and interpreted functions {e.g., if TESIP is an EXPH,
then APPLY will have to be calledl, or (2) smashes the CALL with a
direct link to & machine Lﬂnguﬂgi subroutine {if the code. for the SUBR
PUTPROP begins on location 672, then the CALL will be replaced by
"PUSHJ P,6T72%).

As menticned alréady on page &, the functions of THACE are
encoded in LISP and stored on an auxilliary file. several other
debugging ailds are likewise implemented and stored on the COM device,
although some have been compiled for greater operating spesads
1) The whole editing package as used at BOLT, BERANEK, and NEWMAN in
their BbBN=LISP i1s available both in LISP and LAP code.

(7)) A debugging aid called 5PY, available 1in LISP codesy 5SPY is
essentially an evaluation controller with & more sophisticated
Lreak-restart facility than BREAK.

(3) A Ypretty-print" and indexer package, in LISF code.  GRINUEF 1is

used to print out functions in a properly-indentec format for easy



viewingi walwldd and CGrlall are fille transoucers for tne Sgae purposed
lubbs scans a file and prepares an incex for it including runctions
defined, iree variable functions {or uncefined Iunctionst relferenced,
and a very bprief analvysis of each defined function.

{4) A oisplay generating package for easier construetion of the arrays
from which tne LEC 348 display scope takes its comianus. Available
both as & machine-language augmented system, and in pure LIaF cous Tor
regular systemnss there are routines toc generate aisplays or points,
lines, <curves, connected lists of points, axes, labelling text, anu a
moveanle cursor.

It has Dbeen noticea iIn LAP, 1In TRACE, ano in the uisplay
generation packages, that some parts can be encooed in LISP only with
great loss of efficiency, while many functiens are for all intents and
purposes just as efficient when encodea in LISF &as when encoded any
obther way. The interpreter, a very ageneral tool, has its

shortcomingss but, for & number of jJjobs, they are just never

noticeable.

N.B. Appendices will appear to explain to the user the details

of using the compiler, LAP, and other such alds as above,



Future Plans

ror some time there has been expressed a hope of spocding  up
Live running of compiled arithmetic progranms, To this enu, we are
working with the MATHLAED project on a new representatlon dfor nuaoers
so that compileg code may hangle numbers directly, réatner than throush
the medium of an amorphous garbage-collectable storeage space, It is
tne consumption of number spaces, and conseguent Ltime-consuming
pgarbage cnllg:tiuns, which 15 responsible for the tiae slowaown of
srithmetic operations in LISP. There will be a FLANUY space a0
FLONUM spaces numbers will be represented by pointers directly into
the appropriate space, without vrequiring an atom header or any ITreae
sSLOrage Space. However, this in itself 1s not sufficient Tor great
wavings = it will only reduce by some small factor the nunber of
auiler conses avallable before a garbage collection is necessary. Lhe
rnovative feature of the plan lies in the creation of two more Linca:
stack areas, the FIXANUM pal and the rFLOWUA pol. When a counpiled
function is entered, a small block of tThe pul area is taken Tor
holoing tThe partial results of numerical computations, and pointars
into the pdl area may be passed along as arguments to other functions
just as pointers inte the number spaces would bej thus no consing nesd
e Jdone in order to pass along arguments to other functions, [
cartain ¢zses of compiled code calling EXPR code, acuiticnal work may
pa regquirec at the interface 1in order to convert mwmbers in Lhe pal
aree lnto regular LISF numbers {see alscussion of "CALL® on pags 37!,

cirtain ovavelopments in hardwars meodifications for the PLdsis



are opening the way for several desirable features in MACLISP. A
naraware paging scheme will allow jﬁbs in the IT5 system to overlap
core areas with other |Jobsi thus a pure-procecure, or re-azntrant,
implementation of the basic MACLISP system becomes faasible so fhet
many active LISP jobs may be initiated with each one reguiring only as
much core as is needed for its own private storage &arzas. In
addition, it will be much more practical to implment a run=time
linking  relocator for the purposes of loading MlDAS-zsseinbled
subroutines into an alreaay running LISP job {& releocating loader
could be trivially implemented now, obut the linking phass, for glebal
symibolic references, depends on ready access to the job’s symbol
tablei this 15 somewhat cumbersome in the current implementation of
IT5, but with the proposed paging scheme, a job which needs to access
its symbol table coulu attach 1t simply by adding to its legal page
allotment those pages of its symbol tablae.) wWe are planning new ways
to store binary programs, both those loaded by LAF and those loaded by
the vyet-to-pe-implemented linking raiu:aﬁ&r. S0 that the whole of
binary program space may be dynamically relocated at will. The next
step, then, is to re-work the representation of atoms so that all
storage areas may be dynamically expanded ands/or relocateds the
garbage collector will then be able, as the execution of the job
progresses, to re-allocate the amount of core assigned to any oiven
storeage area.

The current representation of atoms has led to the problem
aiscussed at the top of page 18, and this problem must be averted in

order to realize the Jdynamic re-allocator. One way of solving the



problem is the creation of a separate space for the storeage of 2o
cut apart from this problem, experience has shown the gesirabdlity
an  "atoim header" space on -nthar grounds. The VALUE, &y and
function properties of an atom are generally of paramcunt foporionce
the aore rapidly they may be retrieved, the better. Jur  cuvyani
thinking on this matter calls for a space of atom headers contaiaiinn,
for each atom, imneaiately accessible polnters to the valie, 7oy
and function {if any) properties, with additicnal bits for garnaoe
collector usages and for a separate space for PRAME storage. e would
expect a speed-up of a factor of two In the Interpretation of

code, and a small economy {perhaps 154 to 3@k} in the amount ol menory
occupiec by atoms. The proliferation of separate storeage spaces
not so bad as it might seem at first, since one of the wltimato
penefits 1s the dynamic re-allocator = the wuser would be Joos
conscious than ever of the separation of memory.

IThe problem referrea to above may be clircumvented by oo
application of the paging concepts allocation is fixed, but each spacs
is made to be very, very large. A LISP job would utilize the Tull
#ighteen bits of the address space, but only those pages whicn have
bean referenced are actually held in memory. The major cdrawback to
this plan is that our hardware modi fication plans do not provide for a
page-on=-gemand interrupti§ but at any rate, this circumspaction is at
best a postponement of the real problem,

come discussion is also taking place on the matter of a
programnacle lormat specification for number print-out: on  the

possiole application in LISP of the "local - global" distinction {ound



in Lne clock structure of ALGOLY &ano on a more versatils /40 chonnel
sturcture 4isuch  as that of LISF 1.¢& at the Stanfors srcisiclol

Intelllgence Laboratory.}



APPEND I X &

Praview of Global Yariablas and Table of Control Characters

MOUUQ, NOCHK, MORET, BAKGAG, GCTWA, *NOPOINT, YRSET all set
accessible switches, namely their own special value cells. Thus (HNCOCHE 5)

accomplishes the same as (ZETD NOCHE 50,

There are & number of glcbal variebles critically pertinent fo

system cperation - a brief catalog follows:

ATOM VALUE OR MEANTHG
BASE Radix to be used when printing out fixed ﬁuint numbers .

Ubied by PRINT.

BPORG When the system is initially loaded, all the memory from

BPEMD BPORG uwp to the top of the core al lotment is availabla as a
kind of amorphous storage (not part of free storage or full
word space. Subroutines loaded by LAP are genarally stored in the
lower end of the space apd Arrays are dynamlical |y stored at the
higher end. BPORG Is adjusted by LAF to Indicate the lowest
currantly available cell of this space, and BPEND is updated
by the array bandler and garbage collector to indicate the
highest currantly available cell.

CHRCT Humber of character spaces remaining in the current cutput line.
PRINT enforces a maximum output line length of LINEL {g.v.), and
when CHRCT reaches zero, a carriage return [s emitted and CHRCT
resat fo LIMEL.

ELIST One means of displaying informaticn on the 340 display scope Is

by the creation of “display arrays" - esch such array is a



ERELIST

IBASE

LIMEL

MWIL

DBLIET

TTY

sequence of instructions to the 340 (ses Manual for usagel.
Dislist is & list at the special array cells of those displays
that one want active. In tima sharing LISP the display is not a

actual ly carried out uhless the [F switch is on {g.w.).

When at non-ERRSET error iz detected, control passes to an
initialization routine, just before re-emtering the top level main
loop. Aversge other thimgs mapc [EVAL: ERRLIST] is performed, thus
allowing the user to add his own two cents to the error receiving
PrODess .,
Radix to be used by READ when converting a number-like string on
input. May be any wvalue from § to 36., except that any number=1iks
string having non-decimal digit must begin with aither +" or =",
EXAMPLES =

If IBASE is 8, then "4J" is read as 39.

I IBASE is 12., Then "14" iz read as |6,

I f IBASE is 6., then "+{A" is read as 27.
The lTine length for PRINT to use. After LINEL characters have
been cutpuited, & carriagﬂ—r5+urﬁ lTne-feed is automatically
inserted. When the job is started up, LINEL 15 set To 72. for

Jobs controlling teletype, and to 45. for those controlling the

~datanats.

MIL

A list of lists: each interior list (of atoms) is called a
bucket. Ewery atom read in by READ om READCH, or explicitly
INTERM'd §is put on the OBLIST. I|f there 1s already an atom of the
same pname on the OBLIST, then no new entry is made to OBLIST, but
instead IMNTERM returns & pointer to the already-existing atom.

When job Is started up, set to MIL if at teletype, to O If at GE



Datanet.

Here "x" and "y" are used as meta-characters. Typing[¥ -

On a job console, or evalwating (10C x) or (SSTATUS 10C =)

gets the x switch to non-KIL.

of the atom #x - up-arrow = -, except for G and X.

The % switch is merely the value

Each switch,

except for A,G, and X has a corresponding control character to

turn it off (set to MWIL), denoted by v.

ki

Meaning of Switch

Aval lable To user, not wusad by system.
Enable line printer to racaive PRINT output.
Turn on output of garbaga collactor
statistics (one set produced at each

col lection)

Enable displaying from the display arrays
on DISLIST.

Unconditional quit, not casght by ERREST.
In time sharing, furn on the D15 devices to
recaive PRINT output. (Physically, the DIS
device is The same as the 340 display, and
one cannot wuse them simultanecus|y).

seize the Calcomp plotter facility.

Let READ recelve [ts Input from fthe
currently selected input file, rather -than
the job consola.

Enable the currently open cutput file to
receive PRINT output.

Disenable the job console from receiving
FRINT output.

Quit, acts very much |ike an Infernal error.

Crcned

E

-

{ nane)

¥

[ rcrves )

control x



APFPENDIX B
zoma Al locator Goodiaes

When a LISF job is started up under time sharing, the system
first Interrogates the user as to the allocation of memory for the various

storage areas used. The system types:

LISP 105

ALLOCT

If the user then types "N" for "no" cartain standard cptions are
taken: it he types " ¥"for "yes" the system then prints out, line by
line, the standard options, pausing at the end of sach line for the user's

responsa.

CORE = 22
Fes = 400
FLS = 400
REGFOL = 777
SPECP = 777
FXDL = 7
FXOL = 7

By typing a space or carriage return, the user accepts the standard
opticn; by typing a number, he specifies that allocation {a string of
digifs s a number base eight; a string of digits followad by a

dacimal point is & number base ten): by typing an alt-mode all



remaining standard options are taken and the allocation phase completed;
by tvping a c<ontrol=G the al location phase is re-started.

In the currant system, CORE cannoct be specified to be less than
20 blocks (16K words). Regardless of the specification for FX5 (FIXNUM space)
remaining after allocation is divided as fol lows:

M/32 to frea storage and 1/32 added to the FX5 allocation. This Is partly
rr'r::r‘l"wzll‘l‘ed by the fact that PMAME strings are stored in FX5. FL3 is FLONUM space,
regular and special POL's are obvicus, and the twoe number POL's will be ralavant
only for functions compiled by the soon-to-be seen fast arithmetic compiler.

fdditional core may be grabbed by the system when more binary program space

is neadad.



APPENDIX C - STATUS and SSTATUS

The FSUBR's STATUS amd SSTATUS are implemented to aid in
querying the state of the LISP system; and in setting some of its
conditions. The first item in the arglist is always an atom which
tells what kind of query, or command, is wanted; but some of the other
items may be EVAL'ed, just as with the FSUBR “ARRAY". A dispatching is
done on the first five characters of the PHAME of the first item, so
that 1f atoms like CORE and NOUUD are REMOB'ed, the functions of STATUS
and SS5TATUS may still be properly performed. 1Inm fact, the main purpose
of the function EXCISE is te reclaim from freestorage all those atoms
with SUBR properties whose functions have been subsumed by the STATUS
geries. In the tables below, the small letters %, ¥, n, m, as well as
"dew" and "usr" are used as metavariables ranging over LISP atoms. "frag"
ie used for representing a list fragment.

arglist for STATUS meaning, or value
(CHTRAN n) The character tranaslation value im the nth entry

of the READ translation table.
(CORE) Mumber of blocks of core occupied by the job.
(CRUNLT) A 2=list of the most recently referenced device

and sname. Updated by UREAD, UWRITE, and SSTATUS
{DATE) A 3=list with vear, menth, and day number. E.g.,

on Mar 20, 1970, this would be (70. 3. 20.)
(DAYTIME) A 3-list with hours,; minutes, and seconds of the day.
{FREE ¥) Amount of space available in the v space. Currently

y can be BPS for binary program space, FS for
freeatorage, FX& for fixnum sapce, FLE for [lonums.

(GCTWA) The GCTWA feature (see page % of Progress Report)
consists of two switches - one forcing TWA remowval
on every garbage collection, amd one forcimg -
removal only on the next occcurring collection.

o nefither switch is on
1 "next" switch is set, "every" ia off
10, 11 "every".switch is set.

(I0C =) If = is & character with a control action listed
at the end of appendix A, the this gives the
etate of the = gwitch. E.g., (S8TATUS I0C B)
tells whether the line printer is selected.



(MACRD =)

(RUNTIME}
{SYNTAX n)

{TIME}
{TOFLEVEL)
{TTY)
{UREAD)

{UWRITE)

(+)

(x)

arglist for SSTATUS
{(CHTRAN n m)
{CORE n)

(CEUNIT dev)
(CRUNIT dev usr)
(FREE BPS n)

HIL if % ig not & READMACRD character (see
Progress Heport page 27); otherwise a number
deacribing the type of macre.
Q normsal
1 splicing
10 delayed
11 delayed end splicing

game a5 calling the function RUNTIME

The blewise decompoaition of this number tells
the syntactie categories of the nth entry in
the READ syntax table for characters.

game a8 calling function TIME

KIL if standard; otherwise the form used in the
top level functiom (see Progress Report page 10)

HIL if job conscle is & teletype, O if & GE datanet.

HIL 4if no £1le currently open by TUREAD; otherwise
8 list describing the open file. E.g.,
(FHAME]1 FMAMEZ dev ust)

HIL if mo device open by UWRITE for writing;
otherwise a Z2=1list describing the currently open
device in format similar to CRUNIT

T 1f the super-decimal digit feature is enabled,
MIL if mot. This feature allows non-decimal digits
to be uged when reading in npumbers: any atom
beginning with "+" or'=", except those single-
character atoms themselves, will be interpreted

a8 & number base IBASE. "A" is used as the tenth
digit, "B" the eleventh, etc.

If = ig among BOUUOD MOBRET *HOPOINT MNOCHE
*RSET BAKGAG, returns the value of the associated
switch.

meaning, or action

Bets nth character tranelation to m.

Requests the time-sharing system to set the job
core allotment to n blocks

Updates the "current L/0 unit" to be device dev
As above, but also changes sname to uwsr.

Will insure that there are at leaat n woerds
available in binary program space. Will increase
job core alleotment if necessary



(10C %) same as EVAL'ing "(IOC x)"

(MACRO % ¥) Sets x to be a READMACRO character of regular
Cype with sssociated function to be the walue of v.
E.g., (SSTATUS MACRO /' (QUOTE (LAMBDA NIL
(LIST (QUOTE QUOTE) (READ)})D)

(MACROQ x ¥ §) splicing type (see Progress Report page 27)

(MACED x v D) delaved tvpe

(MACED x v & D) splicing and delaved type

(EYNTAX n m) Bets nth entry in READ syntax table to m.

(TOPLEVEL x) Sets the toplevel form to the value of x. {see
Progress Report page 10}

(UREAD frag) same as EVAL'ing " (UREAD frag)"

(UWRITE frag) same as EVAL'ing " (UWRITE frag)"

4+ ¥ Sets the state of the super-decimal digit feature
to the value of y. see above under STATUS

x v If ® 18 among MOUUQ MORET *NOPOINT WOCHE *RSET

BAKCAG, —sets the state of the = switch to
the value of v.



AFPENDIX D

Some About Trace and Break

The FSUBR BREAK is used much |ike a break point in DOT. EWAL'ing
(BREAK ident predicatel
will do nathing {f the value of "predicate" Is NIL, otherwise will print
out "ident" for identification and than enter a READ=EVAL=PRINT loop. Thus
one may inspact variable wvalues and initiate certain remedial actians,
Exiting from the break, which returns MIL §is done by typing the atom

" P" U oalt-mode "P" O space ). An alternate form is available:

(BREAK [dent predicate retval)
in which the value of "retval” 15 returned, rather than NIL. By using the EDIT
feature, It Is very convenlent to insert and delete such "breakpolints" In
EXPR and FEXPR coda.
TRACE is a FEXPR generally found on the File COM:TRACE LISP, used fo ftrace
the flow of control of a program. A function which has been set for fracing
will regurgitate a little note esach Time the function is entered or exitad.

The basic format of the -message iz, for entry,

{m ENTER FOO arglist)
where n Is the recursion depth at this call to the function FOO, and arglist s
a list of the arguments for +this call [unless foo is a FEXPR or FSUBR, in
which case arglistis directly the one argument - see Progress Report page 2],
Tha base format open exiting Is
{n EXIT foo valual

whara wvalue is The returned value of function Foo.



The usar, when setting up & trace, may request other values to be printed out
aleng with these messages; for example, if (COR L} and (PLUS BRORG LOC) were

requasted, a  sample message might look |ike
{6 ENTER LAPEVAL {4) 27 { D4} 35001

when L = (4 O 1), BPORG = 34777, LOC = Z and the argument to LAPEVAL is 1.

Similarly upon exiting one might see:
(6 EXIT LAPEVAL 4 A7 (0 4} 350043

In addition, the user may request (1) that only one, or perhaps neither, of

Yarglist" and "walue™ be printed out, (2) that calls to the trace-sat

function ba"traced" only when a glven predicate is true, and (3) that a

conditicnal break point be placed as the first item of axecution of the function.
Tha syntax of a trace request is very simple - evaluate "(TRACE ri r2

ral" where each ri is elther an atom foo (meaning set up a trace for function

too with standard options) or a list Interpreted as fol lows:

ifoo c) Trace foo, showing both Yarglist" and "value" if © =
BOTH; showing neither if C = NIL; showing only "arglist"

If ¢ = ARG; showing only "walua" [ ¢ = VALUE

(foo c s1 sZ,..sn) As above, but alse show the valuas of st, 52,...50.

(oo COMD pred &) As above for " (foo e)"but trace a call to foo
only if "pred" evaluates to non-MIL when foo is enterad.
The atem ARGLIST, where i+ occurs In pred, will have as

value the arglist discussed abowve,



{ foo BREAK pred c) - As above for "{fao )" but
insert a breakpoint with identification foo and

condltional predicate pred, just aftter antry to foo.

Combinations of these forms are permitted, such as {(foo COND pd
BREAK p2 © sf sZ) but one must not forget fo Include c as
part of each individual trace request. The stendard option mentionead

above Is just "(foo BOTHIM.

A function set for tracing actually has its function PYOperty altered -
SUBR's an EXPR's are turned into & new EXPR; FSUBR's and FEXPRS are turned
inte @ new FEXPR, This new function handles the administrative details of
tracing {and incidentally may introduce quite an overhead in fimel), and
applys the original function to the arglist. One may reset functions to

their criginal pre-trace definitions by avaluating
(UNTRACE fooi foo2 ... foon)

EVAL'ing "(TRACE!™ ~will yleld a Iist at all functions.currently being traced

and EVAL"ing "(UMTRACE}" will untrace all such fumctions.

EXAMPLES:
1} Te trace BUGLE whenever its first argument Is greater than 30,
and to trace all calls to HORBM, Let us suppose that BUGLE s
defined as (DEFUN BUGLE (N X) (PROGZ (SLEEP M) (HORN X1)}
then -
(TRACE HORN (BUGLE COND.(GREATERP N 30) BOTH})

will do tha job, as well as



{TRACE HORM (BUGLE COND (GREATERF (CAR ARGLIST) 303 BOTH)

2) To Trace DEFFROF, showing only the arglist, and breaking
whanavar a properfty s about to be defined for BLAND:

(TRACE {DEFPROF BREAK (EQ (CAR ARGLIST) "BLAND) ARGH)

3 To trace LAP, showing only the amount of binary program
space

(TRACE (LAP WIL (DIFFERENCE BFEND BPORG)))

Ona of the functions on the TRACE file is """ EVAL"img "(20" will
causa a printout of a short note about TRACE with a few example uses. Since
this note takes up valuable space, it may be removed by EVALYimg Y(7T1M.

Eval"ing Y(REMTRACE}" will remcve all the functions of TRACE.



APFEND|X . F

Using Index and Grimd

PA&RT { Introduction

INDEX and INDEX1 are functions that permit the LISP programmer
to more easily debug or interpret long, complicated LISP programs.
Both functions operate on some file indicated by the usear producing new

file with information for each function defined by a GEEPROP or DEFUM:

t. Tvpe (EXPR, FEXP®R, MACRO)

2. arguments

3. free variables appearing

4, free variables modiflied by ZETH

8. functions in the file used in the definitlon

f. functions in the file that use the function definad

T. wundefined functlons or free variables wsed as function names

Additionally, notes are made of any functions deflined more than once

and of any function already dafinad in the system.

To use these functions, one need only perform the following

Incantations;

{. Read In some version of GRINDEF:
(UREAD E GRIND COM) {”. {ufehd GRIWD ELsf r:m’“ﬁ]]
I [ means type (¢ with CONTROL key hald down]

2., HRead in indax fila:

(UREAD INDEX  LISP COM)

B



3. Attack file:
CIMDEX ] filename! filenama? device user)

CUFITLE filename 3 filename 4)

The commentary will then appear in a file bearing the names
filenamel and filename 4 as selected by the user.
it should be realized that the functions involved are still in

development, and any bugs should be reported to Patrick Winston.

WARNING: +the programs assume all flxed point numbers are decimal.

Fart |1 Datails

Three free variables give the user some control owver what the
program does, namely ALPHA, GRIND, and GOBBLE. MNormally all come set
to T. |f ALPHA is sef to MWIL, the information for the functions appears
in the same order as do the functions in the file under investigation. |If

ALFHA 15 set to T, the order is alphabetical.

If GRIND is set to T, function definitions are added and are
interlesaved with function commentary. If GRIND Is set to MNIL function

definitions are omittaed.

If GDEELE s set to T, GRIND is set to T avtomatically and all
commentary appears inside the scope of COMMENTs. The idea Is to produce
an’ indexed flle that LISP can read and enjoy as if it were the original
file, Material in the original file that is not the form of a function
dafiniticn also appears in the indexed versicn according to tha following

rulas:

t. Anything appearing after the flrst function definition in The



original file appears at the end of the [ndexed file.
2. Anything appearing before the first function definition in
tha original #ile appears at the beginning of the indexed

file. This prevents misplacement of any l|oader coda that may

be present.

With GOBBLE set to T, 1t Is believed that all material in the original
file will be retalned, even multiple definitions bearing the same name.

INDEX 1 js designed to paraliel file conventions of GRINDI

returns the same sort of thing as its value. That is:
CIMDEXT fnd fn2 dev  wser)
L raturns
(UFILE fn 4 fn 2 dev wuser)
IMDEY differs from INDEX4 omly in that the

usually desired fila

naming Is done autometically according to the following conventions:

l. If GOBEBLE is set to T, the indexed wversion has the same

namas as the original fila and replaces it.

2. Otharwise, if the original file has the names fnl fnd, then
the .indexed file will have the names fnd INDEX. Haturally
care should be teaken to avoid indexing a file with the names

tnd IMDEX, for the original file will be lost In this case

and the Indexed fila will not contain all of its matarial.

EVAL'ing "{REMGRIND)" will remove those functions read in from the

GRIND FILE; "({REMINDEX)" will remove those read in from the INDEX FILE.



APPENDIX |
USING LAP

This section of this memo replaces entiley A.l memo 152,

FPOFP =6 LAP.

INTRODLCT 1 ON

Lap is a LISP FEXPR (or FSUBR when compiledMwhich is executed
primarcily for its side effect == namely assembling a symbolic listing into
core as a machine language subroutine. As such, it is about the most
convaniant and rapid way for a £I5P user to add machine language primitives
to the LISP system, expecially if the functions in gquesticn are in a
developmental stege and are ressonably small {e.g. 1-500 instructicns).

Also, The LISP compller currently gives its result as a file of LAF code,
which may then be lcaded into core by LAP.

Virtually, any function definition, whether by DEFPROP, LABEL, or
LAP, 13 an extension of LISP's primitives; and as in any actual programming
language, the side-effects and global -interactions ara often of primary
importance. Because of this, and because of the inharently broader range
of machine Instructions and data formats, a functian quite aasily
described and written in FOP-& machine |anguage may accomplish what is
only most painfully and artificially written In LIZP, One must, then,
conslder the total amcunt of code in each language o accomplish a given task,
the amount of commentary necessary to clarify the intent of tha task giwven
the program (in this sense, LISP code rates wvary high == a major benefit of

the confinas of Lisp is that a good program sarves as its own comment,



and usually needs no further elucidation), and other considerations of
programming convenience.,

Experience has shown that many such subroutinas may be assemb|ed
by @ small system, i.s. one such as the current LAP, without conditional
assemb Iy, macro, or sophisticated literal generation features. These
latter three features are the major differences in language between LAP
and MIDAS; the major operational differences are (1) LAP iz one-pass and
MIDAS 15 two, (2} LAP uses the LISP READ function while MIDAS 1s more
efficient, and (3} LAP assembles directly Inte the binary program space of the
LISF system using It while MIDAS files 1ts assembly on a peripheral
device (which must then be loaded by STINK or the |TS version of DOT). Thus
one must conslder the scope of his task In relation te the language desired
and the cperational ease preferred.

Unfortunately nelther LAP nor the system reported In A.l. memo Mo, 127
solves the problem of loading and running arbitrary binary programs jointly
with LISP, Something Ilke a runtime primitive STINK 1s needed for LISP,
and such may have to wait for further development in the multiprogramming

capabllities of the POF-6 systems.

FORMAT OF LAP LSAGE

A call to LAF 1s even a little more non-standard than indicated in the
introduction in that not all the arguments are Included in the S-expresiion
which commences assembly -- LAP repeatedly calls READ, operating on the
S-axprassions read-in (from the current Input device and filel, until = HIL

is encounterad, at which time assembly is terminated. Only after successtul



tarmination of assembly is BPORG updated and the correct flag [(SEER,
FSUBR or LSUBR) inserted on the property |1st of the atoms which name
the newly assembled functions. Thus a call to LAP would look Ifke the

Sejuancea .

(LAP  FOO  SUBRD
(DEFSYM a 1)
(HLRZ &, 0 (AR
(BoP) P

MIL

| nsteaducf the fol lowing written in a hypothetical style after 7090 LAP

(LAP  ((FOO SUER 2)
(HLRZ &, O (A))
(POPT P)
((HLRZ . 554+27.)
(POPJ . 263+27.)
(P . 14)
a . 1)))

Tha mast sericus drawback to the latter style is the strain placed on free
storage, since the entire expression would have to ba in core before
avaluation could begin.

Hence svaluation of (LAF name indicator) or (LAF name [ndicator
address update) begins a LA assembly for a function with name "name" of
Type "indicater" {(such as SUBR, FSUBR, or LEUBR) and with entry point

the first location assembled into; if the second form (s used, assembly



begins In The core location "address" instead of BPORG. Ordinarily at

assemb |y termination, BPORG is set to the address following the last one

assemb led inte by LAP, but if “update" is NiL, BPORG 1s undisturbad.

LAF acts on the guantities it reads as follows:

QUAMITITY

MIL

atom

{DEFSYM atom saxp .

[ENTRY nama type)

LEMTREY namse)

[COMMENT | ist-=fragment]

ACTION

Terminate assembly and return. Literal gensrated

constants are assembled into core, symbol definitions

from DEFSYM are flushed, and worthless atoms are

removed from the oblist. A common arror is to forget

that carrlage return and E-0-F are not atom break characters;

MIL should be fol lowed by a space.

Assign "atom™ an assembly symbol wvalue equal to the
address of the current assembly location: no additional
assemb |y takes place. Thus one uses atoms for symbolic
locetlon tags and under certalnm condltions these names are

entered in DOT's symbol fable (see bélowd.

i
o  atom sexpl b

Assign "atom " nn.assemh1y symbal  walue equal fo

{EVAL sexpl; no addiftlional assembly ftakes place, and

these names are not entersd inmfo DOT's symbol table.

Sets up "name " as a fupction of type "type" (dafault-same a=
call to LAP)and with entry point the current assembly location;

no furthar assembly fakes place.

By a neat technique, no unnecessary atoms remain on
the oblist after assembly; however, during assembly,

there must be encugh full word space to hold prirt nemes



far all the atoms amd to hold the Aumerical values

of a few LISP numbers.

{SYMBOLS t-or-nil} HNIL turns off and non-NIL turns on the LAP feature which
passes along symbolic location names to tThe job symbol
table; currently all symbols so entered are treated
as global, but at some Time in the future this may be
modifled fo permit flexible duplication of symbols in
several programs. | the SYMBOLS pseuvdo-@r appears anywheare
in an assembly, then the names of functions thus def ined
will be transmitted to DOT. NOTE WELL: Although LISP
atoms may be composed from upwards of 80 characters,
those used as tags which are enferad in the symbol table
should include only legal MIDAS characters, and
only the first six characters of +he atom's PNAME are

relevant +o this feature.
(BLOCK B} A bleck of n words iz assembled, each containing a zZero.

(ASCIl sexp} The s-expression sexp 1s EXPLODEC'd and the resulting list
of 7=bit characters is assembled, 5/word, in successive

words .

(S1XBIT  sexp) Same as for ASCII, except that the é=bit form of the

character is used, G&/word.

(=]
(= ; llst-gragment}) = (which Is not one of the above  {tems)
iz evaluated by LAPEVAL and the numerical result stored

in the current assembly location, which is then advanced



by one. For the meaning of LHFEUHL, see the next section on
assemb ly constlituents. "list-fragment” iz ignored and
may Serve as camﬁanTarf isea note above for Comment).

(= yl

ix v ; list-fragment) Same as immediataly above, but (LSH [LAPEUAL yi 23.)
iz added into the stored result,

(wyz ; list fragment) Same as immediately abowve, but (BOOLE | (LAPEVEL z)
777777) Is added Inte the stored result. Forward
refarence symbols may appear only in the z field; that is,
I+ a symbol is used before it is defined, it must be

" used only In the address part of the instruction.

(% v 2 Wl

{2y zw; list fregment) Seme as Immediately above, but the numarical value
of (LAPEVAL w), treated as a 36-bit quantity, is swapped
lett-half for right and then added into the stored result.

LAF initially checks whether or not the atom @ is a member of the Iist _°F

forming the assembly word, and If so sets the Indirect bit (bit 13) and dalafas

the @ f;nm the Indicated assembly; thus an & does not count as one of %, v, z,

or w.

One notices that there is a strong similarity between LAF format and MIDAS
format, an essentlal difference being that LAF processes assembly quantities "in ords
IéT—Tn—rrgh1. to determine which 1s the AC fleld, which the address field, and
which the index.flald. One must remember that the LISP read routine imposes a
certain dissimilarity in text for Thg two assemblers, since "space", "comma",

"laft paren”, and "right paren™ are the only break characters for atom names.



Hence spaces are necessary on both sides of a semi-colon or at-sign

when they are used as described above, and the AC fleld may not be ommitted
in instructions like (JRST O ADDRESS). The index fleld need not be
enclosed in parentheses as in MIDAS, but in general there 1s no harm in

doing so (see "anyother |1st" under assembly constituents).

NORMAL AND ERROR RETURMS

Hormal Iy, after terminating assembly, LAF returns & list cnn+alﬁing
the current wvalue of BPORG, and the names of the subroutines just assembled
{thera may be more than cne entrl for the routine assembled, the principle entry Is
declared In the call to LAP and others may be declared by means of the
pseudo-operation ENTRY). |If, after assembly, some referenced symbols
remaln undefined, the message "UNDEF SYMBOLS"™, followed by the offending
atoms, will be printed cut. [If there were any mutliple-defined symbols,
TAMBIG SYMBOLE" is printed along with & list of the offenders. One

particular disaster caught by LAP Is Indicated by the message "not encugh core".

Since LAP uses so many free variables (and for several other reasons),
ona should allow a call to LAP to exit by itself rather than stopping it

with Ec:-r some other ruse.

ASSEMBLY COM3TITUENTS

Each of the parts of an assembly word (x, v, Z, or w} is evaluated
by LAPEWAL, in the context of the assembly, The assambly quantities whose
CAR is among DEFSYM, EVAL, COMMENT, and SYMBOLS, may bBe tarmed

pseudo-ops in that they do mot glve rise to an assembly word but merely



give directions to the assembler. & and ; are Treated specially by LAP

and ara not oconsidered

QUANTITY

riumbar

HIiL

gtom

QUOTE sexp)

(SPECIAL atem)

CFLUMCTION atom)

to be assembly constituents.

VALLE

b ]
Fixed=-point numbers always evaluate to themselwves,

Floating=point numbers in an address fiaeld may produce
Random Fesults.
Same as (QUOTE NIL).
The address of the current Bssembly location. Same as
in MIDAS.
Except for @, ;, *, and NIL, all atoms evaluate to
Thelr assembly symbol value; i.e. (GET (QUITE atoml
(QUOTE SYM)),
(MAKMUM (QUOTE sexp) (QUOTE FIXNUMI. . For awample,
(MOVEI 4, (QUOTE (SMALL LIST})) assembles into an
instruction which moves a pointer fo the list (SMALL
LIST) into accumulator 1,
Frevides a pointer to the value cell of "atem"{ thus
(MOVE 1, (SBECIAL FOO)) moves the value of FOO into 4
instead of a pointer to FOD, as would happen if
(QUOTE FOO) were used. In addition

(MOVE 4, (SPECIAL BAR})

{MOVEM 4, (SPECIAL FOO))
accomplishes in a SUBR what (SETO FOO BAR) does in an
EXPR.

Essentially the seme as (QUOTE atoml), buf is used to



QUANTITY VALLE

emphasize That "atom" is used as a functlon name {(see section
on UUD Tnstructions).
(ASCI1 sexp) Provides a 36-bit ascll representation of the first five

characters from (EXPLODEC Sexp).

{SIXBIT sexp) As above, except sixbit representation.

(F xy 2w Literal generation feature, |lke [ = ¥, Z (Wt in MIDAS .
Assembles §£ ¥ 2 w) as described above and provides the
addraess therecf. Similarily, the forms (% =}, (% = v}, (3 = v 2} may
be used. A literal constant is restricted to the z-field
lor address field} of a LAP instruction, but may sppear
nested to any finite depth. Example -, (MOVE 4, (%1.00)
moves & machine floating point number info §, whereas

(MOVED 4, (QUOTE 4.0)) moves a LISP numbar.

STMBOL DEFINIT | QNS

LAF Is Initialized with a few basic symbol definltlons needed by code
genarated from the compller, such as P = {4, and proper addresses for NUMVAL,
SPECBIND, UNBIND, FLOAT, etc. Mot all POP-6 op-codes are pra=defined, but 1f
gna of the missing ones s used in LAF code, then LAP will obtain a correct value
for 1t from DOT. Temporary symbol definitiocns may be made by the user with
the pseudo-op DEFEYM (see section on "Format of LAP usage).

If there remain any undefined, referenced symbols of the end of a LAP

assamb ly, then the ODT symboltable is interrogated to try to find a dafiniticon,



Thus ong can write LAF code as [f [ were being assemblied TogeTher with
the LISP system. When passing along entries to the DOT symbol table, or whan
looking up a symbol In 11, any character of the svmbol not a legal MIDAS syl lable
constituant is converted to the character " 7

Four Trap instructions are provided to help link up compfiled code with
other functions, possibly in EXPR forms: CALL, CALLF, JCALL, JCALLF. The
first two simulate a transfer |like PUSHJ) P, FOD; while the latfer two simulate a fransfer
lika JRST FOO. The accumulator field of an instructicn with op-code Tn this
sense tells which of the three argument conventions has been followed; In
(CALL n (FUMCTION £} if Oz n=5 s then the EXPR=-ZUBR convention iz used,
with the n  arguments located in accumulators 4 to n; F no= 17, then the
FEXPR=-F5LEBR conventicon Is used, with the one argument located in accuwnwlator 4;
If n= 16 then the LZUBR conventlon 1s used, which assumes that accumulator
& contains the negative of the number of arguments, which are stacked up on
the regular POL last on top, and the refurn address is on the POL before all the
arguments. Under favorable conditions, when CALL'ing a SUBR, LSUBR, or FSUBR,
no further interfacing need be dona and the CALL instruction iz actually
replaced in core with a PUSH) or JRET. The ops CALLF and JCALLF, however, are
nevar raplaced. Similarly, If NOULUD is non-MNIL, the Tnstruction-medify phase is

inhibited.

AVAILABILITY

The COM device holds files E LAF and © LAP. E LAF [s an EXPR version
of the functions necessary to make LAF work, and O LAF 15 a compiled version of
tha same., |If one plans to lead in a file with calls to LAF an I+, tThen he should

first lcad in one of these two LAF files. In the future, this might be done



Automatical Iy, but right now the user must explicitly teke care of loading
in needed auxiilary functions.
Evaling "(REMLAFI" will remove as much of LAF as possible, and the

garbage collector will be able To reclalm its space.

AN EXAMPLE

(LAP DONTFOOF SUER)
(MOVEL 2 (QUOTE PNAME))
(ENTREY DONTFOQ)
(PUSH P 1)
(CALL 2 (FUNCTION GET))
(HLRZ 1 0 1 ; THIS COULD ALSO BE (HLEZ 1 @ 1))
(MOVE 1 0 (1) ; GETS FIRST WORD)
{(CAMN 1 (% ASCII FOO))
{JR5T O POFAT)
(POFP P 1)
(JCALL 1 (FUNCTION PRINT))
NIL

NUMERICAL ROUTINES ENCODED IN LAP

On one of the tapes of Jon L. White, there iz & file LAP routines for
the functions SIM, C05, ATAM [arc tangent], SQRT, LOG [Matural legl, and EXP
[base e]. Also there 1s a flle 8 1AS which s a general matrix inverter and

simultanecus linear equation solver. Calling



C1AS A& HNEW MW M)

parforms gaussian row reduction on the first N rows of the array A {and in
fact ocperates on only the first M columns); so that f M<MN than the MW #+ | =%
through the Mth columns of the output array contaln the soluticns fo the
implicit M-M+l systems of HxMN simulfanecus linear eguations, while the flrst

W columns contain the Tnverse matri=z of A, --- I¥f NEW is "T'" then a new

array of size MxM is declared and the answers are stored in it leaving the
input array A alona; If NEW is 'NIL' then the output array is stored directly
aver the Tnput array and no new array daclarations are done.

Currently, maximization of.pivotal elemants iz not done; thus 1AS wWill
give wrong answars on certain numerically ill-conditioned matricas even
thowgh they be non=singular. It is possible to remedy tThis problem, at some
expansa, |if necessary. IAS also uses & portion of binary program space for

temporary storage and may give an arror massage if not emough spece is available.



APPENDIX

MOBY 1 /0

NWSET Uzad +o sat cartain programmable conditlions for the new
video processor The arguments are in order:
Filter - three bits (3 - 7) to designate the presence

or absence of the color filters over the lens.

confldence - should ba 04,2, or 3. Determines the
speed and accuracy of the video processor, O being

the slowest but most accurata.

rasoclution = that number ef egually-spaced |lnes owver

the field of view = maximum of 40000, CActually, the

video pocessor always dissects the scene aonto a Z0000 =x20000
grid. This merely provides a scale factor for the
arguments To NWID and NVFIX) . For many reasons §000

To A000D s an extracrdinerily good ramge for this

argument.

dim - should be in the range 3 = 47 inclusive, Selects
e of sixteen dim cut off levels., See a hacker for more

elucidation.

®xyZ = Lero means the video processor recaives its input
from the new ITT vidisctor (TVC); non-zers means the signal

comas from the old ITT vidisector (TVEDY,



HYID

MYF X

HIL may be used for any of the above arguments, in which case
the spacified condition is mot changad. Initiallv all conditions

are 0 except resclution, which iz 20000,

Reads the new video processor and returns a floating-point

number [with an information content of ten Lite) which is an inverse
I Tnear measure of the |ight infensity at the selected vidisector
peint. (The manual switch located on the video processor should

be in the "LIN" position when NVID is used, lsa MVFIX when ¥ is in
the "LOG" pesltlen). The twe arguments are respectlve!y absclssa and
ordinate values for the image dissector, and must be fixed-point.

Feturns =1.0 for the dim or dark cutoff condition.

As above for NVID; but is essentially a lcgrithmic measure of
intensity, scalad between 4 and 1777. Returns a fixed point
number. (NVFIX and NYYD will differ at most in the three least
significant bits depending on the state of the "LIN-LOG" switch.
See NYID) . BReturn 0 for the dim or dark cutoff condition.
NYFIX can also read In block mede: VTiX [arrayname: nl] will
assume, for O=i=n , that arrayname [2i] has an x=value and

AFraynamsa [ﬁffF] has a y=value , and will replace the latter by

BVEIX .07, LISP numbers are used both coming and going, but

genaral |y small numbers will suffica,

Ome can weite a small  LAP routine +o fill the flrst n words of

some array for Input to NVFIX, 1f the points to be read are related



M

| P

PLOT

in some  reasconable fashion, In each word the left-half holds
the % =value, the right<half the y-value. and the return value is

im the right=half.

NYSET is used to set the conditions for NYFlXregardless of which
mode is wused. An error oocurs if the first argument fo HVFIX 1s nelther

an array nar a rumbar.

To usze the ASD and D/A converters, open up the facility with a
(MPX ad dal

Where ad specifies the mode of cperaticons for the A/D and da for

the DS& convartar. Lagal ranges for ad and da are:
HIL - leave status alone
0 = ¢lose out device
1 =- gpan davice in normal {image) mode

2 = open device in fast BSCiD mode

Sea the ITS refarance manual for more information about this device.

Reads the Input multiplexer, ASD, channel specified by its

argument (a number = 77,

First argument s a channel number, and second is a value to be

outputted on the 0S8 output multiplexor,

This is just the Plot functicn of Mike Speciner's |nterpretative
plotter. Will reguire some futoring before the user will know

what he iz doing.



PLOTLIST If first argument 15 & |ist constructed Iike a DISLIST, then
[+ will be plotted on the calcomp plotter just as It would be
displayed on the CRT 340, If ocpticnal second argument is glwen,
then a point will not be plotted as a dot, but rather as the
first character of the PHAME of the second argument. Example:

o have points plot out as asterisks:

(PLOTIST DISLIST (QUOTE *#3}

PLOTTEXT FRIBC'S  jte argument at wharever the plotter head finds
[tself; sample use:

(PLOTTEXT [QUOTE Y-AX|S))

LPEN Has no arguments. Reads the 340 [igh? pen scanmer and returns
teount . (= . i) where count is The number of Times the light
pen was seen [(since the last call To LFEN or since the program’s
beginning) and = and v are the average abscisse and ordinate values

of the light pen when saan,



AFFENDIX K

PIC - PAC STUFF

In an effort to utilize taped widisector scenes, several functions

for performing the necessary |/0 have been added to LISF. {3e=e PICARRY,
FEADFIC and WRITEFIC) . There are obvigus advantages for the

debugging programmer to having standard, well-described scenes

available, as It were, through & simulated vidisctor. Before using

the routines, however, one must become awarse of tha image convantions

of PicPac. Images (or scenes) are considered to be rectangular
sub=portions of a u init sguare, and hance image co=ardinates

are floating=paint numbers between 0.0 and 4.0. This facilitates

the mapping of an Image space onto various |/0 devices. HNeedless to say,
some dlscretized approximation to the image is what is actually

stored on tape, so0 that the co-ordinates mentioned im BEADPIC really refer
to the neargst lattice point in the image space recorded on fapa.

Onee an array has been read in, howevar, there is no further use of

image space co-ordinates except for the description produced

by DESCR. PReference to the aréay iz done as wsual aon erdinary

LIZP arrays. The PlicPac system will be maintalined by Larry Krakauer,

Foom 819, 545 Technology Square.

FICARRAY Declares an image array for use with PicPac. |ts use is axactly the

same as the function ARRAY: its arguments are raspactively:

the array nama
HIL

the = dimension (oF nunbar of Frows)

the y dimenslon (or number of columns}



The array elements are accessed as usual - (arrayname n m) evaluoting

to the n,mth entry in tThe array.

READFIC Reads into the array specified by the first argument (which muct
have been declared by PICARRAY), raceiving data from the devios
and file selected by The most recent UREAD. The second and third arauss
specify lower-left x- and v- co-ordinates respectively; the fourth
argument is & delta d such that ad]acent eantries in the array are
filled by incrementing the Image co-crdinates by an amount d.
(5@a PicPac for an elucidation of image space co-ordinates). An
#@ltarnative form is to specify separate daltas for The = and v dlrec]ions:
(READPIC array lowx lowy dl or (READIC array lowx lowy dx dy).
The coordinates of the upper-right point of the image area read in are glven
by upx = lowx + xdim®dx and upy = lowy + ydim®dy, where xdim and ydim
area the x-and=y dimensionz respactively of "array". All arguments
excapt "array" are assumed to be floating, in accord with the PicPac
convanticn; however fixed-point numbars may bs usad; it will be
assumad that they refer fo a 10000 by {0000 grid and they will be
floatad accoerdingly. If a section of the regquested input area, §.o.
the rectangle from (lows,lowy) To (upx,upy?d, 15 not recorded on
the input file, then READPIC prints an error commant and returns MIL;

otharwiza it returns the name "array".

WRITEPIC FSUBR
(WRITEPIC array) writes out on the currently opan cutput device
the entire array specified by the argument (In binary image model,

In general, WRITEPIC i1s preceded by a UWRITE and followed by a UFILE.



DESCR

DESCRX

Part of the PicPac pachkage I f thare is an argument,

its valug is assumed to be an array name and DESCR (for "describe™]
produces a list of ten numbers, associated with the array: (=dim ydim lowsx
lowy dx dy hash wd light datal where the last three numbers give
information about the vidiscetor usad, the lighting, and the mode of
the data. MNumbers three through six are in floating point, and "hash"
iz irrelavant. xdim and ydim are The x and v dimension (see PICARRAY) .,
I there s no argument given, the array described is the one which
the most recent call to BEADPIC read from., The array stored on

Tape which serves as the data source for the call fo READPIC will In
general have a description different from that of the array in core.
{DESCR NIL) is NIL so that (DESCR (READFPIC arr lowx lowy deltal)
produces either a description or NIL depending an whether or not the

read was successful. (See READPIC).

Same as DESCR except that numbers three through six are converted To

fiwed point, assuming & grid of 40000 by 10000,



AFPENDIX X

An attempt to update A.l. memo |16A with respect to

items not wall-discussed elsewhersa.

Two gquick little goodies: ({) accumulater {3 is not used by LISP
anywhere, and may be ulitized to the programmer's pleasure; (2) when debugging,
one often finds himself crawling arcund In DOT to inspect the ruins affer a
catastrophe, and it is an annoyance fo EEBiIﬁ.T?DB at you 34735 when you know
that this is a pointer to some list - therefore, 1f the currenftly cpen cell in
DOT points to an s-expression, typing"P.$X"  will cause ODT fo enter a special
part of LISF which will print out this quantity In the usual LISF style.
[Actually "P." Is a symbol in the symbel table equivalent to "PUSHJ P, PSYM" |
so symbols must be loaded for this fo werk. ]

The remainder of this appendix s In the mosaic style of A.l. memo {16A,

and there are no apologies for [ts terseness.

ASSDC  Uses EQUAL

ASSD sas EQ

Compi lar
One may load a LISP compller by typing at DOT "COMPLR H". One may
5t111 use the previous method of compiling a file, but a more conveniant
may now exists. When the compiler is ready it will type out
"_ISP COMPILER 77". |f the user then types "(MAKLAF}" he may then fype
a task specification exactly as with MIDAS, TJ& and COPY, namely
< target file > <left arrow> <source file7<carriage return? to specify

+hat the source file iz to be compiled and the resulting LAF code



stored away on the target file. Example:

{MAKLAF)

FOO "COMP +~FO0 BAR &R
or  {MAKLAR)

FOO BAR (€&

In the |atter case, the target file will be FOD LAP. The same
cptions exist as In MIDAZ for default on specifying device and

SNEmE .

Current |/0 Device
LISF has bookkeeping room for one inpuf file, openad by UREAD,
and one ourput file, opanad by UWRITE. There iz an internal
register herein callad CIJFI'IEI'H‘ device name, that remambars which
auxilliary storage device contains the newly openad file, and this
register may be changed by opticnal arguments to UREAD, UWRITE and
UKILL. An open read file is closed by reading an E-0-F character,

and an open write file is closed by executing a UFILE (g.v.!

Ol sal Mo longer keaps the counfers DISCH or DISLP; but has been
extended To work well with nearly all the ASCIT characters, including

carriage return, line feed, and lowar casa.

Display The time-sharing system provides a means for "prinfing” on the
"CRT 390 scope display,The N switch will send PRINT output +o it.

|f one builds up his own display arrays, elther with DISAD, or
by some display generating routines, then each array A fo be part

of tha picture must be put on DISLAST as follows:

(SETQ DISLIST (CONS (GET (QUOTE A} ECILH',‘ITE ARRAY D )

DISLISTY)



EXCISE

FIXP

FLOATF

MACDMP

MIN

TyvpIng (F starts the display running fruﬂ DISLIST.

An EXPR which REMOB's many system atoms which the average
user finds of Iittle value. Thus sbout S00-1000 words of free
storage may be gained. Almost all the functions so lost may be
duplicated with STATUS or SSTATUS, Atoms remob'ed are
REMOE RANDOM GCTWA NOUUQ NOCHK RE®*ARRAY WVALRET CRUNIT

0 FIXP FLOATP EXAMINE DEPQSIT TIME MNORET GSLEEF RUNTINE
LISTEN LPEN DISAD DISINI #F and all functions mentioned in

appendices J and K.
A SUBR, NON=NIL only for fixed=point numbars.
A SUER, RON-NIL only for Floating-point numbers.

has been changed To a more useful form. Essenfially operates

as if it ware defined

(DEFUN 10G FEXPR (L)
(PROG. ( 0 4R W #B AN)
(COND ((CAR L) (EVAL (LIST (QUOTE 10C) (CAR L)))))

(EVAL CADR L1})1))-

In +ime sharing, pesses conmtrol to DOT rather than the non-=1ime=
sharing "MCOMP", If Job is disowned, then a logout |s performed.

Has argument which Is gliven es & VALRET string to DDT. E.G.
(MACDMP (QUOTE TECO$J5/[X/.LISPST))

An LSUBR which returns the maximumi{oumericallof its arguments,

using contagious floating arlthmetic. Thus (MAX s 4,0 7} is 10.0

As for MAX, but returns minimum.



Humbars

RUNT | ME

SLEEP

TIME

UKILL

YALRET

LISP numbers, stored In special areas, are represented slmply

by a pointer into that area. Thus There s a FIXNUM space, and
a FLOWUM space, as wall as Binary program space, and free
storage space [(In which [ists are stored).

For time-sharing LISP, refurns the number of microseconds of CPU
Time used by the current job, as a fixed-point LISF number,

accurate to about 50 microseccnds.

(SLEEP n)  causes the program to stop temporarily and fake a2

nap for n thirtieths of a second. SLEEP is a SUBR.

For Time=sharing LISP, returns the time counter from The TS5 system,
as a fixed point LISP aAumbar. Currently, this is the number of
thirtieths of a second that the system has been running. Mote
that in T3 LISP there is no settime. (Using STATUS, the user

may read a real Time clock o obtain The Time of day. See

Appendix C under "DAYTIME™)

An FSUBR (UKILL n) or {UKILL UTn) still flaps tape n. But any
other syntax on the arglist will be interpreted as a file
speciftication (like those with UREAD which it fries to delefe. e.9.
(UKITLL LOST FILE DSKE PHW) will delete some worthless file on the

DSE device with sname FHW,

PRINC's Its cone argument as & valret string to DDT. Legs cut

1f Job Is disownad.



