MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence
Memo No. 195 April 1970

INSIM]:

A Computer Model of Simple Forms of Learning

Thomas L. Jones

INSIMl is a computer program, written in LISP, which
models simple forms of learning analogous to the learning of
a human infant during the first few weeks of his life, such
as learning to suck the thumk and learning to perform elementary
hand-eve coordination.

The program operates by discovering cause-effect relation-
ships and arranging them in a goal tree. For example, if A
causes B, and the program wants B, it will set up A as a subgoal,
working backward along the chain of causation until it reaches a
subgoal whieh can be reached directly; i.e. a muscle pull.

Various stages of the simulated infant's learning are
described.

INSIMI1:
A Computer Model of Simple Forms of Learning

I. Introduction and Summary

INSIM]l is a computer program, written in LISP, which models
simple forms of learning analogous to the learning of a human
infant during the first few weeks of his life, such as learn-
ing to suck the thumb and learning to perform elementary
hn.nd-uaya coordination.

The program operates by discovering cause-effect relation-
ships and arranging them in a goal tree. For example, if A
causes B, and the program wants B, it will set up A as a sub-
goal, working backward along the chain of causation until it
reaches a subgoal which can be reached directly, i.e. a muscle
pull.

A typical problem is the one-dimensional, three-point thumbk-
sucking problem, which can be described in logical notation as
follows:

(1) object touching mouth=ppleasure

{2} (left check t.-r:ruv:hd turn head left)=spmouth touch

(3) (right cheek tc:u::ha turn head right)e==fpmouth touch

{4) (left cheek touch Y right cheek touch jesgp mouth touch

(5) 1lift hand es}face touch

Object +ouchi
mouth

i

After the program has learned these connections, i1t will

emit the behavior seguence "1ift hand,

right)," resulting in pleasure.

Below is a block diagram of INSIMIL:

turn head (left or

MNetivaton

section

T3IM
interpreter

Hesponse

‘Bﬂdgj Curvl

enviranment

ﬂ‘ﬁplﬂ‘j

Perfaormanmee.

’P'I"Eilarmﬁﬁ

'5FI+H§I"|
symulater

—

Qwe, 54gnals
Assernbler-
seheduler

€xperience - direcked
QoMmp: ler

The performance program has the direct responsibility for

synthesizing behavior. It is written in an interpretive lan-
guage called PSIM (parallel simulator). The performance pro-
gram receives stimuli from and sends responses to a bedy and

envircnment simulator; the display section provides real-time

monitoring on the cathode-ray tube. The motivation section

activates the main goal (oral gratification or curiosity).

Relatively little of the performance progmm is innate.
Most of it is generated by an experience=driven compller, which
is the core of the learning part of the program.

Caugality is detected by statistical correlation; if a

- 3 -

gignal occcurs on line A followed by one on line B, and if this
sequence is repeated sufficiently many times, the program
assumes that A causes B. The program is eguipped for the simp-
leat type of pattern recognition and concept formation: the
formation of logical AND's and OR's of previously known vari-
ables. The program has an intellectual motivation system which
causes it to exhibit simple forms of curiesity, play, and

exploratory behavior.

II. The Performance Program

As described above, the performance program has the direct
responsibility for receiving cues from the environment and
emitting properly timed and seguenced behavior. It is coded in
PSIM, a language which will be described in detail below. The
performance program operates by activating various branches of
the goal tree at the appropriate times. In the thumb-sucking
problem, assume that the motivation section has activated the
main goal ;nral gratification." The first ste is to activate
the extreme left branch of the tree (the dotted line indicates

activation):

'Tl'-}j'f'-'i'-+ Touch, G
Mot b

THEN

rt'-?jh} cheek | | Hunn head

+urn head

lef4 +ouch f"a'(,jhi"

The "lifthand" response at the bottom of this branch is
emitted to the body and environment simulator. After a delay
of roughly two simulated-time seconds a cue, e.g. "left cheek
touch,” comes back, indicating that the simulated hand has been
1ifted to touch the (simulated) left cheek. HNext, the branch

ending in “turn head left"” is activated:

Ckﬂﬁﬂ+ +ﬂu£huﬁﬂ

mowth
i
tace 3 - n
+auch T™HEN .o m™EN
ledt cheelk, +urn head turn head
£+ +owch el+ right

hand

A "mouth touch" signal comes back from the body and environ-

ment simulator, indicating that this goal has been reached:; the
motivation section activates the oral gratification flag, "reward-
ing" the program for its successful effort.

The basic problem is to decide which branch of the goal tree
to activate. (INSIM]l performance programs allow only one branch
to be active at a time; hence there is no way to work on two
goals simultaneously.) In a given situation, the decision is
made in two phases, a feaaihiiity study phase and a choice phase.

In the feasibility study phase, each path to the main goal
is assessed, and an estimate is made of which path is the guick-

est and surest way to the main goal. Two numerical guantities

- B -

are computed for each subgoal, GPR (global success probability)
and a GC (global cost). The GPR of a subgoal is an estimate of
the conditional probability that, if the program attempts to

achieve the subgoal, it will succeed in reaching it.

A. Computation of GPR and GC

This section is devoted to a detailed discussion of how GPR
and GC are computed. On a first reading, readers may skip to
Section C on the choice phasa.

GPR is defined recursively as follows:

(1) for a “"response" (directly controllable) variable,
such as "lift hand" or "turn head left", GPR=1l.

(2) Buppose that A is one of several OR'ed subgoals of B;
further, suppose that A is the "best" subgoal of B in the sense

that it maximizes the Slagle coefficient ():

GPR(B)
GC(B)

Then GPR(B) = GPR(A) Pr (B/A), where Pr (B/A) is the conditional
probability of B given A (i.e. the probability of getting from
A to B) as estimated by the coefficient learning program PRDLEN,
discussed below.

{3) Suppose that Al and AZ are components of the ordered-

AND goal A1TH2 (Al then A2). Then GPR [ALlTH2) = GPR (Al) * GPR (A2).

- 7 -

(4) Notwithstanding any of the above, if a goal has
already been achieved, its GPR=l. A goal is defined as "al-
ready achieved" if the corregponding signal has occurred within
the last five seconds.

Similarly, the GC [(time delay) of a subgoal iz defined
recurgively as follows:

(1) For a response variable, GC = 0.

(2) If A is the best of several OR'ed subgoals of E,
then GC(B) = GC(A) + GPR(A) Delay (A—9B).

{(3) The GC of an ordered-AND goal ALTHAZ (Al then AZ) is
GC(A1THAZ) = GC(Al) + GPR(AL)*GC(AZ).

(4) Hotwithstanding any of the above, the GC of a goal is

0 if the goal is already achieved (in the past five seconds).

To summarize, in the feagibility study phase, estimates
are made of the success probability and time delay of each path

to the main goal.

B. The Choice Phase

The next step is to activate the goal tree branch which is
estimated, according to simple heuristies, to be the guickest
and surest path to the main goal. A goal is active if, and

only if, its WANT wvariabkle has the value TRUE.

C. Computation of the WANT Variables

(on a first reading, readers may skip to section E on the
inner loep.) The WANT variable of a goal G is defined recur-
gively as follows:

(L) If G is a main goal, WANT(3) = TRUE or FALSE as set
by the motivation system.

(2) If A iz one of several OR'ed subgocals of B,

WANT (&) = (WANT B)A (A is not already achieved]ﬂ (A is the
best subgoal of B)]n'f{ﬂ iz a curiosity goal (sea below)),

where "already achieved" means that the signal A has occurred
in the last five seconds, and the "best" subgoal is that which
maximizes

GPR (B
GC(B)

(3) If A1THAZ is the ordered-AND subgoal "Al then AZ",

WANT (Al) = WANT (ALTHARZ) ﬂ (Al is not already achieved)

WANT (A2) = WANT (AlTHA2) | (Al is achieved) A (A2 is not achieved).
(4) If G is a response (directly controllable) variable,

WANT (G) causes the response to be emitted.

D. The Inner Loop

The feasibility study and choice phases are performed

every time the simulated-time clock, TCLOCK, changes.

Feasi b I.'Jnj
stud

Choice
.4

Emit recponses,
W Cr

Qhﬂ.nﬁa TCLLOCK

Thus the GPR, GC, and the program's decisions are con-
stantly being updated on the basis of changing conditions.
The PSIM interpreter ensures reasonable efficiency by recomput-
ing only the variables which depend on some condition which has

changed sinece the last TCLOCK time.

E. Discussion

INSIM1 performance programs incorporate simple heuristics
which work well in cases where the assumptions on which they are
based hold true.

Among the assumptions are:

{1} Success probabilities and time delays are assumed to
be statistieally independent. If this is not true, the chaining
formulas used in computing success probabilities and time

= 10 =

delays will not be accurate.

(2) Predictions of success probability and time delay are
based on the value of variables which may change with time.
Suppose the progmm says that Pr(B/A) is high, and the A—B
branch of the tree is selected. Then suppose that one of the
variables used in computing Pr(B/A) changes before A is reached.
If the new value of Pr(B/A) is low, this may indicate that B
cannot be reached.

(3) It is assumed that goals do not conflict; i.e. that
the achievement of one goal does not decrease the probability
of achieving another goal.

Removing these performance limitations would reguire addi-
tional machinery beyond the scope of the INSIMl project, such

as a look-ahead method of the type used in chess programs.

F. The Experience-Directed Compiler

hs mentioned previocusly, most of the performance program is
coded by an internal compiler which, instead of using as its
input a source code prepared by a human, is controlled by the
experience acquired by the program as it interacts with its
(sgimulated) enviromment. In keeping with the dictum that in
order to learn something, one must know something already, the
compiler incorporates the probability formulas described above,
plus knowledge of basic aspects of the physical world,

- 11 -

including time and causality.

The compiler consists of pattern recognizers, code gener-

ators, and a plausible move generator (not implemented at this

writing) .

Piﬂﬁlﬁibla Eﬂilﬁﬁlfhﬂ 1jbj4erfj 1%1}+EFT?

MoUe Tﬂ*{i"ﬂ recognizer raﬂ.(ﬂnmer'
¥ T _

qem:ra:mr EL’:’%;'“ r B

A A'/&AL a1 TNAL
T —

fede. Code Code
eneradtor eneratror g‘ rerator
Jor, of THEN of

(qoal -subqaal)

5ubcjaa15 I SuJ]aD&\E) |

The plausible move generator is used instead of testing

for causality between all possible variables A, B. The latter

2

approach would involve on the order of n™ tests, where n is the

number of variables.

It is thecompiler which sets the upper limit on the program's
ability to learn. For example, INSIM1 could never learn to play
chess even with very long training, because the necessary pat=

tern recognizers and code generators are not present.

- 12 -

The experience-driven compiler operates as follows: The
program starts out with an innate main goal which is "oral
gratification" in the Fhumb-sucking problem. First, the plau-
sible move generator is called to generate a list of wvariables
which are likely to be "relevant™ to the oral gratification

goals, and causality test links (indicated by dotted connec-

tiong) are formed.

Hext, the causality pattern recognizer learns which test

links represent actual causal relationships. The pattern it

is looking for is:

- 13 =

If a pulse on variable A is followed by a pulse on vari-
able B sufficiently often, A is assumed to cause B. More pre-
cisely, if Pr (B/A) - Pr(B|A or%A)>0.25 after at least 15
pulses on A and 15 on B have occurred, A is assumed to cause B.
The pulses on A and B must be leas than five simulated-time
seconds apart. (If there are any pulses at all on B, then a
pulse on A will always be "followed" by a pulse on B if we wait
sufficiently long.) Pr {BIA] iz estimated by the coefficient
learning program PRDLEN, discussed below.

In some cases, it is sufficient to wait pasasively for a

pulse on A. In other cases, the curiocsity section of the per-

formance program activates A as a goal in order to see if B
follows (e.g. it activates "turn head left" to see if "mouth
touch" follows): this is the "play" or "exploratory behavior™
mentioned above. The curiosity secticn attempts to test links
which are new and have not been tested many times; links where
the initial wvariable, A, is reasonably easy to obtain; and
where the final variable, B, is "bicleogically useful " (if one
may use the term to describe a computer program) in that ability
to obtain B would contribute to the program's ability to obtain
primary reward. Specifically, the curiocsity section tests the

link A—3}B which maximizes

GPR (A a Need (B
e (B) satfunc(h,B) Need(B)

- 14 -

where Satfunc(A,B) (saturation function) decreases linearly
from 1 to 0 as the number of times when A,B has been tested
increases from 0 to 15. Need(B) is an index of how much the
ability of the program to cbtain primary reward would be

improved by improvements in its ability to cobtain B.

When the causality pattern recognizer detects that two
variables, A and B, are causally related, the corresponding
code generator is called to compile the link A—B in the goal
tree. This code generator is a LISP function called
MAEKEORGOAL (A,B), 30 named because it also handles the case
where A is one of several logically OR'ed goals. In LISP, the
code generator turns out to be a straightforward and rather
prosaig, if slightly long, program. Separate sections are pro-
vided for compiling the entries for WANT, GPR, GC, and each
variable assoclated with the curiosity system. Each section
locks up the names of the variables involwed in the formula in
guestion and substitutes them inte the formula, using LISP's
symbol-substituting capability.

In the thumb-sucking problem, the program first learns the

links:

letHt cheek
touch

Y m bve gl

ru:f}lﬂ-

Although this version of the performance program will some-
times succeed in cbtaining “"mouth touch," it does not yet know
which way to turn the [(simulated) head.

Mext, the plausible move generator is called to provide a

list of wvariables to be THEN'ed with the partially successful

variabl es. Among them are:

subgoals. Causality test links are compiled for the ordered-AND
el 1.]

| lef+ aheel. tun head
-H_*aud‘u e+

Vi V2

+’LU'LI""L htrl_[t
riﬁh*

V1l correlates wvery poorly with mouth touch: V2 correlates
very well. Since Pr (mouth tﬂuchj v2) is wery high, the per-
formance program will activate this branch, rather than the
others, and the simulated infant will emit "turn head left"” in
response to "left cheek touch.” Similarly, it learns to emit

= 1l =

"turn head right" in response to "right cheek touch.™

What is happening here is that the conditional probability
figures, such as Pr (mouth touch | turn head left) are being used
as a hill-climbing criterion in program space (Minsky, .
(turn head left— mouth touch) works some of the time; INSIML
forms new properties of the problem by combining properties
which have proved useful in the past (Minsky,) .

Finally, "face touch" is identified as a "biologically
ugeful" wvariable, and the program learns to activate "1lift
hand”; when the (simulated) hand touches the face, the previously
learned program takes over and completes the thumb-sucking
operation.

It is interesting to note the similarity between this
learning seguence and Piaget's cbservations on the learning of
human infants. Although the real infant's learning is much
more complicated, it follows the same gross seguence of stages:
the real infant first learns to search from left to right with
its head; then it learns which way to turn; then it learns to
lift its hand and suck its thumb.

The remainder of this chapter is devoted to a discussion of
the PSIM interpreter and the PRDLEN coefficient-learning pro-

gram; it may be skipped on a first reading.

- 17 =

G. PSIM (Parallel Simulator)

The PEIM interpreter, embedded within LISP, handles the
details of arranging the second-=by-second cccurrence of simu-=
lated events and relieves the compiler of the need to schedule
the seguence of computations. A PSIM program consists of a
set of wariables, each of which has an S-expression which
determines its value. E.g.:

(2 (AND X (NOT Y)))

(X (POISSON 0.1))

(¥ (POISSON 8.1))

The POISSON expressions generate Polsson-distributed pulse
trains with mean freguency 0.1 pulses per second. Whenever a
variable, such as X, changes the variables which depend on it
are automatically updated. A graph of X, ¥, and Z versus simu-

lated time will look something like this:

ol I |

|
1 0 | -

- 17 -

PSIM also handles the complications which arise when the
goal tree is eirecular; in this case, an iteration procedure is

used to calculate the GPR, GC, and WANT variables.

H. PRDLRN (Probablity-Delay Learner)

Conditional probabilities and time delays are estimated by

a rather orthodox coefficient learning procedure (Minsky,)} s
Suppose there is a link between A and B. Whenever A occurs,
followed within five seconds by B, Pr [31 A) is incremented

by an amount 9‘ (l-0ld value of Pr (B IAH, and Delay (A—+B) is
incremented by E;{actual delay - old estimate of delay). If

A ooours, but not B, Pr {B] A) is decremented by an amount é}
[cld value of Pr (B |R]} and Delay (A-B) is incremented by E;
(5 seconds - old estimate of delay). It can be shown that this
procedure gives an unbiased estimate of Pr {Ej A) and Delay
(A—3B), with an exponential weighting such that old occcurrences
of A affect the estimates less than new ones. E;, the delavy

coefficient, is currently 0.1l.

-~ 18 -

