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I. Introduction

This Memo describes some of the more important properties
and manipulations of Hypergeometriec Functions, PFG{-}* which
may be useful in MATHLAB. A convention for representing
Pfq[.] is adopted which is readily adaptable to LISP operations.

The most general type of HGF with which we will be con-
cernaed is a function of a single independent variable, x, and
ig parametricized by an "A" list, of length p, and a "B" list,
of length g. The latter consist, in general, of atoms: éh;-
argument is usually x, but may alsobe a simple function of x.

The power of the Hypergeometric Formulation arises due to:

(i) Wearly every Tabulated Function can be represented
as a HGF, for example the entire families of Bessel functions,
and Orthogonal Polynomials, as well as Elliptic, Error, and
Incomplete Gamma Functions.

(ii) Linear operations, such as differentiation, integration
{definite or indefinte), integral transforms, etec., amount to
simple manipulations of the list representations of the HGF.

(iii) Analytic continuation is easily accomplished by opera-
tions which allow the wvariable, x, to map into 1/x, x/(x-1),

1-1/%, 1/(1-x), simultanecusly with simple linear operations on

the "A" and "B" lists. (This statement should be gualified to



the extent that such continuations are always possible for

zFli'}* are not reguired for +) where both p and g are

pFq!
less than two, and are not Known =-- possibly do not exkist —-
when both p and g are greater than unity.

(iv) The solution of a wide class of homogenecus DE's

with nonconstant coefficients, say, of the form:
(ax? + bx + ¢)y" + [dx + e)y' + £y = 0

can be répreaented as a HGF, after an appropriate change of
variables. o

Other advantages of the approach could be enumerated, as
should be clear. In essence, this is alsoc the principal draw-
back of the technigque so far as user-coriented applications are
concerned.

Itemizing:

(i) It is time- and core-=consuming to recognize and interpret
proparly into HGF-form an arbitrary function presented by the
uger. Once this has been accomplished the lowest=level operation
are rapid, as is claimed above. However, the result of the latte
manipulations must alsc be represented in HGF notation, and now
the process has to be "unwound". In general, this amcounts to a
fairly long sequence of testa for various linear relationships
among members of the "A" an@ "B" lists, which, if satisfied,
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identify the HGF as a known tabulated functien. If these tests
fail, then the HGF must be returned as is. (It should be men-
tioned that if this happens to be the case, the user now has an
easily computable series representation.)

(ii) In the same wvein, such an all-or-nothing approach may

be foolhardy. For example, if we wished to evaluate:

Ixe_“dx ;

we could represent it as

LI: - lFl{—l:a;ax}J‘{FFF{&,h,c;...;a;h,c,...:x}}dx ¥

It works, but who needs it?

{(iii) Algebraic and rational functions are difficult and
awkard to represent in terms of PFq:.}. Thus, when these are
present in a function presented by a user, they must be sorted
out and dealt with in a different manner.

(iv]) Similarly, elementary transcendental functions (i.e.
log(.), and all of those based on Ex} are not to be subject to
transformation into HGF representation.

(v) It seems from the above that the user must be subject
to some fairly strict, though not overly demanding, ground rules

as regards the convention of the cordering of the elements of the



function presented. All we ask is that these elements be
ordered according to the following hierarchy:

X

(algebraic, rational) (log, =*, sin, cos, etec.,)(higher £ns.)

For example, if the given function waere
F(x) = fl{x} + £50x) + ...+ £ (%),

then each of the Ek{x] would be represented by an ordered triple,

@.q.

F(x) = xsin x Ig(x) + log(x)
((x**k) (sin x) (fhyp () (1) ({x**2)/4)))

+ (()(leg x)(}),
where Iﬂ{x} ig the modified Bessel Punction:
A 2
I (x) = gFl{ 1;x°/4).

This format, or something similar (I am open to suggestions),
should assist the interpreter considerably and help to aveid
errors.

(v} Concerning Differential Eguations (see I (iv) above),

the fundamental solutions are indeed linear combinations aof

Erl{.}'s; thera are other solutions, of course, depending on the
solutions of the associated indicial eguation. However, these
can be constructed in a straight-forward manner by means of the
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transformation and cﬂntinuatiﬂﬁ formulas mentioned in I (ii)

and I (iii) akove. Similar comments hold for the Hypergeometric
DE which yields ;F;(.) as its fundamental sclution. For other
values of p and g, the guestion is usually rarely encountered,

trivial, or unanswerable.

It should be made clear that the purpose of the research
effort cutlined herein is not intended to supplant .or to rewrite
subgtantially the present MATHLAE; rather, the aim is to augment
the present capability for sfmg;lic manipulation in order to deal
with a wider class of functions which are often encountered in
applications, and which are not recognizable by the present
system. Indeed, as implied in the comments under "drawbacks",
above, such methods should be employed only as a last resort,
when other more conventional technigues have fallen short. It is
intended to be another tool in the kit, as it were, rather than the
be=2l1ll and end-all. In its defense, however, it may be noted
that the example given in "drawbacks" (v) above* can he dealt

with efficiently only bhe recourse to the HGF notation and opera-

tions, if any claim to generality is to be realized.

*This expression, or its eguivalent, cccurs with appalling fre-
quency in applications as diverse as MHD, Quantum Mechaniecs,
and Statistical Detection Theory.

- 5 -



The Theory of Hypergeometric Functions is guite extensive,
and on the surface, at least, complex. Yet at the same time,
it is very compact and very nearly trivial once all of the mathe-
matical superstructure, accoutrements, and other random "ele-=
gances" and similar rubbish have been cleared aside. Essentially,
an understanding of the entire hody of proofs reguires no more
than a rudimentary familiarity with Taylor's Series and the con-
vergence thereof, and the technigque of Analytic Continuation.
The rest is Algebra. The most difficult and subtle task is to
establish a basic set of "axioms" from which all other properties
and operations may be derived. The search is still going on, but
it appears that they are at least four in number, and perhaps as

many as seven.

L
The principal references used below are Slater (1), Slater (2),

Bateman (3), and Bureau of Standards (4).

IT. Definition

The Hypergeometric Function is defined by the Series:

r {al,a ,&3,...+ap: b..b. .

P g 2 1Pz 3"”'hq’ x)

Fal
= F ([ArBrx)
2] qi_'_



— 1 (1]
(1) (B) (-eee ) (b))  m:

i (@) (az)(eeee dlag) 0
= .
n=0
where
{alraz,...,aP] = A, 18 the "A" list, of length p,
{hl'hz“"'bq} = B, is the "B" list, of length g,
and
(e)y = (e+k-1)1/(e-1):
= {c}{c+1}tc+2];..{c+k_ljj
where we assume that %k is an integer, and x 1is the indepen-
dent variable. Where ¢ is not an integer, the second defini-
tion of {c]k can alwayes be used; the first definition can be
used if the factorial functions are replaced by the Gamma func-

tions of {c+k) and (c), respectively . In wvariocus applications,

it may be of advantage to adopt one of the three.

III, Elementary Propertlies

(It should be pointed out beforehand that in nearly all

"interesting cases" either p=g or p=g+l.)

(1) Convergences:

{a) if p = g, the series converges uniformly for all

real .



()

(<)

(d)

if p =g + 1, the radius of convergence of the
series is lxl{ 1; however, analytic continuation
can generally be invoked to include the region
|x|}-1: the singular point lies at » = 1: thus
either series converges for |x| = 1, arg(x) # 0.
if p?» g + 1, the series does not converge in any
usual sense¥®.

if p <€ g, the geries converges uniformly for all x.

(ii) Trivial Reductions:

(a)

(b)

(c)

if one or more members of the "A" list are zero,

the value of the series is unity.

if one or more members of the "A" list is a negative
integer, say -H, then the series reduces to a finite
polynomial of degree .

if any member of the "A" list is identical to any
member of the "B" list then both of these are
deleted from their respective lists, and both p and

g are reduced by unity, e.g.

*There are ways of handling this situation, however, by recourse
to the theory of MacRobert's E-function or Meijer's G-function;
we will not consider these at present.



Esza,h:b,c:xJ = lFl{a:c:x} .

EFE{]-:E;E?E:E;?:] = lFD"'l: TH} -

(d) every lFDf.} is a simple algebraic functions:
oo
I
1Fplas 1x) = E S x
n=0

(1-x)"%, (2)

(e) every DFI{‘} is a Bessel Function:

(3)

0 l{ jarx) = f:le o l{Ex ¥y,
w 2
Eu

F, U saz-x) = Ta l[zx;ﬁ}+

a-1
2

X

(f) if one or more members of the "B" list is zeroc or
a negative integer, and cannot be cancelled by an
an identical member from the "a" list, as in (g}

above, then the series ig undefined.

It is worthwhile to digress briefly in order to amplify some

of the consequences of this restriction (f). It must be empha-

sized that when at least one of the b, is zeroc or a negative inte—

g8, we cannot represent the function in power-series form Mmea n=-

ingfully -- ne more, no less. This may or may not have a bearing

on the guestion as te whether or not the function exists in some

- & -



other sense. The purpese of this aside is to illustrate some of
the subtleties of the decision processes involved in the HGF

formulation, and teo point out that it has some limitations of an

unexpected kind.

Congider the function Fisz:n) defined by the integral:
[

-1
_ iz -j-tn -8t
Fisin) = Tﬁ{nifﬂ{n] oo 2n e dt,

o

{(which happens to be the Characteristic Function of Fisher's
F-Digtribution (4)). There is no doubt that the integral converges
for n2l and Rel(s) » 0, but does it possess a Taylor's Series?

Well, sort of.

Let us attempt to formally expand F(s:;n) as

k
Eg
g=0 k.

k
F(s:n) = ):_{}%} F(s;n)

It is not difficult to show that this turns out to be

e (n) (n+1)...(n+k=1) (-11° k
F(s:n) = Z: (n-1) (0-2) ... (n-K) k! =

k
_ 57 (n) (n#1) ... (nk-1) sk
5%4 {(=n+l) (-n+1+1l) ... (-n+k) ki
_ ' {“]R 3]"-
™ {l'"}k k!
= 1F1lnrl—n:5}. by "definition", at least in

the purely formal sense. However, as is easily seen from the
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first line akove, the term in the series for k¥ = n blows up, as

do all subseguent terms. The whole point of this exercise is to
show that a HGF with one or more zero or negative integer members
in its "B" list may or may not represent a meaningful function.

To repeat, this simply means that no valid Tavlor's [or Laurent)
series exists. However, integral representations often exist in
such cases, as the present example demonstrates. A subsegquent sec-

tion will list some of the more important of these.

At the risk of appearing to lapse intc pedantry, one further
comment must be made == and this is probably the most important of
all. Most of us with a reasonable working knowledge of higher
mathematics would probably take it for granted that a function
such as F(s;n), which is clearly well-behaved for n 21 and
Re(s) » 0, should possess a Tayler's (or cother type of) series repre-
sentation. Hot so. The sleeper in this argument is the condition

"Re(s) g 0". F(s;n) possesses an essential singularity everywhere

in the left-half complex plane; furthermore, it is not analytic,
and cannot be continued into the left-half plane. In brief, there
exist well-behaved functions which can be represented only in
integral form, and the HGF's encompass a wide class of these, at

least formally.
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IV. Derivatives

Essentially the only simple general formula which can be
given concerning derivatives of HGF's is
a n
{_ﬂ;;:l {Prq{aliazr---:apfblrbzf-'-ahq;x}}
B (a1)(@z) -..(ap),

+n;:

» PPan1+ﬂ,ﬂz+n,...,&P

b.+n, b.+n,,.., b_+0:x), (4]

1 2 q

The formulas given below for lFll.} and 2Fl{.]l can be gener-
alized for any particular p,q pair with varying degrees of alge=-
braic effort. Their development involves principally ad hoc
methods for manipulation of series, and is difficult to systematize.

(i) For p=g =1, we have
a, " I
(@) (3 {f*“'l 1F1 [a:b:xlf
= (a}nxa-l (Fy (atnibix), (5)

b _Gyn j X T
(k) {dx} {; lFl {a,h.xi}

S B ) (M
= T @ 1F1 (a:b+nrx) (&)
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(<) [E;l n {&-xxh—a+n-—1 1F1[ﬂ7b:x]}

_x b-a-1
- [b—a}n e x lFl[ﬂun:b;x} . (7)

n -1
@ 9 {- %" lFlta;h;x{}

bB=-1=-n

- {_1}“11-b]nx 1Fplarb=-nrx) . (8)

These four relations demonstrate how elther a or b can be

increased or decreaged by an arbitrary integer. If we wish to

change both a and b, the requisite operators are concatenated

(see below, under Continguous Functions).

(ii) for p= 2, g =1, the analogous four relations are

@ &° {x““‘l EFl{a.h:t:x};

a—
= [a}hx EFl{a+nJh:c;x] ; (3]

) (H" {u-xa“h": EFlta.h:crx}}

{c-a}nicﬂh}n

(1-x)3+b=-c-n o (a,bre+n;x) , (10}
[c}n 2 1

c-a+n-1 b
(=3 ] td—g}n {x fl-x‘.la_r_ < EFlta’hIchE

= {c-a}nx“‘a'lcl-x:“*h‘c‘“ ,Fyla=n.brerx)  , (11)

= 13 -



=1
(d) I'E% n {:-: EFlta.b:c:x}}

= (=) X F {(a,bro=nrx) . 12
(e-n)_ JF, (12)

The last comment of the previous subsection applies here.

V. Integrals

Most indefinite integrals which can be eavaluated exactly in

terms of HGF's are simply inversions of the results of the previous
gsection. For example, the integral

t

o =
tJ. X e °F F [A:Brx)dx
pag—=-

o

cannot in general be represented as a qu{'l-
(i) Two General Integrals
A vast number of definite integrals involving HGF's are

tabulated (see Bateman (3), Tables of Integral Transforms, Vols. I,

II). Two typical, and fairly general, examples are
an

T=1 -gt
t F (A:B:At)dE
c.r ¢ pPqlaiBilt)

=]

Cir
-E_L_'L wqufal,az...,,ap,l’; blihzr-rrqu:lfs}r {13.:'
(LAPLACE TRANSFORM)
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1 -1 s-1
_[ (1-x) = F (A:B;lx)dx
o pg=—=

- Fi.ﬂ'!rriaz )
r'{‘ur_'_ E} P.'.qu"'l[al!a-zJ"liaPiEr hl,h2|5+\r:l}t {1.4}

(MELLIN TRANSFORM)

(ii) Example:

We present an example below which demonstrates the power of

the Hypergeometric formulation. The integral under consideration ecan

be evaluated by more conventional technigues, but only by means of
"intuitive" reasoning.
Consider

=

2
T = kaerf:x}e-ax dx,
o

where erf(x) is the Error Functiong

2
=t
erf(x) 5%.{:( e = dt .

It happens to be true that (see Tabulation, below)

2
arf|x) = T%; a "X 1F1t1:3f1;323 .

Substituting,

[ 2]

2
-{a+l
I -J%ka'ble (a+l}x 1Flf1,-3,*2;x2:|ax .
(=]

- 15 - :



Let xg—bt:

[

- 1 k/2 ~(a+l)t )
I J_-T“{t =] 1F1t1;3;’1,t}|dt .

But this is identical in form to (13). Plugging in, we obtain

1

= L 01+ x/2)

2F1 (1.1 + k/2: 3/2: (a+l)
ET s [a+1}1 + k/2

Yo.
Many readers will be singularly unimpressed by this result, inasmuch
as one problem (the evaluation of the original integral) has been
replaced by one egually cobscure. However, there are several replies
to this cbjection, namelwy:
{a}) The integral bhas been reduced to a form which is
easlly computable numerically, should the need arise.
(b) For the particular case, k = 1, one of the members of
the "A" list is egual to one of the members of the "B"
list (= 3/2), so that the EFIE.} reduces to a lFD{'}

and the result is trivial (see Elementary Properties,

abowve] .
(e} The function 2Fl{.‘,l iz subject to a number of wvariable

transformations (Analytic Continuation, belew) and

simple manipulation of the parameters A and B (Con-

tiguous Functions, below). These may be invcked for

- 1l =



both numerical and theoretical requirements.
One of these happens to transform the second

expression on p. 16 into

N 7)) 1-k 1
I = == » Fy(l, =%, 3/2, - 1) .
VT a-(a+1)k/2 21 2 / a

It follows that if k is a poeitive odd integer,

then a member of the "A" 1l is a negative integer,

and that the 2Fl{.‘.l is a polynomial of finite degree

(see Elementary Properties, above).

(d) It turns out that even if k is a posgitive even

integer there are st 1l some tricks left in the bag,
to be deascribed subseguently.

(e} Ifk#0,1,2...,0n..., we can be fairly well assured
that the representation given in paragraph (c) above
or the second on p. 16 is the best awvailable.

For the record, it is not difficult to show that the criginal
integral (middle p. 15), using more ad hoc methods,* can be reduced

tos

-1
tan " (1/a)
c o0 x/2)

Jmaktl

*hy writing erf(x) in its integral representation, switching to polar
coordinates and performing the r-integral.

cos®™1(g148.
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For arbitrary values of a and k, no compact closed form is
known for this integmal.

(iii) It is usually desirable that the argument of the HGF
be the independent variable, x, itself, rather than some £i{x).
If not, then, in general we perform the substitution v = f(x) and
simplify throughout. If this restriction proves to be impractical
then it can probably be eased somewhat to allow arguments of the
form +ax or i;xz.

(iv) The cases in which the integrand involves the product of
two or more HGF's lies beyond the scope of the present descriptions.

When only two (-)'s are involved the integral, if it converges in

PFG
any reasonable sense, can be expressed in terms of the aforementioned
E- and G-Functions. For three of more HGF's in the same integrand
closed form results are available only in special cases.

(In particular, the last integral given in Bateman (4), Integral

Transforms, Vol. II (and if a "God" integral exists, this has to be

the closest known approximation) is

(=]
Ay, 00,8 Ey, eesC
T kl 1 r
f{: G{x P)-G (ﬁx 3 ﬂ)ﬂx
o E’q blf--r;h‘q re 1'*"3
=b.,=ba;ec.,=b ,C_, ... ,=b gown =k
q+rlP-I'E -ﬂ.l -az. ] a+,"ﬂn, 'il. *..ds,-ﬂr“_l.. L] 1_|_E-P {15‘]
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which is impressive sort of in the same sense that a 500-pound
canary is. G (etec.) is Meijer's G=Function, which includes HGF's

as a subclass.)

The limited results of this section are intended only to indi-
cate the potentialities of employing the HGF notatien for evaluating
integrals. However, a surprisingly large number of integrals which
arise in applications are of the form of either Eg. (13) or Bg. (14).

In the next section a listing of Integral Representations for
HGF's is given which widens the present catalogue of integral

properties.

VI. Integral Representations

Simple integral representations of qu(.} exist only for

lFl{.} and EF (.) for general values of the parameters, excluding

1

the elementary cases GFD!.}, lFG[.j; {.}). For other values of

0"1
p and g the two integrals of the previous section may be utilized
iteratively to define any given Pfqt,} in terms of maltiple integrals.
Therefore we emphagize the (single- ) integral representations
of

(.) and Fli.} in this section.

F
11 2
(i) Integral Representations of 1F1{a:b:x}:

- 19 =



M - b-a-
(a) 1Fylabix) = FayrremT ) b (-0 e, (e
=

[Miw 1-b [ v a-l

M) @~ J 57

(k)

i

- (x=v)P-2-1gy (17)

L
o

v (1-w) 2L aw, (18)

1
S T
-1

a= 1

- (1=3 ds, (19)
1+s

And, in general,

_ _&x
e _ F[h}em{ d-c} {d-c]l_h .
[ (b-a)[" (a)

d
-EJ- exp {—33 }{uac}a‘1 (a-u)¥2-1 au, (20)

o d=o

where, in all cases, we assume that Re(b) 7 Rela) > 0.

{(ii) Integral Representation of zFlEa,b:c;H]:

= 20 =



iy

() fsh‘l .
M{e) (e=b) o

{El:l EF]. [a.hFCIH}

* (1+8)*7C (1+sx)™@ ds (21)
(b) Fq(a,bre;l-x) = — L (€] 1 -1 .
21 T (bX (e-b) J
-+ (1=t) %P1 (1oxey-a ae (22
r‘ iy
sbiezl = i‘f—'J f‘ _ c-hb-1 .
(c) oF;(a c:l/x) P (oo5) ) (8-1)
« 8% (8-2)"@ ds , (23)
[ =]
(d) ;Fla,bicix) = ™ (e) f E“ht .
MO
- ©=b-1
* (l-e t}c (l-ze"F) ™2 at . (24}

Bince a and b are eguivalent parameters, another set of four relations
can be generated simply by interchanging a and b everywhere. As

above, we reguire that Relc)> Re(b) ([or Re{a))S0.

(iii) There are a large number of alternative Integral Repre-
sentations, of course, which are obtained by transformation of the
variables of integration. These have been omitted for the most part

for reasons given in the subseguent remark. Also, any ) can be

o
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represented in terms of a complex contour integral known as a

Mellin-Barnes line integral (Slater (1), (2)). These representa-

tions have alsc been disregarded, at least for the present, because
of the difficulty of establishing simple rules for the selection of
the proper contour of integration, as well as the lack of a mechan-

ism for performing Residue Calculus.

{iv) Throughout this Memo it has been implicitly assumed that
the independent variables of the HGF are simple functions. Whan
this is not the case, especially in applications invelving integrals
and differential eguations, it would seem toc be more efficient to
first make an appropriate change of variables and then apply a rela-
tively small amount of sorting to the result, as opposed to having
to deal with a much longer list of more general forms.

For example, given

T2 - 2e=-2b-1
I =f / (sin t‘.lzh 1 {cos t) < at
a3

o (1 - = a.i.n2 t)

[

we set x = sinzit] and cbtain after simplification:

]
I =k i: oot {lau:-:]-c'h-l (1-2x) " ax,

- o L) e-b)
[ (e)

EFl{E,b;E;Z} #

- 22 =



according to formula (1i) (k) of this section.

This reduction is not trivial to recognize, of course. The
motivation is to seek out the "most troublesome" term in the
expression -- the denominator of the integrand -- and break it down
into simpler terms, in the hope that the procedure does not make
an aven worse mess of the remaining elements of the expression. In
this sensge, it isg difficult to define "most troublesome® in a succinct
manner. For this particular case, an egquivalent but less direct path
for the reduction would be to let

¥2r or

v = gin(t), then x

2

y = cosl(t), then x W

assuming we "know" that sinzit} = 1 - cosZ(t).

on the other hand, given an integrand which involves only trigo-
nometric (or hyperboliec) functions of the independent variable, the
substitution v = sin(t), or cos(t) (sinh(t), or cosh(t)) reduces it
to a purely algebraic expression; if further reductions are reguired,

they sholld then be relatively esasy to spot.

II. Differential Eguations

The discussion in this section has been purposely abridged
principally because an exhaustive cataloguing of the homogenaous
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solutions of DE's of the Hypergeometrie type would tax the patience
of the reader. Furthermore, these are well documented in References
(1), (2), and (3)s Therefore, the remarks below are principally of
a general nature. However, efforts @& being made at the present
time to reduce this detailed classification to a less unwieldy set
of fundamental procedures and operations.

The most general (and essentially only and basic) solution
technigue for linear DE's with polynomial coefficients is that of
Frobeniuas (8later (1), (2)). Other, more concise methods are
nearly alwayvs limited in scope and are generally egquivalent to
Frobenius' in any case.

The advantage of the HGF formulation is the fact that the behavior
of the solutions with respect to the nature of the singular points
and other types of limit properties are compactly "encoded" into the

"A" mand "B" lists.

(1} The General Hypergeometric Differential Equation:

The series PFqLE;E;x] satisfies

d;, d d _ d -
{-“?&“E"hl'l”’?;*bi Do b T g - 1)
- x{;;_...&_-l-al]n{x._i+a | I {x—di-a} ¥y =0 . (25)
dx dx 2 dx =
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The order of this DE is max({p,g+l).

For further elaboration and classification of singular points

sea Slater (2), pp. 42=45.

(ii) Gauss' Eguation:

The series EFltaih=ﬂ7H}* known as Gauss' HGF, satisfies

2
x(1-x)2Y 4 [c - {l+a+h]lx] 8Y - aby = 0 . (26)
dxz dx

See Slater (2), pp. 5-13.

(iii) Kummer's Eguation:

The series jFp(.) (Kummer's HGF) satisfies

2
ay ay _ =
X 2 + {b-x}dx ay = 0 . (27)

Bee 8later (1), Ch. l.

{(iv) A Cclass of Second-Order Linear DE's:

Suppose we are reguired to find the solutions of the homogeneous

egquation
2
a7y 2y =
Palx) =5 + py(x) go + Bplx)y = 0, (28)

where pjy(x), pp(x), and py(x) are real polynomials in x.
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We inguire: can the solution(s) we written in terms of, say,
gi{x)*aFi{a,b;ec;px + g),

where g(x) is an elementary function? The solutions might also
involve EFG{.], lFl{.j, or DFl{.j. Then again, it may be true that
the DE is not of Hypergeometric form. The details for transforming
any given DE into the latter have not yvet been completely worked

out =- in fact, to the best of this writer's knowledge, it has never
been attempted -- and there is a strong possibility that it may be
gimpler in general to automate Frobenius' method. On the other
hand, the great majority of DE's of this form which are encountered
in applications possess solutions in terms of Fp(.) or lrli.j.

By testing for the location and nature of the singular pointe of the
given DE, which is a fairly stratghtforward task consisting mainly
of finding the roots of the pk[xJ, the possibilities can be cut down

significantly also.

{v) General Linear DE with Polynomial Coefficients:
A great deal of additional work is reguired in the area of the
investigation of HGF's in the DE context. This is not to say that
most of the results are not known -- rather, they are numercus and
widely dispersed throughout the literature and reguire systematization.
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The best efforts to date are due te Slater((l) and (2), but there
is much left to be desired, especially where the aims of MATHLAB
are concerned.

Suppose we are given

. n]
{ . Py (%) (?i) y=0, (29)
k=0

where the pk{xi are real polynomials in x. The ceonditions under
which this DE can be transformed into the Hypergeometric Eguation
are not known in general for n = 4, and only in principle for the
cases of n = 4 or 3. (The latter require the solution of systemns
of algebraic equations of degree 4 and 3 respectively.) As before,
by locating and classifying the singularities of the eguation, it
may be possible to determine if the given DE is not of Hypergeometré
form; however, if we cannot prove that it is not Hypergeometric, it
may still be or not be Hypergeometric. The Hypergeometric DE pos-
sesses at most three distinct singularities: if the independent
variable is x these lie at 0, 1, and infinity. The singularity at
the ocrigin may be reular or irregular; that at 1 is regular or

removable; that at infinity is regular or irregular.
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VIII. Analvtic Continuation

Analytic Continuation Formulas are known completely only for
the HGF's zFlt.}, 1Fy(-). and the trivial case ;Fy(.). For other
PFq[i}‘s these can nearly alwavs be generated in any particular
instance, but only by resort to fairly sophisticated techniques
which reguire a thorough background of complex variable theory,
and thus lie beyond the limited scope of the present study.

(Analytic Continuation and the closely related topic of Con-
tiguous Functions, discussed in the following section, are useful

principally for numerical applications and also for the investiga-

tion of asymptotic properties. See remark (iv) below.)
{i) Trivial Case:

(Folas ix) = (1-x)~% = e=iffa =3 (g _ 3y -2

E—rﬁa

= lFﬂ{a: s17%) . (30)

{ii) Kummer's Theorem:

1Fylasbyx) = e™ 1Fy (b-a;bi-x), or
(31)

e JFplasbi-x) = jF(b-asbix)
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(iii) Gauss-Fuler Reductions for Gauss' HGF:

(a) EFlEa,h;c;x} = (1-x)“-a-b Erl{c-a;c—h:c;x}l ,

(32)
(b) = (=72 oF (a,e-bix; Koy, (33)
_ r'l:c}r'{c-a-h}l
(e) = ?{c-a]r{c-h} Epl{a,h:mh-ml;l-x]
c-a=b [ (e (a+b-c
+ {1-x) ROV
® oFy{c-a,c-bie-a-b+l;1l-x) |, (34)

N o -

r*iclll_'ju—hl _n-b e 1
' " (a)f "(e-b) (-x) = JF, (b,1-c+b; l-a+b; 1/x%) ,

(35)

= (1-x)"2 L (el (b-a) “bra-b+1l; _L_
(e) {1-x) B (o) oFy (2, e-bra-b+l; l-x}

-b _Mel"(a-b) -8 hest1s 1
+ (1-x) Fla)F(eop) 2F1(bic-asb-a+1; )

(36)
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_ iele-a-n) 2

(£ P (c-a ' (c-b) 2

F_la,a=c+l;a+b-c+l:1 -1
1 %

+ el (atbc) (q_ 2P a-c .
[Ma)r(b)

,F, (c-a,1-ajc-a-b+l;1 - é} . (37)
The conditions under which these transformations are valid is
usually egquivalent to the reguirement that the arguments on both sides
of the egquality are defined, and that the varicus Gamma Functions do

not possess zZeroc or negative integer arguments.

[iv) General Remarks:

Analytic continuation is applicable only when p = g+l, or p = 4.
For the case where p» g+l, the HGF is not analytic, and when p<g the

series converges uniformly everywhere (see Elementary Properties (i)

above) .

The usefulness of Analytic Continuation arises in both numerical
and theoretical areas. For example, we may wish to evaluate a
EFl{a.h:c:x} for large values of x. Direct substitution into the
soeries may lead to an unwieldy calculation, due to slow convergence.
However, we can transform: x—>1/% (see previous article) and the
resulting series will converge relatively guickly as x—»= . 0On the

other hand, the purely analytical advantages are well demonstrated in
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the example given above (V(ii)) where the 2Pl{.} which emerged from
the woodwork (line 4 p. 16) was transformed into a more readily inter-
pretakble form (line 4, p. 17).

Another valuable numerical and thecretical tool arises from the

contiguous properties of HGF's, discussed in the next section.

IX. Contiguous Functions

The two HGF's PFqQE';g':x], PFq[ﬁﬁrg":x} are said te be contiguous

when all parameters contained in their respective "A" and "B" lists

are equal, except for one pair of parameters (from either A or B), and
these two differ by unity.

For example,
sFglaj.az: ix), 2Fplaj.as+l; 1x)

1F2t5‘1*h hEFI{] 1F2 {athl'l:bEF’{}

l!
are contiguous pairs, but the pair
1Fylasbix), F) (a-1lib+l;x)

is not.

However, the last pair of functions are said to be associated.
In general, two PFﬁ{'}.E are associated if the respective elements
of their parameter lists (both A and B, or either) differ by integers
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O Zero.
It is not difficult to show from the differential properties
(section IV) that a linear relationship exists between m+l contiguous

FFq's, where m is egual to the order of the aaFcciatEd DE (Eg. (25)),

i.e. = max (p,g+l). For example, for 2E'll.'*} or lFlti}, the number of
functions in the expression is three. Furthermore, it can be shown
that a similar three-function relation exists between any three

assoclated EFL‘E or 1Fl's.

The term "linear”™ in this context means that the coefficients of
the various PFq's in the relationship are linear functicns of any
specifically chosen parameter, or the independent wvariable. For

example, one (of six) contiguous identities for lFl{.] is
b - 3Fy(asb;x) = b - jFy{a-l:;b;x) - x - (F1{a;b+l;x) .

The implication of this result is that, in the cases of .F,(.)

and 1F1:.} at least, we can compute:

(&) 2F1{3+m, b¥#n; c+l; x) from
zFl{a,h:c:x] and zFl{a,h:c+1:x],

for example.

(k) 1F1{a+m;h+n;x} from
oF1(asb;x) and F,(arb+lix],
for example,
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where m, n and 1 are integers, positive or negative.
For other values of p and g, it is generally simpler to iter-

ate contiguous relationships in order to caleculate an associated

function.

Complete listings of the contigueous relationships have been pre-

pared only for 2E'll.’.:l and 1Fl{.}. These are not given here for rea-
sons of space, but may be found respectively in Slater (2), pp. 13-14,
and Slater (1), p. 19.

It should be remarked that the derivation of contigucus relation-
ghips (i.e. the determination of the coefficients) for general values
of p and g is by no means trivial. The calculation reguires fairly
careful handling of power series relationships, and there iz apparently
no general svstematic technigue.

We recall for a moment the remark made above, Section ¥V {(ii) (4},
concerning "tricks": all EFl‘s of the form appearing on that page,

where k is a positive even integer, are agsociated functions. It

follows from the results just presented that if we know the value of
the integral for k = 0 and 2, say, we can generate in a simple manner
the values for k = 4, 6, 8, ... 2n, .... In fact, this starting pair
is easgily calculated from the integral on the bottom of p. 17 by ele=

mentary methods.
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¥. Tabulation of Functions Representable in Hypergeometric Form

In this section we list some of the more widely known Higher
Tranascendental Functions which can be expressed as FIFq'[a,}l .

The trivial cases lFD{.} and uFl{.j have already been mentioned
(Section II1) and will not be repeated. For completeness, we should

include in this category the rather obvious identity

x

PFF{ﬂFEFx} = @

The reader is cautioned to be wary of notation; the one emploved
here is generally that of Ref. (4), since it seems to represent a
reasonable compromise among the pprticular variations which are encoun-
tered in a cross-section of the different scientific disciplines. Also,
Ref. (4) nearly always catalogues the most common variant notations for
each of the functions as they are introduced.

(i) PFunctions Representable by jF1(a:b;x):

(a) Bessel Functions

2asx) = x/2 -a
JF, (@72a:%) [Miath) e (%/4) I (%2) . (3B)

Depending upon whether a is an integer or half of an odd integer,
positive or negative, and whether x is pﬁaitive, negative or imagi-
nary, a variety of differently named members of the family of Bessel
Functions can be generated. (See Ref. (4), Egs. 13.6.1 - 13.6.7.)
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(b) Polynomials

1Fl{—n1h”ﬂ = ) Ly (=) . (LAGUERRE) [39)

When b = 1/2 and 3/2, we cbtain respectively the even- and odd-crder

Hermite Polynomials:

lFli—n:%:x} = {EA}: (=%) Hezn{rﬁij,
. = n: "R
1Fq(-n:3/2;%) TSR (=%) Hﬁzm_l[m} . (40)
(HERMITE)

Another type, essentially the same as (39), is

(n1)¥ 2

Fo{-n;-nri+l;x) =
17y (707 (—n+asl)

Pnen . (41)

(POISSON-CHARLIER)

(c} Miscellanecus Functions

1Fplara+l;ox) = ax2 ¥ (a,x) . (42)
(INCOMPLETE GAMMA)

When a = %, this reduces to the errcor function:
F {Hﬁfﬂr-le = YT erf(x) . {ERROR) {43)
171 Dy )

A generalization of the Hermite Polynomiale, just cited (40), is
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(Fpl =472;1/2:%) = == &2 g0 (fT3)

(44)
 F(1/2 - aF2; 3/2; %) = 71= e*/2 E L) (42%)

243

(PARABOLIC CYLINDER)

- -1 2
(Fp @ ny1; p2) = RIET T e Tim,n,r) (45)
(m+l)
(TORONTO)
It sheould be borne in mind that Kummer's Transformation [(Eqg.(31))

can be applied throughout, essentially doubling the size of the list.

{ii) Functions Representable by EFl{a,h-f-H}:

{(a) Polynomials

p (%) (y) = [C(nta+1)

1=%
Fintl) 1) 2 Fy(=n,n nta+B+1l:  +1; 5 ). (46)

(JACOBI)

(Clearly, any 2Fl{.] which reduces to a finite polynomial can be alter-

natively represented by a Jacobi Polynomial by means of a proper choice

of n, &, and ﬁ. Furthermore, by employing the Analytic Continuation

formulas of VIII(iii) at least five more representations eguivalent to

(46) can be cbtained.)

Cnhf] (x) = l (n+2et)

R Ry (-n, ne2a; A+ ) . (47)

(GEGENBAUER)
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. heo L=
Tnl}‘:]‘ = EFll_n:n: !ﬁ! _x ] r
(48)
Up(x) = (a+l)eoF) (-n,mtl; 3/2; 22X ) .
[TSEHEBYCHE‘F}
— . l=x
_Pnl[]{] = EFl{—n,n-l-l, 1; —E'—':I - {LEGEHDRE} (49)

The results of (47)-(49) are, of course, subject to the transfor=-
mations of VIII(iii), where valid.

(b) Elementary Functions:

2F1{1,1:2;x] = log (l-x) . (50)
el = _1 :L']'_x 51
-1
LBy Uskir3/25%7) = £ osin (%) . (52)
EF:L 135,1:3_.-"1;«:4:2} = %tan_l{x‘,l . (53)
. ~2a b, =-2a
1=
oFy @, a+hsrix) = {l+x2} L x:] . (54)
1 L 1=2a
EFl{a-H;aIEa:xJ = [%—igi—lﬁlr] . (55)
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l+=
F,(2a,a+l;a;x) = . 1)
27 V=2 (1z)2a+1 (5€)

(Notice that the last three results can alse be expressed in terms

of simple functions of 1Fgl-)'s.)

(¢} Other Functieng:

2 _ 2
EFlf!E.;iFlI:': ) =7 K(x) ,
(57)
2F1 (B lix?) = 2 E(x) .
(COMPLETE ELLIPTIC INTERVALS)
-
2E':L{;:1,1—-:1:pr+l::l\:‘l = px B (p.g) . _ (58)
{INCOMPLETE BETA)
zFl{a,b:E:x] = c E(a,b;e;- i]- . (59)
Ma)l (k) *
(MACROBERT'S E-)
- ey g2 ( 1| 1e ) 60
Fare 220 x| ab (oo

(MEITER'S G-)
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(1 + x)" to N terms:
n

+ N
{Hl

=1+ (Dx+ Daf 4.

r=%) to N terms

= lFﬂ{—-n:
_ x 1
=i-nl, — F (-N,1; 1+n=-N; = = 1
( JHH: zl{Hl +n-N R; (61)
(TRUNCATED BINOMIAL SERIES])

(8ee generalization in next section.)

{iii) oOther Representations:
For Pﬁﬁls other than the cases already listed, the reader is

referred to Slater (2), pp. 46-7, and Bateman (4), Higher Transcen-

dental Functions, Veol. II, under "Generalized Hypergeometric Seriesg".

One result which is of interest, much like that of BEg. (&1)

above, is the following:

e® to N terms
2

L X

M.

®
= * X 4+ — + R
1 2

iX) to H terms

= oFol 7
N
*® 1
= §7 2Fol-N.1: 1= ) (62)
(TRUNCATED EXPONENTIAL SERIES)
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(Motice that although it was stated previously that if p» g + 1
the associated PFQ{‘] ig undefined in general, this restriction
does not apply if one or more members of the "A" list are nonposi-
tive integers, in which case the series terminates in a finite
number of terms, as in the present example.)

All other truncated series of circular and hyperbolic func=
tions can be represented in a like manner. For example,

cosh ® to N terms

= k{e® + E-x] to N terms

=k - ZOR (-1 - D)+ (DN RN,

b [t
=

XTI Miscellaneous Results an

This section lists some useful and powerful properties which

do not fit neatly into any of the above categorizations.

(i} Truncation of Series

Suppose that we are given a power series whose individual

terms are of the form of those of a PFq{-J. but which is terminated

after N terms, as in Egs. (6l) and (62) above. We state the follow-

ing theorem:
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[PFEI (A1B; ::JJH

N

k=0 (B1)y (body. .- (bply k!

(al)ylas)g---lap)y =¥
— F 1—“— ., -N, .
(5 )y (Baly- -+ (Bbg)y Ni at2Fpli-i-B, -N. 1

=p+1
1-N-A; I—_l.l%i ), (63)
WhEIE 1-H-EH{1—H_]:|1} a {l-H-hEJ # oo {l_H-‘hq] @

l—H—EHil-H-ﬂ l} r {1-H'32} g ovmmg {l_H_ap] "

Eg. (63) is a generalization of the aforementioned examples.

(ii) Rewversal of Series

A closely related result applies to terminating PFq‘a, i.e.

those which possess 0 or a negative integer in their "a" list. The

series can be expressed in terms of powers of (l/x) as follows:

qu{al.aZ,...aP_l;—m; hl-bz---'hqf ®)

ral}m{az}mi ] [ap_l}m
(B0 (By) - - - (B

(-x)
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[iii) Particular Values of the Argument
For certain PFq‘a. especially when p = g+l, the series is
summable in closed form when the independent variable takes on

special values. Some of these are listed below.

e _ r{t'.lrl[_g-_-a-h}
,F (a,bresl) = Fle-a) o) ° (65)
JFyla,b; l+a-b; -1) = 272 Tsa-bl(1 + a/2) (66)

Cil+al (1 - b + a/2)

Mics2 f‘{li:;h]

EP:L{-E;J-_&J' LalH ;T-.:} = r'tazc-:r{l"';-ﬂ}

(67)

A few others for 2Fl[+] can be generated by means of the

Analytic Continuation formulas given above. For other PFq's of the
form P+1FP{,‘,|, with particular arguments, see Slater (2], pp. 48-=84.
(The underlying theory of the latter is guite deep, and is of purely

abstract interest for the most part, in any case.)

{iv) Confluence

The adjective "confluent" is often encountered in the literature
of Hype rgeometric Functions. The word means, literally, "running
together". 1In the present context, the term denotes the "running

- 42 -



together” of the singular points of a Pqu.} at one and infinity.
To fully appreciate the manner in which this is carried off would
require a lengthy and complicated discussion of the DE thecry of
HGF's. For example, if we make the change of variables x—x/b
in Gauss' Eguation (26), and then let b—ms (carefully) we cbtain
Fummer ‘s Equation (27) (with b replaced by «c).

Roughly speaking, 3Fj(a,b;c;arg) possesses a regular singu-
larity when arg = 1, as well as the singularities at arg = 0 and
o; thus, if arg = x/b, the "middle" singular point lies at b,
and thus goes to infinity as b—w [to joln the one already there).

All of this is easier to visualize in terms of power series;
suppose we want to "do a confluence™ on a given Pfq{.} with respect

to a member of the "A" list, =ay aP ( the last member). We can

reprasent the operation symbolically as

CONFLUENCE (pFg(A:Brx)) wrt a

P
= T.Am tPquﬂlJﬂ.E. # % & lfﬂ_ ; E: _.:{ ]]
= P_qutal,aE,...aP*l; Br x). (68)

This result is fairly obvious if one recalls Eg. (l): the

only terms in the summand which inveolve a_ constitute the ratio:

P
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(ap) _ t;E{aP+l}...{aP*n_1}
*p " *p -+ Fp

L+ Lap) (1 + 2/a) ... (1 + B3y

P
which clearly goes to unity as ap=—boo, thus wiping out all trace
of aF and leaving the independent varigb le unscathed.

Thus, briefly, to obtain a confluent form of a Pfq{.}, one
member of the "A" list is deleted and p is reduced by cne.

By way of justification of all of this verbiage, which may an
the surface appear to be describing a fairly trivial property, let
it be noted that Slater (1), (2) employs cenfluence nearly every-
where to demonstrate theorems regarding lFl's by "doing a confluence”
throughout the analogous theorems for 2Fy. (The overall theory of
the latter is richer and more versatile.) 1In the same vein, but in
reverse, this writer has on several occasions dealt with a recalei-
trant lFli.} (say, in an integrand) as follows:

Lat

1Fpl@rerxl—=3 5F) (a,bieix/b)

play 1El—type games, get an answer (if possible), and then after all
the dust has settled let b—aw. If the result makes sense at all,
it is probably correct.
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(v] Remarks
There area large number of other isclated properties of HGF's
which are not described here in detail for reasons of space and

present applicability. The most important of these concern:

Addition Theorems, i.e. the expansion of Prqfﬁ;_;x+y} in terms of

PFq’s invelving x or ¥ singly; similarly, Multiplication Thecrems

for (A;B:;xy); expansions of [.] in terms of HGFP's with smaller

P q Fa
values of p and/or g. (As an elementary example of the latter,
recall that I.(x) can be expressed alternatively as DFL{.j or

1Fy1 (-} -)

For further documentation, the reader is referred to Slater (1),

{2), Bateman (3), or the Bureau of Standards Table (4).

II. Important Omissions

At several junctures in this report this writer has passed
over or detoured subject matter which should properly have been
included, but for the fact that the text would have at least doubled
in size. Considerable pains have been taken to sift through the body
of theory in order to simultaneously maintain readabkility, pertinence
and brevity, and wherever gaps or incomplete listings have arisen, a
specific reference has generally been provided.

However, at least two significant topics have received inadeguate

- 45 -



attention.

(1) Differential Egutions:

As indicated in the closing remarks of Section VII above,
the theory of HGF's as applied to linear ordinary DE's with poly-
nomial coefficients reguires extensive study. A tabulation of
the known results was not included because, at least to the insignt
of this author, no "pattern" seemed to emerge, except at the elemen-

tary "Frobenius Method" lewvel.

(ii) Associated Kummer Functions:

Associated Kummer Functions constitute a class of soclutions
of Kummer ‘s Equation (27) for which ";F;(.)" is not valid. 1In
many cases, these functions (usually denoted by U(a:b:x)) can be
written in terms of lFl's: when they cannot, they are nearly always
characterized by logarithmic singularities or cother types of branch
points near the origin.

The principal reason that these were not menticned is that
the associated thecry parallels that of lFli.} except for a number
of nagging exceptions which are just sufficient to create confusion
{(very much like attempting to match up trig-function and hyperbolic

function identities¥). Eventually, of course, these functions will

* cosh? x + sinhE x = 7 (guickly, now)
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have to be included, but it was felt in the course of the prepara-
tion of this report that the penalty in terms of length and reader
attention did not justify the relatively minor virtue of a more
complete presentation.

A listing of functions representable by Ula;b:;x) is given in
rRef. (4), p. 510. It can be seen by comparison to the list on

p. 309 (for lFlta:h;H}l that the degree of nonoverlap is not serious.

¥XIII. LISPF Representation

F. Fateman has suggested that the following format be adopted

for LISP representation of hypergeometric functions:

F (A:B:x
Pg— = )

< ((MFHYP P Q) (A, B; ... AP} (By By ... By)X) (69)

The car of the right side identifies the function as being a
Fq{-}; the cadr and caddr are the "A" and "B" lists, respectively,
and the cadddr is the independent variable. To be slightly more
general, the last element should probably be replaced by ('FUNCTION x)
or a quoted lambda expression, in the event that the independent
variable is not x itself.

The inclusion of the parameters P and Q in the car is admit-
tedly redundant, inasmuch as their values are specified by the
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lengths of the "A" and "B" lists; however, it appears at this time
that it is more convenient in the long run to have P and Q
available at a fairly high level in the form of atoms rather than
cluttering up the landscape with expressions like [LENGTH (CADR Y))
and so forth. Furthermore, the decision paths which determine how
a particular PFq{.} is to be manipulated branch at a very early
stage, depending upon the wvalues of P and @, somewhat as follows.

After reduction (i.e. cancellation of common members of the
"a" and "B" lists), we examine P and 0O to see if DFG{*}' gF (-
or lFD[.] has emerged; if not, then test for ;Fy(.): if T, then
branch to a recognition package for 1Fl{.}: if not, test for oFy(.):
if T, then branch to a recognition package for 2Flt.}; otherwise:

(a) If "A" list contains 0 or negative integers, and "B" list
does not, the qu{‘j is a finite polynocmial.

(k) If "B" list contains 0 or negative integers, and "A" list
does not, function is undefined.

(c) If both "A" and "B" lists contain 0 or negative integers,
and all such members of the "A" list are greater than all such mem-
bers of the "B" list, then function is a polynomial; otherwise
undefined.

{d) o©Otherwise (i.e. none of "A" and/or "B" lists are 0 or

negative integers) function is defined in terms of an infinite
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series if p £ g+l, undefined otherwise.

A flow chart for this logic is shown in Fig. 1, by way of
example. Other packages for integrals, derivatives, and differen-
tial egquations have also been flowcharted. (See remarks in

Conclusions, below.)

The overall input iz assumed to be a HGF which has emerged
from lowest-level operations in "unrefined" form, i.e. the package
is presented with a PFqI:.} with no a pricri knowledge. We call
this input G, and the output of the reduction routine F. The nota-
ticns "T" and "NIL" on the branches denote "yves" and "no"; ay and

hj denote members of the "A" and "B" lists.

(i) HYPREDUCE

HYPSORT

Fig. la. (G' denotes the reduced form of G which omits ay
and b,, if they are egual and reduces both p and g by
unitys)
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(i1} HYPSORT

HIL HIL
P = 2; HYPSORT3

HYPSORTH HYPSORT1 HYPSORT2

Fig. 1b.

(1ii) HYPSORT@

NIL

Fr—uag = 0 Mg = 1

NONPOSEP |

Fig. le. LOOKBESSEL locks at F (which is, by now, a _F.(.),
and therefore a Bessel Function) and determines which parti-
cular Bessel Function best fits the parameters.

HONPOSBF (predicate) examines the "B" list; T is returned if
none of the membersare 0 or a negative integer: otherwise NIL.
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(iv) HYPSORT1

HIL NIL

“‘_ﬂ HYPSORT3 i

T
. |I.-DDKlFl

Fig. ld. LOOKIFl is a recognition package for 1F1(.) which
attempts to identify F in a list of known representaticns
(see X(i), above).

(v) HYPSORT2

MNIL
F 9 = l}— HYPSORT3

|

LOOKZF1

Fig. la. LOOKZFl: 1like LOOKLFl, but for _FP.(.) (see
X(ii), above). 21
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(vi) HYPSORT3

. HNIL MIL
F——{HDHPGE‘.P.P HONPOSEP Y g+l

RETURM, FINITE
POLYNOMIAL

Fig. 1f. MNONPOSAP (predicate) is identical to WONPOSEP,
except operates on "A" list.

FLANKABF (predicate) flags members of both "A" and "B" lists
which are 0 or a negative integer; returns T if all such mem-

bers of "A" list are greater than all such members of "B"
list; otherwise HNIL.

Some fragments of this package and of others have been coded
and appear to work satisfactorily. The most difficult problems 1in
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the programming area are anticipated te lie in the interfacing
with the present MATHLAB, particularly in the "simplification"
procedures, and in designing conventions for I/0 which are effi-
cient from the point of wview of hoth the user and the systam.

Most of these problems have not yet been considered in detail,
although none of them appear insurmountable at present. At the
moment, other more urgent problems are at hand, so that this work

will have to be suspended temporarily.

XIV. Conclusions

The purpose of this report has been to introduce the reader to
Hypergeometric Functions as painlessly as possible, and to give
some indication of the strengths and weaknesses of the Hypergeometric
Formulation.

Its power arises from its generality and the fact that it
enables one to deal with a much wider class of functicns than can
be handled at present, and to do so in a unified manner. The several
more-or=1less detailed examples which are scattered throughout the
text were chosen to support this contention.

On the other hand, implementing these technigues presents a

large number of systems and programming problems, and it would be
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difficult at the present time to predict how much time and effort
would be reguired to solve them. PFurthermeore, such a package would
probably be costly in terms of core and running time, but that is
of secondary importance.

It is this writer's firm belief that if MATHLAB is in the
future to appeal to a wide variety of users, from freshman calculus
student to theoretical physiecist, it will have to eventually incor-
porate some or all of the methods cutlined in this report. There
ig literally no other sensible way of dealing with Higher Trans-
cendental Functions efficiently within the confines of a finite
syatem.

Perhaps this study is premature, inasmuch as there are bugs
in the present system which must be eliminated, as well as some
new foundation blocks to be incorporated before attempting to build
in the Hypergeometric Function methods. At least, these have now
been documented for future reference and a promising direction for

research has been provided.
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