MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

artificial Intelligence
Memo Mo. 197 May 1970 *

A Simple Algorithm for Seli-Replicaticon

Terry Winograd

*0Originally issued as term paper, MNovember 1967.



& recurrent topic of interest in the theory of auvtomata
has been the possibility of self-reproducing automata, particu-
larly those which could reproduce globally through an application
of a local algorithm. 1In such a device, the "growth" at any
point would depend at any time only on the local environment,
but the overall effect would be the reproductien of complex
structures.

This paper gives an algorithm of this type (an extension of
an algorithm brought te my attention by Professor Fredkin) and
examines the conditiens under which such replieation will occur.
The system on which it operates will be defined, and the main
theorem on its operation will follow from several simple lemmas.

Consider first a system consisting of an infinite checker-
_board with positive integers marked in a finite number of its
sguares. Choose any prime p greater than the largest of these
integers. The algorithm is:

{1) At any time n, place in each square the sum modulo

p of all the numbers in sguares adjacent to it at
time n-1.
The sense in which this is local depends on the definition of

"adjacent”, which will be made precise later. As one of many



possible examples, consider all orthogonally and diagonally
adjacent sguares. Taking the initial pattern of Fig. 1, and
choosing p=5, we get at succeeding times the patterns of Fig. 2.

We can formally represent the system as a sequence of func-
tions whose domain is the set of vertices of a directed graph
and whose range is the set of residues moduleo p. We will let
f,{x) represent any initial distribution of integers, and define
Fnifm[R} as the integer at vertex x at time n produced from
the initial distribution f_,. We can also define the set of
vertices adjacent to x, A(x), as the set of vertices vy from
which there is an edge directed to x.

Algorithm (1) can then be defined recursively:

(2) FnrfD{x} = £, (x)

(3) F (+) F

ntl, £ %)
o yeh (x)

n.f:,t?:'

where (+) represents sum mod p.

pDefine the funetion d‘y{x}: Jy{y} = 1, r.-fy:z: =0, z # v.
Any 1lnitial function f,(x) can be represented as the sum of a
finite number of integral multiple of d-functions, one for each

wertex y for which £_(y) # 0. cCall this set of vertices 1I.

Thean

(4) £ (x) = ):; £, () (x)
o e o dv
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Lemma 1: For any fﬂ{x} and all n 20,

.
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|::+} fnifirn:ﬂf? {x}
= Vel

Proof: The case n 0 is a result of identities (2) and (4).

Using induction on n,

F (x) = (+) F (z) By (2)
n+l. £, zeh (%) n, £, Y
= {+) (+) f,(v) F & (=) By the induction
zEA (%) vel n.ey hvpothesis

(+) £5{y)  (+) P dyt®)

Vel ZER (x)
= ;::1:: £y Fn+1:@{xa By (2).

This lemma combines two results. The value at any wvertex
at any time resulting from an initial distribution of a single
integer n is equal to the product (mod p) of n and the value
which would have resulted at that vertex from a distribution of
a single 1 in place of n. The valua resulting from an array of
initial wvalues is the sum (mod p) of the values which wauld have
resulted at the same time in éap&rate distributions, each gener-
ated by one of the initial integers.
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For any two vertices y and =, let Py(x.¥) be the number

of distinct paths of length n from % to x.

Lemma 23 For any vertices x,v and any n 20;

(5) Fn.Jy{x} = Pn{y,xj mod p

Procf: For n = 0 the lemma is trivial, as there is exactly one
pathof length 0 from ¥y to ¥y and none to any x # yv. Any path
of length n+l connecting y te X can be represented uniguely
as a path of length n connecting v to a member 2z of A(x),

followed by a final edge connecting 2 to x. Therefore:

r"‘l
P (¥, x) P_(¥.2)
n+l %?ﬁ{x] n

= (+) F, JFtEJ By the induction
zeh (x) d
= Frep,dy®) = (2

To this point there have bheen no restrictions on the directed
graph. Obviously the number of distinct paths connecting two wver-
tices will be determined by the geometry of the graph. In order
to achieve the desired replication properties, we will consider a
special class of graphs, which we will call "directional.™
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Definition: A directional graph is a directed graph whose edges

can be partitioned into a finite number of classes such that:

{a) There is exactly one incoming and one cutgoing edge of
each class at each vertex.

(b) Any two paths beginning at the same vertex and contain-
ing the same numbers of edges of esach class end at the same vertex.

{z) Two paths, each containing edges all of one class, will
have at most one point in common unless both paths are made up of
edgas of the same class.

The geometric motivation for this definition is clear. If we
think of a graph in Euclidean n-space which is invariant under
translations carrying vertices into vertices, we can consider the
directions of edges as their classes, i.e. all parallel edges
will be in the same class. We will call the classes "directions.”

The definition does not imply all of the restrictiens implied
by the intuitive "checkerboard"” model. We will list some of the
implications and possibilities.

l. The directions are not necessarily independent.

In the example on page 1, a single edge in a diagonal
direction leads to the same point as the combination of
a horizontal edge and a vertical edge.
2. The directions are not necessarily svmmetrical.
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Enlids,
graph.

include

The fact that x is adjacent to v does not imply
that v is adjacent to . If we use a checkerboard
and consider only the three sgquares immediately to the
left of x as adjacent to it, the conditions are
satisfied.

Graphs with the same number of directions are not necas=
sarily isomorphic.

If we consider the dual graph of a hexagonal tiling
of a plane, there are sgix directions which are not
independent. A three-dimensional checkerboard with only
orthogonal adjacency has six independent directicons.
Graphs can contain loops but in at most one direction.

In any graph, we can consider each wvertex connected
to itself in a zero-direction. In our origianl example,
this would result in a ninth replication located in the
position of the original. If there are lcops in two
different directions, property (c) will be viclated.

general, any £filling of Euclidean n-space with identical
with any rule cof adjacency will produce a directicnal
The adjacency need not be the intuitive one == it could

such patterns as the knight's move on a chessbhoard.

There are other possible directional graphs which cannot be
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reprasented in Euclidean space.

Lemma 3: In a directional graph of m directions, for any
integer k 0, Fpk F{x] is egual to 1 at m points, each
L]

of which 1= connected te ¥ by a path consisting of pk
edges all of the same direction, and is zerc at all o her
points.
Proof: Any path of length n from v te x will contain a
definite number ef aedges of each direction. We can associate

with it a wvector of integers {nl, n

swsy; ), where
m m

El

n; = n. The set of all paths of length n from ¥ to

xl.ian be partitioned by grouping all paths with the same direc-
tion vector D. Property (a) implies that every distinct permu-
tation of the edges indicated by D is actually a path, and
property (b) guarantees that it leads to x. Therefore the number
of distinct paths in each block of the partition must be egual to

the number of permutations of n obhjects of which nl, O

are alike. For n = pk, this will be:

It is easily established that this will be divizsible by p unless
there is some i such that n; = n, iy = 0, j # i. Property (c)
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implies that there will be at most one path from y to x
mesting this criterion. Therefore the number of paths will be
the sum of numbers of which all but at most one are divisible
by p, and will therefore by congruent (mod p) to 1 for exactly
those cases in which there is a path made up of edges all in the

gama direction, and to 0 for all other vertices.

Definition: A distribution Fix) of integers on a directional

graph is a replica of a distribution G(x) if the wvertices of the
two can be put into a one-to-one correspondence such that:

a. The integers at corresponding vertices are the S%me-

b. If x and y are vertices of F(x) corresponding to

X and ¥v' of G{x), and if D is the direction wector
for any path connecting x to ¥, then any path start-
ing at x' and having the same vector ends at v'.

Thearem: Given any directional graph with m directiens, and
any initia)l distribution of integers at a finite number of
its wvertices, then for every pr;ma p greater than the
largest of these integers, there axists a kP zuch that the
result of applying algorithm (1) pk times for any k2>kp
will he m identical replicas of the original distribution,

kK

e#ach translated a distance of p™ edges from the original in



a single direction.

Proof: Lemma 1 implies that the result at any point is the sum
(mod p) of the results produced by the points of the original
distribution taken individually. Lemma 3 shows that these indi-
vidual images are the indicated translations of the indiecated
wvalues. Property (o) of directed graphs implies that no two
images of the same point can coincide at any time, and that the
image of a point y in directien A and the image of point =x
in direction B can coincide at most once. Since there are a
finite number of original points and a finite number of direc-
tions, there is a time kp after which nc two images can coincide,
and the properties of the replica are assured by the properties
af a directed graph.

It is also interesting to note that there exists a k'

P

such that for all k'» k"_ the result of applying the algorithm

F
pk' + pk times (where k is greater than kp but limited to some

2

small value depending on k') will ke m replicas. Essentially,

the p¥' repetitions produce m widely spaced replicas, and

the pk

additional applicaticns of the algerithm preduce m
replicas of each of these. Similarly for an infinite number of

appropriate values of k, the result of applying the algorithm
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Tl
§ ' p*i times will be m" identical replicas of the original
=1

pattern.
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Figure l1-2
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