MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

AI-199 MAC-M-428
June 1970

The Function of FUNCTION in LISP
or
Why the FUNARG Problem Should be Called

the Environment Problem

by

Joel Moses

Abstract

A problem common to many powerful programming languages
arises when one has to determine what values to assign to free
variables in functions. Different implementational approaches
which attempt to solve the problem are considered. The dis-
cussion concentrates on LISP implementations and points out
why most current LISP systems are not as general as the original
LISP 1.5 system. Readers not familiar with LISP should be able
to read this paper without difficulty since we have tried to

couch the argument in ALGOL-like terms as much as possible.



Most c
stack for ma
in recursive
that there i
end of the s
other inform
"decrements o
to the stack
stack grows
Figure 1 we
immediately

and finally

>

just before
-entering £

-Using
easy to obta
The situatio

variables.

omputer programmers are familiar with the use of a
intaining values for arguments and local variables
functions. We shall assume, for concréteness,

s an index register which contains a pointer to the
tack, called a stack pointer. Variable values and
ation in the stack can thus be accessed as small

r increments (depending upon the machine implementation)
pointer's value. We shall further assume that a
downward whenever a function is entered. Thus, in

see the stack pointer just before entering a functicn £,
after entering f with argument x and local variable a,

immediately after f has returned a value.

X ->
a
> immediately
- immediately after leaving £

after entering £

Figure 1

the stack mechanism it is, as we have noted, gquite
in the value of any argument and local variable.
n is more complex if we wanted to provide for free

A variable 1is used free in a function if it is

neither a formal argument nor local to that function. For



example, in the function f given by

define f(x) =
begin;
if a>0 then return x
else return -x;

end;

, the variable a is used free. Of course for the function to
be meaningful the variable a must be bound (that is, not free)
in some function or block from which f is called, or which calls
g which calls £, etc.

The use of free variables is a very powerful computational
idea. In many situations it is possible to avoid using free
variables by supplying a function with additional arguments. - -
This can be quite cumbersome. It is also inefficient since a
subroutine call might require the saving of dozens of parametérs.
The idea of substituting the values of the free variables inside
the functions is also very inefficient since, for example, one
must differentiate between occurrences of a variable which are
free and those which are not. In addition, both of these methods
do not allow one to modify the value of the free variable and
achieve the desired effect.

When a function uses free variables or when it calls functions
which use them, then the vlaue of this function is not completely
determined by its arguments, since the value might depend on
the values of the free variables. Thus in order to completely
Specify a computation, one has to specify a thction and its

arguments in addition to an environment in which the values of

the free variables can be determined.l A stack is one way
of maintaining such environments. The goal of this paper is

to show why great care must be used in maintaining environments.

1. Inputs from external sources may, of course, effect the value
of a computation. We shall consider input values to be part of
the environment also. '



We shall do this by indicating several situations in which it
becomes increasingly complex to keep the proper environment
needed for further computation.

Probably the simplest situation in which free variables
occur is in a block-structured program. VWe assume here a block
(in the Algol sense) which has one or more blocks local to it/
where each of these blocks may chtain local blocks, etc. A
variable which accurs free in the inner blocks can be accessed
and modified with ease since the compiler knows where it has
stored the value for that free variable on the stack. Thus the
free variable a in the program segment below is easily accessed

because it is used lexically near the place where it is bound.

r* ‘ begin local a;
L tal' a = 2; |
bound begin local x;
tgt x = £(2) + a;
free e;d;
end;

Consider, howevér,.the situation in which the free variable
is used inside of a recursive function. Now it is difficult
to know where in the stack its value is stored even though the

variable is bound lexically near the function call.

define g(x) =
'a' begin;

free

oot e o)) oo

Lend;

FBegin local a,b;

bound b
__t_a_nd;

g(2);




There are several ways in which to maintain the values of
free variables (énd,.thus the computational environment) in
order to handle cases like the one above. All of the techniqgues
used involve some increase in time. One apprdach makes it
easy to access the value of a free variable while increasing
the cost of entering and 1eav1ng a block in which such a variable
is local. This approach is favored in recent 1mp1ementatlons
of LISP. We shall call it the "shallow access" approach.

Another approach is to make it relatively easy to enter and
leave a block in which a free variable is bound, but relatively
expensive to access a free variable. This approach is used in
the classical "alist" implementation of LISP. Several Algol
systems have opted for a simila; approach. We shall call this the
- "deep access" approach. Both of these approaches allow one to _
modify the value of the free variable as well as access it. The
access timé is approximately the same as the modification time in
both approaches.

Let us consider the "shallow access" approach first. By
"shallow access" we mean that the value of a free variable can be
obtained in a single fetch from memory. Since the current value
of the free variable may be stored in a difficult-to-determine
location up in the stack, a special cell for its current value is
used. In many recent LISP implementations this special value cell
is stored as a property of the atom structure, and is unique to
the free variable. 1In order to maintain the proper value in the
special cell, extra work must be done every time a function or a
block is entered in which the variable is an argument or is local.
On entering such a function or block -one usually saves the old
value which is in the special cell on the stack along with sufficient
information to allow one to know from where the stack value came.
On leaving such a function or block one must remember to store the
value saved in the stack in the special cell.

The “deeé access" approach forces one to search upward
in the stack for the most recent value of the free variable. Such
a search may be guite deep and slow if the free variable was bound

very far up in the stack. However, this approach has the



-5

advantage of avoiding the need for an extra special value cell.

In addition, we shall see later that this approach sometimes
allows one to use free variables with greater ease and flexibility
than the "shallow access" approach.

The LISP "alist" implementation is, as we noted earlier, an
~example of the "deepAaccesszapproacht The "alist" contains
pointers to previous values of all bound variables together with
the variable names. The name of the variable appears on the left
side of a pair, and the value of thé variable on the right side.
Thus the first variable encountered below is 'a', and its value

is 5.

\ T 7"1_"—j >. { 4'_“5
\ ] |

ai{s ] ,7~ c |8 } a 3‘7

é?”"_

In some Algol implementations, all variables local to a
given block are bound on consecutive locations in a linear stack.
In addition there are pointers in the stack which allow one to
get from the values local to one block'to those local to higher
blocks. Thus, if one is forced to search for the value of a free
variable, one can use the pointers to get from values local to one
block to those in another, until one arrives at the block at which

‘the free variable is bound.

The real advantage for "deep access" is seen when one considers

passing functions from one block or function to another. We shall



-6-

first consider the easy case when a function is passed downward -
that is, when it is used as an argument to another function. The
hard case, when a function is returned as the value of a computation,
will be considered later. It should be noted that the hard case does
not occur in-ALGOL 60 or ALGOL 68 because returns of functions are
not allowed in these languages. ‘

Let us recall that the evaluation of a function is dependent
on its arguments plus the environmentrwhich gives meaning to
any free variables used by it or its subroutines. An important
point which must be realized about functional arguments (abbre-
viated FUNARGs) is that two different environments are involved
in such cases. The first environment is.the one which is in effect
when the FUNARG is bound as an argument. We shall call this the
binding environment. The second environment is the one that is
in effect when the FUNARG is activated as a function. We shall

call this the activation environment.

Since the binding environment and activation environment
will, in general, differ from each other, it is a nontrivial matter
to decide which environment to use in order to evaluate a

functional ‘argument. Consider the following eXample:

define f(x) =
begin;
'if a = 0 then return x

else return -x; end;

define g(x,fun) =
begin local a;
a=2=0

activation environment return x + fun(x); end;

" begin local a,b;

a =1

binding environment b =g(3,f);

end;



Note that the binding environment has a = 1, and that the
activation environment has a = 0. If we used the binding
environment to evaluate f(x), then its value would have been
-3. If we had used the activation environment ﬁo evaluate
f(x), then its value would have been 3. Thus the importance of
determining which environment to use should- be clear.

From an implementational point of view, it is obvious
which environment one would like to give a functional argument -
it is the activation environment. The reason for this is that
in the "shallow access" implementation the values of the free
variables are then set correctly. In the "deep access" case,
the values of the free variables are close at hand. Unfortun-

ately the programmer would usually like to have the free var-

- iables have the value they possess in the binding environment. _:
'~ Consider now what it would require for the system. to. re-
store the bindihg environment for functional arguments. It
would require knowing where in the stack or "alist" the binding
environment exists through some pointer to it. Supplying such
a pointer is a function of FUNCTION in LISP. That is when one
transmits a functional argument f which is to be evaluated in
its binding environment, then one uses FUNCTION(f) instead of
QUOTE(f) . FUNCTION will prevent its argument f from _being - --- -
.evaluated, just as QUOTE would. The result of FUNCTION will be -
a structure which not only contains a reference to the function f,
but also contains a pointer to the binding envifonment. Thus at
the FUNARG's activation time we will be able to use the pointer to
restore the environment to the proper place. 1In the "deep access"
case with a stack implementation the restoration process -is not--- -
too costly because one creates a pointer from the current place in
‘the stack up to the point where the binding environment exists,
thus skipping over any values in the activation environment- -

which differ from those in the binding environment. (see Figure 2.)



binding environment :

activation environment N
Figure 2.

In the "alist" implementation this process is even easier,
because the saved pointer is made the current "alist", and we
are done because the values of free variables will be obtainéd
from the "alist" which contains the bindiné environment. .
In the "shallow access" case, the matter is much more compli-
cated. One has to restore the special value cells by going upward
in the stack and giving the free variables their previous bindings.
This is done until one gets all the way back to the binding
environment. After the functional argument has been evaluated,
the environment must be restored to the activation environment.
(There can be no gquestion about the necessity of this change, -
of course.) In the "deep access" case the stack is automatically
restored to the correct environment. In the "shallow access" case
one must repeat the restoration process, only now one performs
it downward from the bindinq environment to the activation environment.
It might seem that this change in environments for functional
arguments causes enough implementational difficulties for the
‘"shallow access" school that there could not possibly be any more

complications. 1In fact some implementers of "shallow access"



-0-

LISP systems who have gone as far as we have described have
thought that they had solved all the problems related to main-
taining the proper environment (see Bobrow, et al. [1]). However,
we pointed out earlier that the worst case is yet to come. This
is the case where the function is returned as the result of some
computation.
This case is_difficult for the "shallow access" approach because
one would normally discard the portiéon of the stack through which
the return was made. The space occupied by the discarded part of the
stack will then be usable in subseguent computations. However,
if we are to preserve the binding environment, then we cannot
discard the portion of the stack through which the return was made.
Consider what might happen if we did discara values in

the binding environment in the example below.

define f(x) =
begin;
if a = 0 then return x
else return -x;
end;
define g(x) =
begin local a;

a= 2;

return f binding environment
~ end; .
begin local a,b,h;

a = 0;

h = g(2);

b = h(3); - activation environment
end;

In the example above the value of a at binding time in g
is 2 and at activation time it is 0. If we had discarded the

environment generated by calling g, then we would surely have lost the



-10-

value of 2 for a. In fact, if we had tried not to discard the
stack and had saved a pointer to the binding environment, we
would find a lot of garbage there created by the call to f.
Therefore, when one returns a function which is to be
activated with its binding environment, one must save the binding
environment so that one can get back into it. But how does
one restore the bindiné environment? One has to essentially
back-up the stack until the point is reached where the function
was returned. But that is not enough since one must then back-
down through the saved environment to reach the point where the

binding was made and the return initiated (see Figure 3).

binding‘

back-up

activation

Figure 3



-11-

We see that by not discarding’the stack during the return
we have created an environment with a branch. If we allow
several function returns without a discard, then the environment
we have created is a tree. The question now is how does one
create a tree structure from what was originally a linear stack.
If we allow both upward pointers and downward pointers in the
stack, then we can have a tree. So the "deep access"” implementers
with upward pointers need only introduce downward pointers and
their problems are solved.2 The "deep access" implementers
with an "alist" always had a tree (though many of them probably
did not realize its importance), and thus they encounter no additional
problems in this case. However, woe to the "shallow access"
implementers. They must maintain the binding environment and not
accidentally obtain variable values from it. They must also back-up
and then back-down the stack in order to reach the binding environment.
Finally, they must reverse the process upon leaving the returned
function. We know of no LISP implementation with "shallow access"
which attempts to solve this case of the "environment problem."3

2. Unfortunately, there are difficulties in this implementation
in reclaiming discarded parts of the stack. A solution which
minimizes the amount of storage required for maintaining an
environment is to abandon a stack and use a structure which is
quite close to an "alist" (see Figure 4.)

AN
O [

q/0NY
Ej Figure 4.

Such a structure which is composed of noncontiguous linear
arrays connected via upward and downward pointers can be automatically
garbage collected by checking to see if pointers exist to substructures.

3. It should be clear at this point that the FUNARG problem is
badly named because the difficulties are not completely solved
when one can handle functional arguments. One should also handle
returns of functions, or what is essentially the sawc problem -

the case when a free variable is assigned a function as value. For

this reason we prefer the term "Environment Problem."




-12-

The points we have made so far are:

1) Free variables in function definitions require that one must
have an environment in order to be able to evaluate a function.

2) When one uses fuhctional arguments, then the gquestion arises
as to which environment one chooses in order to evaluate the
function, the binding environment or the activation environment.
3) When one returns functions (which require the values of free
variables for their evaluation) then one must, in general, save
the binding environment and thus create a stack which is, in fact,
a tree. .

Some language designers have made the unfortunate decision
that all functions are evaluated against the binding environment.
LISP allows the user to choose between the binding environment
and the activation environment by allowing a function to be
bound with FUNCTION or with QUOTE. QUOTE will force the activation
environment to be used in evaluating the function. A useful
metaphor for the difference between FUNCTION and QUOTE in LISP
is to think of QUOTE as a porpous or an open covering of the
function since free variables escape to the current environment.
FUNCTION acts as a closed or nonporous covering (hence the term
"closure" used by Landin). Thus we talk of "open" Lambda
expressions (functions in LISP are usually Lambda expressions)
and "closed" Lambda expressions. It has been our experience
that most LISP programmers rarely return closed Lambda expressions,
'and hence rarely encounter the full environment problem. There
does not currently appear to be any way of solving the complete
environment problem efficiently without losing efficiency when-
ever one accesses or modifies free variables.. It is also a
complex task now to design a system which offers "shallow access" .
at some times and "deep access" at otherrtimes.4' As long as
these implementational difficulties remain, designers will be

justified in providing only incomplete solutions of the environment
problem.

4. Certain LISP? systems use "deep access" in interpreted functions
and "shallow access" in compiled functions. If free variables in
compiled functions are declared to be COMMON, their wvalues will be
stored on the "alist". 1In this manner one can solve the environment

problem. The cost is a very slow interpreter and "deep access" to
free variables.



-13~

Historical Perspectives and Acknowledgments

.Peter Landin once said that most papers in Computer Science
describe how their author learned what someone else already
knew. This paper is no exception to that rule. My interest
in the environment problem began while Landin, who had a deep
understanding of the problem, visited MIT during 1966-67. I
then realized the correspondence between the FUNARG lists
which are the results of the evaluation of "closed" Lambda
expressions in LISP[2] and ISWIM's Lambda Closures [3,4].
Joseph Weizenbaum got éufficiently interested in Landin's work
that he implemented a subset of ISWIM based on his SLIP-OPL
system. The tree structure of the resulting stack was made
quite vivid to me when Weizenbaum encountered difficulty in
implementing the backward pointers necessary in the general case. -
The reason for this difficulty is that one could not then garbage
collect the circular SLIP structures which are created in a.
straight-forward implementation. This is what motivated Weizenbaum
to finally introduce classical garbage collection into SLIP [5].

The first version of this paper was written in 1967 when I
became incensed at the fact that many LISP implementers- did not
understand or even care about the problem. Subseqguently,
Professor Weizenbaum wrote a very readable account of the problem
and its solution in his implementation [6]. The presenf version
of this paper owes much of its emphasis on implementations to
Weizenbaum's account. )

I also wish to acknowledge useful discussions with
Professor Robert Fenichel and Carl Hewitt of MIT.



-14-

References
1) Daniel G. Bobrow and Daniel L. Murphy, "Structure of a
LISP System Using Two-level Storage", CACM, vol.10, no.3,
March 1967, pp. 155-159. (Note especially the footnote on

p.158.)

2) J. McCarthy et al., LISP 1.5 Programmer's Manual, MIT Press,
1965. (Note especially pp.70-71).

3) P.J. Landin, "The Next 700 Programming Languages", CACM,
vol.9, no.3, March 1966, pp.1l57-165.

4) P.J. Landin, "A A-Calculus Approach", in Advances in Pro-

gramming and Non-Numerical Computation, Pegamon Press, 1966,
pp.77-141. '

5) J. Weizenbaum, "Recovery of Reentrant List Structures in
SLIP", CACM, vol.1l2, no.7, July 1969, pp.370-372.

6) J. Weizenbaum, "The FUNARG Problem Explained", unpublished
memorandum, MIT,A1968.



